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ABSTRACT In this article, we set up a novel audio dataset named Gastrointestinal (GI) Sound Set which
includes 6 kinds of body sounds Bowel sound, Speech, Snore, Cough, Groan, and Rub. We do sound event
detection (SED) based on it, and can accurately detect 6 types of sound events. First, the GI Sound Set is
collected by wearable auscultation devices. To ensure generalization, patients from five different hospital
departments are recruited for data collection, along with a group of healthy subjects. GI Sound Set refers to
Google AudioSet in data format but varies in audio length and sampling rate. Second, we extract Mel-filter
features from the recordings and investigate the performance of different activation functions and neural
network architectures for detecting sound events. We use data augmentation, class balance to deal with the
problem of quantitative imbalance between classes on the dataset.We applymultiple instances learning(MIL)
to give out not only bag-level results but also frame-level results. In this work, GI Sound Set is the largest
body sound dataset to date, and our approach shows state-of-the-art performance with an average score of
F1=81.06% evaluated on the test set. Due to its simple network and conventional processing method, our
CRNN system has high universality, which can be used in other audio datasets, such as respiratory sound
and heart sound.

INDEX TERMS Gastrointestinal (GI) sound set, sound event detection(SED), convolutional recurrent neural
network (CRNN), multiple instance learning(MIL).

I. INTRODUCTION
In recent years, with the development of artificial intelligence
technology and wearable medical devices, a lot of AI-assisted
diagnoses using medical imaging and electronic medical
record data have been proved to be effective in reducingwork-
load for doctors. By contrast, the absence of stereophonic data
has prevented the auscultation process from being digitized,
with only a small number of datasets collected by electronic
stethoscopes for research, such as ICBHI [1], Physionet [2]
and the Noisy Guts project [3]. [3] explored the use of bowel
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sounds to characterize IBS with a view to diagnostic use
using a diagnostic case-control study, and Independent testing
demonstrated 87% sensitivity and 87% specificity for IBS
diagnosis using the 15 IBS and 15 healthy participants. In
connectionwith thework of this article, Our original intention
is to mine information about our body and provide helpful
information for doctors. As is mentioned in [3], the interpre-
tation of bowel sounds (BS) provides a convenient and non-
invasive technique to aid in the diagnosis of gastrointestinal
(GI) conditions. However, this approach is limited by the
variation between BS and its irregular occurrence. In a few
cases, manual auscultation can make judgments, but there is
plenty of subjectivity and uncertainties. A longer recording
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has the potential to unlock additional understanding of GI
physiology and clinical utility. That is the point why we set
up our GI Sound Set.

According to [4], the models which have been used
to model sound events are classified into four groups:
hidden Markov models (HMMs) [7]–[10], a multi-pass
decoding procedure [11], non-negative matrix factorization
(NMF) [12], convolutional neural networks (CNNs) [13]–
[18], recurrent neural network (RNNs) [19]–[21] and their
combination convolutional and recurrent neural networks
(CRNNs) [22]. As is known, HMMs can not handle poly-
phonic audio while HMMs with multi-pass decoding figure it
out, but can not explain and simulate how overlapping sound
events affect the acoustic characteristics of each individual
sound event. NMF has the ability to handle overlapping
sounds but has no ability to take advantage of the temporal
context thus losing information. CRNNs show state-of-the-
art performance on sound event detection by combining the
ability of CNNs to learn locally invariant filters and the power
of RNNs to event detection.

Our main contributions and results are:

1) We set up GI Sound Set with 6 sound events that
cover common sound events related to body sounds
established by ourselves.

2) We do contrast experiments on Activation Functions,
Network Size, Input Features, and try to find the best
way to do sound event detection.

3) We explore effective data augmentation methods based
on a quantitative imbalance between classes.

4) We show the state-of-the-art performance on GI Sound
Set.

The paper is structured as follows: In Section II, we intro-
duce the collection method and processing procedures of GI
Sound Set. In Section III, CNNs, BiGRU,CRNN is discussed.
In particular, we introduce multiple instance learning and
some data augmentationmethods. In Section IV, we introduce
our network architecture, feature extraction, and experimen-
tal results. Finally, we discuss our findings in Section V and
conclude the paper in Section VI.

II. GI SOUND SET
To our knowledge, GI Sound Set is the largest dataset about
body sounds. We introduce it from four aspects: Collec-
tion Instrument, Collection Method, Dataset Annotation, GI
Sound Set Distribution, and Medical Significance.

A. COLLECTION INSTRUMENT
A small and portable device named Continuous Ausculta-
tion Recorder (Type: YM-TYJL-01) is used to collect body
sounds. It is an innovative medical instrument designed by
BeijingYiemedMedical Technology Co. Ltd. It consists of an
auscultation patch, Bluetooth receiver, and software running
on the computer. Each patch with a high sensitivity sensor
and a high-performance processor can collect different types
of body sounds for 24 hours by sticking to the subject’s

abdomen. The wireless audio signal will transmit to the com-
puter via Bluetooth and Ethernet through the receiver inward.
As shown in Fig.1, simultaneous remote and continuous aus-
cultation of 100 patients can be achieved [16].

FIGURE 1. Continuous Auscultation Recorder.

B. COLLECTION METHOD
GI Sound Set signals are recorded by attaching Continuous
Auscultation Recorder to the right lower Qu (RLQ) of the
subject’s abdomen, where we are able to acquire the most
bowel sound. In order to ensure the generalization of GI
Sound Set, wemake a careful arrangement and selection from
the three aspects: collection sites, subjects, collection time,
meanwhile count and record all the subjects’ information in
detail.

1) COLLECTION SITES
Collection sites contain five departments of four hospitals in
different districts and in-home visits.

We select clinical and non-clinical (such as in-home visits)
environment for data diversity. These addresses respectively
are Jishuitan Hospital Orthopedics Department, Jiangsu
Provincial Hospital of Traditional Chinese Medicine General
Surgery Department, Shanxi Provincial People’s Hospital
General Surgery Department, Liaocheng People’s Hospital
Hepatobiliary Surgery Department, Intensive Care Unit of
Liaocheng People’s Hospital and Yiemed Medical Technol-
ogy Co. Ltd which is the only non-clinical environment. All
our data collection work has passed the ethical review of the
hospital ethics committee.

All recordings are performed in an uncontrolled environ-
ment, which is either performed during in-home visits or in
the hospital. This results in many recordings being corrupted
by various sources of noise, such as white noise. Other noise
sources include the friction sound between the patch and the
clothes, the current noise, and so on.

2) SUBJECTS
20 subjects are selected at each collection site including
10 males and 10 females, a total of 120 subjects. Their ages
range from 20 to 80, with an average age of 55.91; Their BMIs
range from 13.96 to 39.13, with an average BMI of 23.70.
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TABLE 1. Subject Type and Number.

Subjects are generally divided into two categories based on
their health status: the healthy and patient, and Table 1 details
the number of people in each category.

3) COLLECTION TIME
The data is collected continuously for 24 hours. When tag-
ging, to reduce the workload, we choose a time point every
4 hours based on food intake from the 24 hours a day, respec-
tively 00:00, 04:00, 08:00, 12:00, 16:00, 20:00. One subject
contributes 5-minute recordings at each time point.

C. DATASET ANNOTATION
We divide all the recordings into segments which last 5 sec-
onds and do annotation on a coarse-grained and fine-grained
level.

1) DIVIDING INTO 5-SECONDS RECORDINGS
Considering that the frequency of most body sounds is rel-
atively low, around 1KHz, the signals are sampled at 4KHz
with 16-bit quantization. The total duration of GI sound set
is 60 hours. We divide the signals into segments of 5s for the
subsequent marking process and get 43200 segments. Each
segment is stored as a.wav file, and we refer one segment as
one recording.

2) WEAK LABEL AND STRONG LABEL
The weak label means giving the type(s) of the sound event(s)
occurring in an audio recording, without time boundaries.
While strong label gives not only the types but also the onset
and offset of the sound event occurring in the recording.
Our task has two subtasks, both of them require dataset with
the weak label when training. For testing, Task A requires

TABLE 2. Classes and quantities of GI sound set.

a dataset with a weak label while Task B requires a dataset
with a strong label. Therefore, we conduct weak markings in
all the training data, while the test set has both a strong label
and a weak label.

3) RATING METHODS
Our GI sound set learns from human rating methods of
Audio set [25] constructed by Google. When marking weak
labels, Audio Marker software presents a 5-second segment
to human raters as shown in Fig.2. For each segment, raters
are asked to independently rate the presence of one or more
labels. The possible ratings are ‘‘present’’, ‘‘not present’’.
Each segment is rated by three raters and a majority vote is
required to record an overall rating. When marking strong
labels, we divide a 5-second recording into 50 frames with
0.1 seconds for each frame considering the limited dis-
crimination of the human ear and its practical application.
Fig.3 shows the software for fine marking.

D. GI SOUND DISTRIBUTION AND MEDICAL
SIGNIFICANCE
Wemake statistics on the types and quantities of sound events
contained in the dataset, and present them in Table 2. Table 3.
lists the audio quantity and other information of GI Sound
Set, and compares it with other datasets.

Next, we illustrate the reasons for selecting the six sound
event classes for GI Sound Set. Bowel sounds can effectively
screen out functional Gastrointestinal disease such as irritable
bowel syndrome (IBS) [33], monitor whether postoperative
intestinal paralysis POI and paralytic intestinal obstruction
will occur [34], and it is possible to fine guide the feeding
time and dose of enhanced recovery after surgery(ERAS).
The patient’s pain has always been an important observation
index after the operation. Currently, the subjective method
such as the VAS score is mainly adopted. The detection of the
patient’s moaning can help assess the pain level of the patient,
so as to use analgesics reasonably. Cough can cause pain and
tear of surgical wounds. It is also the key to postoperative care
in order to avoid postoperative cough as much as possible.
Cough sound detection can help doctors assess the respiratory
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FIGURE 2. The usage diagram of the audio maker for coarse-grained marking.

FIGURE 3. The usage diagram of software for fine-grained marking.

condition. Sleep quality is also important for patients, and
snoring can be used as an indicator of sleep monitoring,
especially for apnea OSA. In addition, frequent talking and
turning over can also reflect the postoperative recovery status
and comfort of patients, so the detection of voice and friction
can also play a role.

III. CONVOLUTIONAL RECURRENT NEURAL NETWORK
ARCHITECTURES
As is known, neural networks show great superiority over
traditional machine-learning methods for a number of pattern
recognition tasks, thus become the most popular method

especially in image and speech recognition. The following
we focus on CNN, Bidirectional Gated Recurrent Neural
Networks(BiGRU) which are used in our work and introduce
a special case of machine learning-MIL.

A. CONVOLUTIONAL NEURAL NETWORK
CNN contains the convolution layer, pooling layer, activa-
tion function, and fully connected layer basic components.
Among them, convolutional layers are always interweaved
with pooling layers. The data is passed from layer to layer
in the form of a three-dimensional tensors, where each slice
is called a feature map. If the input tensor of l − thlayer
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TABLE 3. Comparison of GI sound set and others.

is x1 ∈ RH
l
×W l
×Dl , the convolution kernel of the layer

isf l ∈ RH×W×D
l
, and the number of convolution kernel is

D, the convolution operation can be expressed as (1):

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
d l=0

fi,j,d l ,d × x
l
il+1+i,jl+1+j,d l (1)

where
(
il+1, jl+1

)
is the position coordinates of the convolu-

tion result.
The introduction of the pooling layer is to reduce the

dimension which in other words is sampling and abstract the
visual input object by imitating the human visual system.
Pooling operation commonly used includes max-pooling and
average-pooling.

CNN has been widely used in image processing because of
its strong feature extraction ability. When processing audio,
we can extract spectrograms or filter bank outputs as input,
and the input is a 2-dimensional feature map whose axes are
time and frequency, then it can be treated in the same way as
an image.

According to [16], convolutional neural networks (CNN)
are, in principle, very well suited to the problem of environ-
mental sound classification. Here are two reasons. Firstly,
when applied to spectrogram-like inputs, CNNs have a
remarkable ability to capture energy modulation patterns
across time and frequency, which has been shown to be an
important feature in distinguishing different sound events,
often noise-like sounds (such as engines and jackhammers
[23]). Secondly, the net with convolution kernel and small
receptive field is capable to learn and recognize the spectro-
temporal pattern, which represents different sound classes.

FIGURE 4. (a) The structure of a feed-forward neural network (b) the
structure of RNN.

B. BIGRU
As shown in Fig. 4(a) [40], a time sequence is an input into
the feed-forward network, which can only be independently
processed frame by frame. It means that the output at time t
is only based on the input, without taking advantage of any
context information, which results in the loss and waste of
information for machine learning tasks with sequence input.
Splicing the input feature of several consecutive frames alle-
viates this problem to some extent, but it only provides limited
contextual information. A more rational way is to make use
of recurrent neural networks. The structure of RNN is shown
in Fig. 4(b) [40]. They are competent for processing variable-
length sequential input and learning temporal dependencies
within the data.

Long Short-Time Memory (LSTM) networks are an evo-
lution of RNNs, which can solve the gradient vanishing and
gradient explosion problem in dealing with long sequence
training. It performs better than RNN for long sequences.
LSTM relies on the input gate, forget gate, and output gate
to selectively affect the state information of RNN at a certain
time. Its structure is shown in Fig. 5(a) [40].

FIGURE 5. (a) The structure of LSTM (b) the structure of GRU.

Gated Recurrent Neural Networks(GRU) can be seen as
a variant of LSTM. GRU replaces forget and input gates
in LSTM with update doors, which is shown in Fig. 5(b)
[40]. Combining cell state and hidden state, the method of
calculating new information at the current time is different
from LSTM.

In the classical cyclic neural network, the state is transmit-
ted from front to back uniaxially. However, in some cases,
the output at the current moment is not only constrained by
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the previous state but also related to the latter. In order to deal
with this kind of problem, bidirectional RNN is needed, so is
BiGRU.

C. MULTIPLE INSTANCE LEARNING
Multiple instance learning (MIL) is a special case of machine
learning, which is the fourth framework in parallel with
supervised learning, unsupervised learning, and reinforce-
ment learning. It is proposed by Dietterich in 1997, in the
context of a study of molecular activity: a molecule has
many isomers chemically, yet some are effective in treating
disease and others are ineffective. Based on this background,
the training data contains no conformational information
but only the validity of each molecule is provided, and the
effectiveness of molecules is predicted by the training data
[24]. Recently, multiple instance learning has been gradually
applied to histopathological imaging for cancer detection
based on the machine learning framework, which is a new
method emerging in the field of computer-aided diagnosis.

Here are two concepts: bags and instance. Bags are made
up of multiple instances, with a class label on the package and
no label on the instance. In the molecular activity experiment,
the molecules are bags, and their conformations are instances.
Link to the work of this article, the whole recordings can be
seen as bags while frames can be seen as instances.

The relationship between the bag label and the instance
labels can be complex. Under binary labels, we adopt the stan-
dard multiple instance (SMI) assumption: a bag is positive if
it contains at least one positive instance, and negative if it only
contains negative instances. Our work in this article follows
the SMI assumption. In other words, we regard a recording
as a positive sample if there is one frame or more positive,
while negative if all the frames are negative. Under MIL,
we may not only determine recording as positive but also give
out which frames are positive based on recording-level labels,
this is why we adopt MIL to our work.

D. DATA AUGMENTATION
A classic assumption in machine learning is that the number
of samples is equal for each class. However, actual tasks
are difficult to satisfy this assumption, so is our GI Sound
Set. In order to deal with this problem and make our model
more general, there are usually data-level and algorithm-level
processing methods.

We briefly introduce the processing method at the
algorithm-level. Unbalanced samples cause the ‘‘under learn-
ing’’ of a small sample size class. The cost-sensitivemethod is
often used to deal with this problem, which means increasing
the penalty cost of small data samples misclassification and
reflecting it in the objective function, then we can adjust the
model’s focus on small samples by optimizing our objec-
tive function. Since we make a data generator to decrease
the unbalance of different classes, the cost-sensitive method
nearly does not improve our metrics.

We employ three methods, including data sampling, class-
balance sampling, and audio transformation at the data-level.

1) DATA SAMPLING
It is the most commonly used method from the data level.
It contains over-sampling (or up-sampling), under-sampling
(or down-sampling). In general, up-sampling is suitable for a
class with a small sample size, which means that the audio
of that class is copied to the scale of the maximum data
volume class. Down-sampling can be used for the classes
with a larger sample size. Note that the preciousness of
data in deep learning, we can not simply discard some data,
otherwise the diversity of training data will be reduced and
the generalization ability of the model will be affected. The
scientific method of down-sampling is to strictly control the
number of samples of the specific class with a bigger sample
size when randomly selected from each batch during batch
training.

2) CLASS BALANCED SAMPLING
It focuses on classes, where the strategy is to categorize the
samples by class, generating a list of samples for each class.
When training, one or more classes are randomly selected,
and then samples are randomly selected from the list of sam-
ples corresponding to each class. This ensures the opportuni-
ties are balanced for each class to participate in the training.
We use this method on our GI Sound Set to deal with the
imbalance of classes.

3) AUDIO TRANSFORMATION
It is also a good way to do data augmentation. To be specific,
there are basically three methods: Time Shift Augmenta-
tion, Noise Augmentation, and Pitch Shift Augmentation.
Timeshift augmentation means accelerating or decelerating
the audio sample on the timeline while pitch keeps con-
stant; Similarly, pitch shift augmentation requires increas-
ing or decreasing the pitch of the audio sample on the
frequency axis without changing the time axis. Noise aug-
mentation means mixing the sample with another recording
containing background sounds from different types of acous-
tic scenes.

IV. SOUND EVENT DETECTION(SED)-EXPERIMENTS
A. FEATURE EXTRACTION
Mel-Frequency Cepstral Coefficients and filter banks are
two main popular features in the audio processing field.
In this section, we discuss the differences between them, then
describe the filter banks’ extraction process in detail.

The calculation process is similar when getting MFCCs
and filter banks, both of them calculate the filter bank, and
MFCCs need to get some more steps on this basis. In a
nutshell, a signal goes through a pre-emphasis filter; then
gets overlapping frames and a window function is applied
to each frame; afterward, do a Short-Time Fourier Trans-
form on each frame and calculate the power spectrum; and
subsequently, compute the filter banks. To obtain MFCCs,
a Discrete Cosine Transform (DCT) is applied to the filter
banks retaining a number of the resulting coefficients while

VOLUME 8, 2020 157897



X. Zheng et al.: CRNN System for SED Based on GI Sound Dataset Collected by Wearable Auscultation Devices

the rest are discarded. A final step in both cases is mean
normalization. Mel-filter is one of filter banks features.

FIGURE 6. A flow diagram for obtaining MFCCs and Filter banks.

B. CRNN NETWORK ARCHITECTURE
We use the LibROSA toolkit [27] to extract theMel-filter fea-
ture, where the parameters clip length= 5s,Mel-bins=64, and
frame size=12.5ms.Under this parameter, the feature dimen-
sion extracted from a piece of audio is 400∗64. The CRNN
network is made up of a 5-layer CNN network, a BiGRU
network, and a fully connected layer as shown in Fig. 6. We
implement the network based on the PyTorch toolkit [28]
and send the extracted features of 400∗64 dimensions into
the network as input. After passing through the convolution
layers and pooling layers, a BiGRU is an input, and then the
prediction probability of each frame of the sound event is
obtained after passing through a fully connected layer com-
posed of 6 neurons and the sigmoid function. The prediction
at the frame-level is aggregated to output the prediction at
the recording-level by pooling function. The loss function
is calculated by comparing the predictions and labels at the
recording-level. We use Adam algorithm to minimize the
average cross-entropy, with an initial learning rate of 3e-
4 and a batch size of 100 recordings. The threshold values are
calculated from the probability of frame-level and recording-
level through threshold calculation, which is used to generate
output for evaluation. The optimal threshold value depends
on our evaluation metrics F1.

C. EVALUATION METRICS
Sound Event Detection always includes two subtasks: clas-
sification and localization. Classification is to determine the
types of sound events that occur in the recording, while local-
ization gives timestamps after the determination of sound
events.

Our task is a multi-classification task based on GI Sound
Set, which is divided into two subtasks according to the result
types. Task A is to do sound event detection on recording
level and give recording-level labels, while Task B is to do
sound event detection on 1s-level and give 1s-level labels. The

following we introduce the corresponding evaluation metrics
according to different sub-tasks [30].

1) TASK A: EVALUATION METRICS ON RECORDING LEVEL
The goal of Task A is to give coarse-grained prediction
results, and it is evaluated by the micro-average on the
recording-level which is defined as the harmonic average of
the precision and recall [29] as shown in (2):

F1 =
2(

TP
TP+FP

)−1
+

(
TP

TP+FN

)−1 = 2TP
2TP+ FP+ FN

(2)

TP: the number of correctly predicted sound events;
FN: the number of missed sound events;
FP: the number of spuriously predicted sound events;
Note that TP, FN, FP all three metrics are accumulated over

all recordings and sound event types.

2) TASK B: EVALUATION METRICS ON 1S-LEVEL
Task B is to give fine-grained prediction results, and it is
evaluated by the micro-average F1 and micro-average error
rate(ER) on one-second segments. F1 is defined in a similar
way as Eq.(2) in Task A, but with TP, FN, and FP counted at
the segment level.

Error rate measures the number of errors in terms of inser-
tions (I), deletions (D), and substitutions (S) which were
often used in Automatic Speech Recognition(ASR) evalua-
tionmetricWord Error Rate(WER). To calculate the segment-
based error rate, errors are counted segment by segment. In a
segment m, the number of substitution errors S(m) is the
number of reference events for which a correct event was not
output, yet something else was. This is obtained by pairing
false positives and false negatives, without designating which
erroneous event substitutes which. The remaining events are
insertions and deletions: D(m)—the number of reference
events that are not correctly identified (false negatives after
substitutions are accounted for) and I (m)—the number of
events in system output that are not correct (false positives
after substitutions are accounted for) [30]. This leads to the
following formula:

S(m) = min(FN (m),FP(m))

D(m) = max(0,FN (m)− FP(m))

I (m) = max(0,FP(m)− FN (m)) (3)

ER is calculated by (4), Note that S, D, I, and N are all
calculated on 1-second segments.

ER =
S + D+ 1

N
=
FN + FP− S
TP+ FN

(4)

S: the minimum of false negatives and false positive;
D: the number of extra false negative;
I: the number of extra false positive predictions;
N: the total number of true occurrences of sound events.
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3) OTHER METRICS FOR SED MULTI-LABEL TASK
There are MAP, MAUC, and d-prime three metrics, which
are widely used in multi-label tasks according to the litera-
ture [25].

These metrics are designed to measure how well a system
separates positive and negative recordings, and they do not
require calculating thresholds compared with F1 and ER. The
calculation is as follows: the system generates a sorted list of
evaluation recordings for each sound event class, sorted in
descending order according to the probability of the event.
For each positive recording in the list, we set the threshold
below its probability of occurrence and calculate a precision
score. We define the mean of all sound event classes [35].
In order to amplify small changes, the d-prime metric can be
calculated by wrapping MAUC making use of the following
equation (5):

d ′ =
√
28−1 (AUC) (5)

where 8is the accumulative density function of the standard
normal distribution. Note that all of MAP, MAUC, and d-
prime are the larger the better.

FIGURE 7. CRNN network structure.

D. EXPERIMENTS AND RESULTS
1) EXPERIMENTS SET UP
WedivideGI Sound Set into a training set (40,530 recordings)
and a test set (446 recordings). It should be noted that the
training set and test set are disjoint and independent. The
test set is another set of samples collected under the same
conditions as the training set. The test set is strongly labeled

TABLE 4. Comparison of CRNN Activation Functions.

so they can be evaluated for both subtasks, but the training
set only comes with presence/absence labeling. Meanwhile,
the test set has balanced numbers of events, but the training set
is unbalanced. We set aside 2000 recordings from the training
set to make a balanced validation set, and use the remaining
38,530 recordings for training.

Since our training set is unbalanced, we make a data gen-
erator for each sound event class to overcome the negative
effects of data imbalance. We number classes and extract fea-
tures according to classes. When training, the data generators
cycle through all the feature files with a certain class and
sample uniformly to form a training batch.

2) COMPARISON OF CRNN ACTIVATION FUNCTIONS
We initiate our experiments with finding an appropriate and
high performing Activation Function (linear/attention/max
/average/exponential) by using Mel-filter features. Table 4
lists the results of the max pooling, average pooling, linear
softmax, exponential softmax, and attention systems on both
subtasks of GI Sound Set. Attention systems outperform than
others in terms of F1 for Task A. However,Max systems show
the best performance in terms of F1 and error rate for Task B.
Combining two subtasks, we choose max pooling function as
the prime one.

3) COMPARISON OF CRNN NETWORK SIZE
Based on the CRNN network with 5 Conv layers following
by 1 GRU layer as Fig.7, we try different layers and different
neurons to find an optimal network taking metrics and speed
into account. Table 5 lists the results, and Fig. 8 shows the
results with varying numbers of neurons per hidden layer and
varying numbers of hidden layers per model.

4) COMPARISON OF DIFFERENT NETWORKS
After a series of basic operations on CRNN, we try to find
which of the three networks performs the best: BiRNN,
BiGRU, and LSTM. We have such prior knowledge: LSTM
and GRU are variants of RNN. Due to gradient vanishing,
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FIGURE 8. Comparison of CRNN network size. (a)(b) shows the F1-scores for Task A and F1-scores, Error Rate for Task B for a CRNN
using {3,. . . , 7} CNN layer. (c)(d)shows F1-scores for Task A and F1-scores, Error Rate for Task B for a CRNN with 5 CNN layers using {25,
50,. . . , 300} neurons per layer.

TABLE 5. Comparison of CRNN Network size.

RNN can only have short-term memory. The LSTM net-
work solves the problem of gradient vanishing by combin-
ing short-term memory with long-term memory. Compared
with LSTM, GRU is easier to converge. Table 6 shows the
results.

TABLE 6. Comparison of Different Networks.

5) COMPARISON OF INPUT FEATURES
Table 7 shows the results for CRNN with single input feature
such as MFCCs, spectrograms, Mel-filters, transfer learning
features extracted by VGGISH, and with combined features.
The Mel-filter combined with the spectrogram feature shows
promising results. Note that we do not apply data augmenta-
tion in those contrast experiments.

6) EVALUATION OF THE FINAL SETUP ON THE TEST SET
Table 8 shows the optimal results, experiment setup (i.e.
CRNN,5 CNN layers, 50 neurons, data augmentations, max-
pooling functions, input fusion features combined with
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TABLE 7. Comparison of Different Input features.

Mel-filter, MFCC, and Spectrograms) and metrics for both
Task A and Task B evaluated on the test set.

7) RESULTS ANALYSIS FOR CLASSES
Weuse confusionmatrices to visualize the confusion between
the 6 sound event types on our GI Sound Set, both on the
recording level and the 1-second segment level. The recording
or the second segment may have multiple ground truth labels,
as well as multiple predicted labels considering the existence
of polyphonic sounds. To deal with that

the problem, we divide the recordings into fractional
recordings with equal weights, So it is with segments. Fig. 9.
shows the confusionmatrices of the optimal results on the test
data for both Task A and Task B.

8) COMPARISON WITH RELATED WORKS
Reference [41] presents an algorithm for automatic detection
of cough events from acoustic signals. The algorithm uses
three spectral features with a logistic regression model to
separate sound segments into cough and non-cough events.
Its dataset includes a total of 43 real-world environment
recordings, with a length of over 32 minutes, from differ-
ent patients. In these recordings, cough sound locations are
manually marked to assess the performance of the proposed
cough detection method. As a result, a total of 980 events
are labeled as cough sounds whilst more than 1000 separate
non-cough sound events are also identified. Non-cough sound
events include speech, laughter, machine noises, and other
types of background noise. The algorithm achieves a high
F1 of 88.07.

Reference [42] proposes such amethod and achieves a very
high F1 of 94.93. The centerpiece of the proposed method is a
recurrent neural network for modeling of sequential data with
variable length. Clinical sleep recordings from 20 subjects
are recorded by a microphone, which are used to assess the
performance of the proposed method. Mel-frequency cepstral
coefficients, which is extracted from snoring and non-snoring
sound events, are used as inputs to the proposed network.

Reference [43] constructs a wearable bowel sound moni-
toring system using off-the-shelf components. It proposes a

new algorithm for quantitative bowel sounds classification
and gets F1 of 77.62.

Our experiment is a multi-classification task. Based on
GI Sound Set, we extract Mel-filter features and use CRNN
architecture to output labels. As a result, we achieve a
micro average F1 of 81.06. Focusing on each sound event,
we achieve F1 of 65.67 on Bowel Sound, F1 of 91.09 on
Cough, high F1 of 97.51 on Snore.

Compared with [41]–[43], there are some differences:
¬ Task: [41]–[43] focus on one specific type of sound

event while our intention is to do multi-classification. For
example, [42] only outputs cough and non-cough events,
our experiment outputs the results of all those 6 sound
events.

­Dataset: The dataset is labeled on the event-level in [41]–
[43] while our GI Sound Set is labeled on the recording-level.
In terms of generalization and the data volume, GI Sound Set
is superior to them.

® Method: Under the same conditions, the performance
of neural networks excel machine learning methods. From
results in Table 9, CRNN architecture is more capable to learn
features from audios than traditional methods.

¯ Results: For snore and cough, our experiment performs
better than [41], [42]. However, it performs less than [43]
when it comes to bowel sound. We speculate that this is
mainly due to the strong characteristics of cough and snore
that are different from other sound events. The frequency of
bowel sound is lower, which is easily confused with other
sound events and leads to poor performance.

Comparison between our experiment and [41]–[43] shows
that CRNN architecture has the ability to learn most of the
features in audio and detect those 6 sound events. Our system
achieves better performance, which can be extended to other
audio sounds.

V. DISCUSSION
In our experiments, we compare activation functions, and we
find max Pooling is the optimal one combining performance
on both tasks. Then we test different CNN layers and neurons
of BiGRU hidden layer on two subtasks performance. The
increase of CNN layers does not result in a huge improvement
in metrics, but slows down the training speed and occupies
too much memory, so does the increasing neurons of the
hidden layer. We measure metrics of BiGRU, RNN, LSTM
along with the CNN layer forward, and find BiGRU per-
forms better than the other two. Note that the experiments
mentioned above are all based on the GI sound set with data
augmentation and extract Mel-filter features as an input of the
network.

In the subsequent experiment, we extract different fea-
tures based on the raw dataset which means without data
augmentation. Results show that Mel-filter performs the best
among the three of Mel-filter, MFCC, and Spectrograms
when inputting a single feature. Transfer learning shows the
absolute advantage over regular audio features. We discover
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FIGURE 9. Confusion Matrices.

TABLE 8. Final Set-Up for Evaluation.

TABLE 9. Comparison with related works.

that the combination of conventional audio features for early
fusion input into the network improves the performance.

The following conclusions can be interpreted from the
confusion matrices:

a. There is a correlation between the results on the record-
ing level and the 1-second segment level. A good result
on task A will likely lead to good results on task B such
as Speech and Snore, and vice versa.

b. Speech and Snore are the two best-learned sound event
types. Snore is seldom recognized as other events, nor
are other events often recognized as it, while Speech
has a little confusion with Groan.

c. Groan has the lowest performance. Because the Groan
training data is the least on our GI Sound Set, and there
is some confusion between Speech and Groan which
agrees with intuition.

d. Bowel sound is the one that we pay more attention
to. However, Its performance is not up to snuff. The
frequency of Bowel sound is 1KHz approximately.
We guess that a little low frequency may lead to it.
Even worse Bowel sounds have some confusion with
other classes such as Rub and Cough. This fits our
perception: the collection process of Bowel Sound is
often accompanied by more or less Rub.

This method can be extended to various other categories
of body-related acoustic events, including breath sounds,
heart sounds, vomiting, laughing, crying, walking, and so
on. Combined with 24-hour long-term monitoring of more
clinical trials, the postoperative recovery of patients with
different types of surgery can be analyzed, and the gastroin-
testinal activity of functional gastrointestinal patients can be
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recorded, thus providing doctors with help in patient moni-
toring and auxiliary diagnosis.

VI. CONCLUSION
In this article, we set up GI Sound Set collected and labeled
by ourselves, with the best environmental generalization of
time, place, and disease, which is the largest data set for gas-
trointestinal sounds to date. Based on our GI Sound Set, we
introduce a CRNN system to do sound event detection both
recording level and segment level only based on a weakly
labeled training set. We get 81.06% F1 on Task A, 63.40%
F1 and 70.13% Error Rate on Task B. Our experimental
methods can be implemented on a larger dataset with more
kinds of sound events, and give the results on frame level,
which can be used to diagnose the patient’s disease and deter-
mine the recovery of the patient. The proposed system offers
great possibilities for future intelligent monitoring of patient
health conditions, Meanwhile how to improve F1 further and
decrease Error Rate of the recording and frame-level requires
more exploration and experimentation.
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