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ABSTRACT ML (Machine Learning)-based artificial neural network (ANN) model is proposed to estimate
the LER (line edge roughness)-induced performance variation in Fin-shaped Field Effect Transistor
(FinFET). For a given LER features such as rms amplitude(1), correlation length along x-direction (3X),
and correlation length along y-direction (3Y), the metrics for device performance such as on-state drive
current, off-state leakage current, threshold voltage, and subthreshold swing can be computing-efficiently
estimated with the ANN model.

INDEX TERMS Line edge roughness, process-induced random variation, FinFET, machine learning,
artificial neural network.

I. INTRODUCTION
For the last a few decades, complementary metal oxide
semiconductor (CMOS) technology has been successfully
evolved with the adoption of new techniques such as stress
engineering in 90 nm technology node and beyond [1],
high-k/metal-gate in 45 nm technology node and beyond [2],
and 3-D advanced device structure in 22 nm technology node
and beyond [3]. In every new CMOS technology platform,
the physical dimension of metal oxide semiconductor field
effect transistor (MOSFET) has been scaled down not only
to increase the density of devices in integrated circuit (IC)
but also to improve the functions of IC per cost. However,
process-induced random variations (i.e., transistors’ electri-
cal characteristics such as threshold voltage, on-state drive
current, and off-state leakage current, are randomly fluc-
tuated/affected while fabricating transistors in FAB), have
negatively affected the manufacturability of CMOS devices,
and thereby, it would significantly hinder the evolution of
CMOS technology [4]. The root-causes of process-induced
random variation are classified as (i) line edge rough-
ness (LER), (ii) random dopant fluctuation (RDF), and
(iii) work function variation (WFV) [5]. Especially, LER
would degrade the device performance but also indirectly
affect the other random variation sources (i.e., RDF and
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FIGURE 1. A bird’s-eye view of FinFET with a 3-D LER on its sidewall.
LER parameters used in this example are as follows: 1 = 0.5 nm,
3x = 20 nm, 3y = 50 nm, α = 1, 2 = 0.

WFV) because it induces structural variations in device [6].
With the most radical shift in device structure in the year
of 2011, i.e., from planar bulk MOSFET to 3-D MOSFET
(i.e., FinFET), the process-induced technical issues become
much more severe [7]. Therefore, as the device architec-
ture becomes more complicated (in reality, multiple bridge
channel field effect transistor (MBCFET), stacked nano-wire
FET, stacked nano-slab FET, etc. for 3 nm CMOS technology
node [8] and beyond), understanding the impact of LER on
device performance is desperately required in developing
variation-robust silicon device at 3 nm technology node and
beyond [9].
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FIGURE 2. Examples of roughness amplitude when (a) 3 = 10, α = 1, (b) 1 = 0.5, α = 1, and (c) 1 = 0.5, 3 = 10.

TABLE 1. Device parameters of The FinFET used in simulation [8].

TABLE 2. Performance metrics.

A few studies have reported to understand, quantify,
and analyze the impacts of LER on device characteristics
[10]–[12]. TCAD (Technology Computer Aided Design)-
based method has been adopted to propose model for
finely and accurately predicting the impact of LER [13].
However, the TCAD-based approach is fundamentally very
time-consuming and computationally-inefficient when pre-
dicting thousands of LER-induced input transfer character-
istics of MOSFETs in integrated circuit. Thus, a few studies
[14], [15] have tried to compactly model the impact of LER
on the device performance. Nevertheless, due to many techni-
cal barriers in developing a new compact model, the compact
model for analyzing the impact of LER [14], [15] would
not be timely developed, even though the LER on the fin
sidewall of FinFET should bemodeled for two-dimensionally
characterizing/understanding the sidewall surface [7], [13].
Therefore, using Machine Learning (ML) technique, simple
but eye-catching novel approach with reasonable accuracy
is proposed in this work, to provide an alternative device
solution for predicting the process-induced variation.

II. DEVICE DESIGN AND DATA GENERATION
A. LINE EDGE ROUGHNESS PARAMETERS
Generally, 2 or 3 parameters (e.g., 1, 3, and α) are used
to describe the LER profile in planar MOSFETs, and 3 or 4
parameters (e.g., 1, 3x, 3y, and α) are used in 3-D
MOSFETs. The impact of each parameter in LER profile

FIGURE 3. The flow chart how to build/train/test the ANN model.

is comparatively described in Fig. 2. The details of each
parameter used in Fig. 2 are as below [16]:

(i) Amplitude (1): the root-mean-square(rms) value of
roughness amplitude. The smaller 1 is, the smoother the
surface is.

(ii) Correlation length (3): how closely the correlated edge
is associated to its neighboring edge. The larger 3 is, the
smoother the surface is.
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FIGURE 4. Artificial neural network (ANN) structure: The model has 3 input variables and 4 output variables which are randomly sampled from
probability distribution function. The probability distribution function is determined by the mean vector and covariance matrix.

(iii) Roughness exponent (α): the high frequency
component of roughness. The larger α is, the smoother the
surface is.

B. DEVICE DESIGN WITH LINE EDGE ROUGHNESS
A three-dimensional (3-D) bird’s-eye view of FinFET with
a 3-D LER on its sidewall fin is shown in Fig.1. The device
design parameters of nominal FinFET device are summarized
in Table 1. To reconfigure the surface roughness on the
sidewall fin of FinFET, the quasi-atomistic model [13] was
used. The steps to generate a rough surface are as below:

Step I: Define key parameters such as 1, 3x, 3y, α, 2
of 2-D ACVF [see (1) below].

Step II: Obtain the 2-D power spectrum by taking the fast
Fourier transformation (FFT).

Step III: Obtain the amplitude spectrum by taking the
square root of the result in Step II.

Step IV: Obtain the 2-D impulse response by taking the
inverse fast Fourier transformation (IFFT) on the result in
Step III.

Step V: Generate the white Gaussian noise (wgn) and take
the 2-D convolution of the result in Step IV and wgn.

Step VI: Once the steps above are done, import the
generated surface coordinates to TCAD with Sentaurus
Structure Editor.
ACVF (x, y)

= 12exp

−{
(xcos2+ysin2)2

32
x

+
(−xcos2+ysin2)2

32
y

} α
2

(1)

In (1), 3x and 3y are the correlation length along
x-direction and y-direction of surface, respectively.
2 determines the relation between x and y direction.

C. DATA GENERATION
To build and verify the Artificial Neural Network (ANN)
model, 100 different data sets (note that each data set consists
of 50 different FinFETs with identical LER parameters) were

FIGURE 5. Training, validation loss, and time vs. training epochs.

TABLE 3. Time comparison between TCAD and ANN.

first created. To generate those data sets of FinFET device,
three LER parameters (i.e.,1,3x,3y) should be determined.
Herein, based on the previous experimental data [16]–[19],
a reference LER parameter set was first chosen;1 = 0.5 nm,
3x = 20 nm, 3y = 50 nm, α = 1, 2 = 0. Afterwards,
the value of three LER parameters (1, 3x, 3y) are ran-
domly chosen from a given range for each LER parameter,
as follows: 1 from 0.2 nm to 0.8 nm, 3x from 10 nm to
100 nm, and 3y from 20 nm to 200 nm. The distribution
of each LER parameter in the limited range follows the
uniform distribution. Note that α is set to 1, and 2 is set
to 0. In fact, in order to take account into the impact of α on
a LER profile, a very small sampling distance is necessary.
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FIGURE 6. (a) Mean and standard deviation of Ion by amplitude(1) when 3x = 20 and 3y = 50, (b) standard deviation and (c) mean of Ion by correlation
length X(3x) and Y(3y) when 1 = 0.5.

TABLE 4. Mean and standard deviation of the performance metrics.

However, the small sampling distance should cause the
tremendous amount of computational works in TCAD sim-
ulation runs. In real, α is usually out of sight in many other
studies on LER [11], [14], [15], [20]. Regarding 2, we set
2 as 0, for simplicity. This means that the roughness along
x-direction is independent of that along y-direction. Then,
Id-vs.-Vg characteristic of all FinFETs in 100 different data
sets were simulated using the TCAD, and thereafter, the per-
formance metrics (e.g., Ioff, Vt, Ion, SS) were extracted out
[see Table 2 ].

Those data sets were separated into three groups: training
data sets, validation data sets, and test data sets. The training
data sets are used to update the ANN model components
such as weight matrices and bias vectors. The validation data
sets are used to monitor if the ANN model is well trained or

over-fitted in the training process. After the training process
is finished, the test data sets are used to verify if the ANN
model is well trained or not [see Fig. 3].

III. ARTIFICIAL NEURAL NETWORK MODELING
A. FULLY CONNECTED LAYERS
This ANN model has 1 input layer, 1 output layer and
3 hidden layers with 3 activation functions (ϕ), [see Fig. 4].
The hyperbolic tangent (tanh) is used for activation functions.
It is mathematically defined as follows:

tanh =
e2x − 1
e2x + 1

(2)

Weight matrices (W1, W2, . . . , W4) and bias vectors
(b1, b2, . . . , b4) of ANNmodel can determine outputs. When
training the ANN model, those matrices and vectors are
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FIGURE 7. Test data set from TCAD vs. data set predicted by ML model. For the given LER profile (i.e., 1 = 0.246 nm, 3x = 79.43 nm, 3y = 159.69 nm),
(a) log10(Ioff)-vs.-Vt, (b) Ion-vs.-Vt, (c) SS-vs.-Vt. For the other LER profile (i.e., 1 = 0.715 nm, 3x = 30.47 nm, 3y = 164.03 nm), (d) log10(Ioff)-vs.-Vt,
(e) Ion-vs.-Vt, (f) SS-vs.-Vt. Note that black-colored square, red-colored circle, and blue-colored triangle indicates TCAD sample, ML sample 1, and ML
sample 2, respectively.

updated in order to be fit to the training data sets for specified
number of iterations.

B. GRAFTING PROBABILITY DISTRIBUTION
In this study, we assumed that the distribution of performance
metrics follows the multi-variate Gaussian distribution to
securely build the model for estimating the LER-induced
performance variation of device. It is known that the
LER-induced variation of Vt, Ion, SS, and log10Ioff approx-
imately follows the Gaussian distribution in various devices
[11], [21], [22].

To train the ANN model with probabilistic layer, we used
Maximum likelihood estimation (MLE) method. Based on
the observation (e.g., Y ), the MLE method is a technique for
estimating parameter θ , when there is the input X. In other
words, the final goal in this method is to find θ that maximizes
P(Y|X; θ ) or can be mathematically rewritten as in (3):

θML = argmax
θ

P (Y |X; θ) (3)

The parameters such as X , Y , and θ can be redefined in our
model as follows:
X : 1, 3x, and 3y (LER parameters)
Y : {y1, y2, . . . y50}, yi: observed Ioff, Vt, Ion, and SS
θ : mean vector and covariance matrix

To train the probability-grafted ANN, we used ‘‘Negative log
likelihood’’ (negloglik) as a loss function. Negloglik notifies

how much two other distributions are different from each
other.

Using Adam Optimizer [23], the training process was exe-
cuted for 200,000 epochs (776 sec) with learning rate of 10−5.
The model was trained without overfitting [see Fig. 5].

IV. RESULTS AND EVALUATION
Fig. 6 shows how Ion is varied with modifying the LER
parameters. Table 4 and Fig. 7 show the comparison between
the TCAD data (=test data set) and the prediction data by the
ANNmodel. Based on the probability density function deter-
mined by the mean vector and covariance matrix, the predic-
tion data was ‘‘randomly’’ extracted. Hence, they are slightly
different from TCAD samples, but they can never be identical
to TCAD samples. Thus, the accuracy of prediction data
was evaluated using the confidence interval calculated by the
standard error of mean and standard deviation [24]. Herein,
the predicted values of population mean and standard devia-
tion by the ANN model are considered as the true population
mean and standard deviation.

Standard error of mean =
σ
√
n

(4)

n : number of samples in 1 set of data.

Standard error of standard deviation ≈
σ

√
2 (n− 1)

(5)
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Table 3 shows the comparison of simulation time of
TCAD vs. ANN. It is noteworthy that the advantage of using
the ANN model becomes conspicuous when the number of
data (or the size of data) is bigger than 10,000 or more. Note
that the ANN model was built using the Tensorflow 2.0 and
Tensorflow-probability python library [25], [26].

V. CONCLUSION
Line edge roughness (LER) is one of key sources inducing
undesirable variation in transistor performance. These unde-
sirable fluctuations affect the operation of circuit, and
thereby, they can cause unexpected errors. Therefore, it is
important to understand the factors causing the random varia-
tion in an accurate manner within reasonable time. In FinFET,
the structural deformation by LER appears not as a shape of
line but plane. Thus, the compact modeling method would
not be the right option for solving a problem with increased
complexity. To avoid these difficulties, we used the ANN
model and suggest alternatives to predict the process-induced
random fluctuations. With accurate predictions (which meets
the confidence interval of 99%), our method is expected to
help analyze the effects of LER in fabrication process and to
evaluate yield of integrated circuit (IC).
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