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ABSTRACT This paper presents a rapid and unsupervised three-dimensional (3D) tubular structure tracing
algorithm for the detection of safe trajectories in cochlear surgery. The algorithm utilizes a generalized 3D
cylinder model which offers low-order parameterization, enabling low-cost recursive directional tubular
boundary analysis and derivation of tubular statistics (i.e. centerline coordinates). Unlike previous work,
the proposed algorithm circumvents excessive computation per voxel while enhancing angular center-
line traversing efficiency which is critical in cochlear implant surgery navigation. To accomplish this,
design considerations include: 1) accurate engineering of kernels used for border analysis, 2) modifying
decision-making in identifying optimal tracing angle with homogeneity criterion, 3) reducing tubular change
exploratory search cost through discrete convolution analysis, and 4) a cross-section calibration engine which
suppresses centerline angular deviations as well as recording a history of geometrical changes while tracing.
When evaluated on synthetic imagery mimicking cochlea structural complexity and real reconstructed
cochlea models, it consistently produced accurate estimates of centerline coordinates and widths-heights
in the presence of noise and spatial artefacts. Validation has shown that the centerline error for the proposed
algorithm is below 6 pixels and the average traced pixel performance is 92.9% of the true centerline pixels
on the examined cochlea models. By restricting the image analysis to the regions of interest, the proposed
algorithm performs rapid centerline tracing of the cochlea needed for real-time surgery (0.48 seconds per
electrode insertion).

INDEX TERMS Automated insertion, cochlea, cross-section calibration, directional convolution, minimally
invasive surgery, real-time systems, robust centerline tracing, tubular structures, virtual surgery.

I. INTRODUCTION
In most cases of sensorineural hearing loss, the primary
site of functional loss resides within the hair cells of the
cochlea, which results in insufficient transduction of acous-
tic signals into neural impulses at the auditory nerve. The
spiral ganglion cells and their auditory neurons are often
intact and functional but do not receive adequate stimula-
tion from the cochlear hair cells. Cochlear implants [1], [2]
can be utilized to bypass the deficient part of the auditory
system, and provide direct stimulation of the auditory nerve
[3], [4]. One of the most critical factors in cochlear implant
surgery, where an electrode array is inserted into the scala
tympani, is associated with diameter and height variations
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of the cochlea in which the three spiral turns dramatically
change, and therefore impose geometrical limitations on the
cochlear implant surgery. For example, the mean heights
at the basal, middle and apical turns are 2.1 mm, 1.2 mm
and 0.6 mm respectively [5]. Usually the control of optimal
electrode array insertion is left to the surgeonwhomust define
some points on the path manually using three orthogonal
views. However, marking the optimal surgery path for com-
plex tubular structures is a tedious task and increases the
risk of damaging critical fine structures in the cochlea by
inadvertently crossing the anatomical boundaries of the scala
tympani. To avoid adverse consequences as a result of the
extreme geometrical limitations, computer-assisted surgery
[6] is used to identify the precise centerline trajectory inside
a three-dimensional (3D) reconstructed cochlea as priori
knowledge for cochlear implant electrode array insertion by
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automatic means. This work focuses on proposing a novel
and automated three-dimensional (3D) tracing algorithm of
tubular structures, reducing the need for human intervention.

The rest of the paper is organized as follows. In Section II,
some of the algorithms previously presented for 3D center-
line tracing are briefly discussed. The design of convolu-
tion kernels is described in Section III. Section IV presents
the proposed tracing algorithm and explains its building
blocks including optimal tracing angle estimation, discrete
jump-ahead search and calibration engine. This section also
outlines other tracing algorithms for comparison. Section V
presents the results of the tests on the synthetic and real
3D cochlea models using the proposed and the other tracing
algorithms. Concluding remarks and discussion are provided
in Section VI.

II. RELATED BACKGROUND
There are a variety of approaches that can be utilized to
identify the centerline of tubular structures. One category
consists of skeletonization approaches [7] and those using
multiscale enhancement, morphological reconstruction and
segmentation methods [8]–[11]. They require the processing
of full 3D volume and every image pixel with numerous
operations per pixel.

A second category tracks the centerline based on a filter
or an assumed model. Commonly used filters are based on
eigen-structure of the local Hessian [12], idealized tubular
models of vessels [13] and Hough transforms [14] to locate
vessel direction and its cross vectors at a reference frame. For
example, Hessian of the image is interpreted as second order
partial derivatives of 3D sub-images at reference nodes which
requires extensive computation time. Cylindroidal superel-
lipsoids [15] is a sophisticated model of probing for 3D
tubular shapes using recursive fitting methods. Although the
fitting-based approaches behave well across morphological
complexities, they derive model parameters using maximum
likelihood which is an extremely complex and lengthy
process.

A third category utilizes the vectorization algorithm
[16]–[19] for tubular structure boundary analysis and cen-
terline tracing where only pixels close to the border are
processed and are well-suited to real-time and robust tracing
in large image sets. The sparse exploration of the boundaries
yields low computational overhead but also introduces higher
sensitivity to the discontinuities and geometrical complexi-
ties. An algorithm utilizing vectorization approach to handle
3D (volumetric) data is investigated in [20]. It is a fully auto-
matic 3D neuron tracing algorithm emulating a 3D cylinder
model and recursively explores the neuron topology. The
simulations using the 3D cylinder algorithm on constructed
cochlea models (explained in Section V) illustrate that the
centerline tracing does not perform reliably when faced with
high-order tubular changes. The application of the algorithm
was restricted to examination by dendritic centerline tracing,
which exhibited almost straight-line morphology with little
deviation and was limited to simple cases.

Machine learning also offers an alternative category to
identify and trace the central coordinates [21]–[23]. Steerable
features and randomized decision trees are used in [21] to per-
form centerline extraction by learning the structural patterns
of a tubular-like object. The approach in [23] uses orientation
flow field and classifier to extract blood vessel centerlines.
The average computation for tracing all coronaries takes
about 1 minute on an Intel Core i7 2.8 GHz processor and
32 GB RAM as reported in [23].

Convolutional neural networks (CNNs) are a class of deep
learning algorithms that have recently been utilized in 3D
tubular structures tracing [24]–[26]. In [24], a 3D dilated
CNN [27] is trained to predict the most likely direction and
radius of an artery at any given seed point. The overall tracing
scheme in [24] is developed based on determining a poste-
rior probability distribution over a discrete set of possible
directions as well as an estimate of the radius. The issue
with this design is that the optimal direction determination
is posed as a classification problem, so the possible direc-
tions are distributed on a sphere where each point corre-
sponds to a class. The best classification performance was
obtained for the directions {500, 1000 or 2000}. The design
in [24] demands excessive computational cost in classify-
ing directions and is not suitable for real-time applications
(i.e. requires 20 seconds fully automatic coronary tree extrac-
tion using Nvidia Titan Xp GPU). Also, [25] and [26] pro-
posed 3D CNNs to trace the cardiovascular tree structure.
They require 58 and 25 seconds using 12GB GPU and Tesla
P40 GPU respectively.

The proposed algorithm in this work is inspired by the
design in [20]. It features a reliable approach to identify-
ing the optimal tracing angle, a discrete self-exploratory
boundary analysis for monitoring tubular changes, and a
calibration engine to regulate centerline coordinates in case
of unwanted angular deviations. It has deformation capability
to shape itself to the tubular statistics related to geometrical
features including tube height, width and length at any arbi-
trary angle. The introduced boundary analysis in this work
provides vectorized and distributed monitoring of tubular
changes which requires less complex and smaller convolu-
tion kernels, resulting in much lower overall computational
cost.

III. DESIGNING DIRECTIONALCONVOLUTIONAL KERNELS
The centerline tracing process is triggered by selecting the
initial seed point coordinates in the scala tympani and placing
the convolution kernel operators at a specific distance on
the tubular borders that act as low-pass differentiators [28]
perpendicular to the direction of cochlea as shown in Fig.1.
There are four sets of kernels labeled ‘‘right’’, ‘‘left’’, ‘‘top’’
and ‘‘bottom’’ placed closely along the initial node of the
cochlea and centered on the boundary to identify maximum
convolution response. This ensures reduced number of oper-
ations per voxel in centerline tracing. The following two
features are used in the design of the sampling kernels:
1) the ratio between height and width of a kernel is between
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FIGURE 1. Illustrating the 3D tracing algorithm for cochlea application.
‘‘top’’, ‘‘bottom’’, ‘‘right’’, and ‘‘left’’ kernels are placed on boundary nodes
in a relative distance to Epk . The kernels are rotated to discretize and
compute the convolution responses. The maximum convolution response
is used to identify the centerline unit vector optimal angle Euk

σ that shows
the tracing direction from Epk to the next point Epk+1. θ and ϕ show planar
discretization around Z and Y respectively.

FIGURE 2. Examples of rotated kernels for: (a)-(c) ‘‘top-bottom’’
convolutions; (d)-(f) ‘‘right-left’’ convolutions. Euk shows the computed
convolution on Epk . In (b), the angles are indicated by Euk = [22

◦
,45
◦
].

2.2 and 2.6 to capture angular variations along the tube;
and 2) the kernel length (k) is adjusted adaptively to identify
the turning nodes for tracing the highly tortuous structure
(Section IV-A).

Let Euk denote a unit vector along the 3D cochlea at point Epk .
As illustrated in Fig. 1, 3D space directions are indicated by
considering two angles, θ and ϕ around Euk ; where, θ describes
the angular direction around the Z axis and ϕ describes a
rotation around the Y axis after being rotated by θ

◦

around the
Z axis. Both θ and ϕ are discretized to N values each, result-
ing in a total of N 2 angular directions. The value of N is set
to 24 for the most optimal directional convolution resulting
in tubular curvature analysis. Therefore, the total number of
templates used in directional quantization in the four kernels
is N 2

= 576. For example, a unit vector along X (θ = 0
◦

,

ϕ = 0
◦

) axis is represented by Euk = [0, 0] as shown in
Fig. 2(a). After specifying the unit vector Euk = [θ, ϕ], the four
kernels are correlated recursively with the local image data at

pixels starting from Epk along the four directions perpendicular
to the Euk = [θ, ϕ] for identifying the cochlea boundaries.

IV. ALGORITHMS
A. PROPOSED ALGORITHM
1) 3D COCHLEA CENTERLINE TRACING
Let R =

[
k, Epk , Euk

]
denote the convolution response between

the image data I = [x, y, z] and the ‘‘right’’ kernel where k
shows the kernel length in a particular direction Euk from the
seed point Epk . Similarly, L =

[
k, Epk , Euk

]
, T =

[
k, Epk , Euk

]
and B =

[
k, Epk , Euk

]
are convolution responses of the

‘‘left’’, ‘‘top’’ and ‘‘bottom’’ templates respectively. The con-
volutions are computed through the defined angular steps
(N 2
= 576) and rotative kernels to sample a series of image

locations I = [x, y, z] to identify local boundary analysis.
The maximum convolution response identifies the alignment
of the kernels to the tube boundaries in a specific direction.

The convolution response (CR) is derived based on a set of
low-pass directional differentiators [28] perpendicular to the
tube borders:

CR=
r∑
x

s∑
y

t∑
z

(
I [xyz+2]+2I [xyz+1]
−2I [xyz− 1]−I [xyz− 2]

)
/8 (1)

where r , s and t define the kernel size. The search for max-
imum correlation response is limited to M1/2 and M2/2 in
each direction at Epk . M1 and M2 represent the height and
width (M1 < M2) of the reconstructed 3D cochlea model and
they vary during the centerline tracing process. This search
produces three values at each border including the maxi-
mumvalue of template responses {CRT ,CRB,CRR and CRL},
local directions at the boundaries {uT ,uB, uR and uL} and the
distance from centerline at which the maximum response
occurs {dT , dB,dR and dL}. The aim is to achieve homoge-
neous convolution responses in the orientations of interest
at the ‘‘right’’, ‘‘left’’, ‘‘top’’ and ‘‘bottom’’ borders in the
tubular structure. However, spatial variations in real cases
might cause inconsistency in the resulting convolution values.
For simplicity and efficiency, the standard deviation (σ ) of
CRT ,B,R and L is proposed as the homogeneity criterion to
minimize the effect of unwanted deviations due to localized
variations when defining optimal tracing angles. The standard
deviation of the maximum convolution responses is:

σ =

√√√√√1
k

B,R,L∑
j=T

(
CRj−µ

)2
, µ=

1
k

B,R,L∑
j=T

CRj (2)

where k = 4 shows the number of convolution kernels and µ
is the median of maximum convolution responses. The opti-
mal tracing angle (Eukσ ) is defined by CRT ,B,R or L offering the
least difference from σ as argmin

∑B,R,L
j=T

∣∣σ − CRj∣∣. Using
the identified optimal tracing angle

(
Eukσ
)
, the location and

direction of the next centerline point is updated as follows:

Epk+1 = Epk + αEukσ (3)
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FIGURE 3. Sagittal view of 3D tracing algorithm. Starting from initial
point Epk and tracing angle Euk

σ , perpendicular nodes (kA,kB,kC ,kD) are
searched for monitoring the convolution response changes. The first node
satisfying the deviation error condition is picked and divided sequentially
into the finer scales to monitor tubular changes and location of Epk+1.
As a result, the kernel length is set adaptively and requires low
computational cost.

where α is a step size and is computed according to ker-
nel length (k). Fig. 3 demonstrates that the kernel length
(k) is designed to vary adaptively to allow precise tracing
of 3D curvatures. This contrasts with [20], which utilizes
continuous kernel trajectories at Eukσ for monitoring tubular
changes, the proposed discrete and localized border analy-
sis is used to inspect curvatures. This reduces the overall
tracing computation cost while retaining high performance.
It also favors larger step sizes for straight segments where
the longer templates fit well and vice-versa. The initial
kernel length is empirically set to 48 samples along the
computed tracing angle

(
Eukσ
)
. The convolution is computed

to identify the angular changes every 12 samples at spe-
cific nodes (kA, kB, kC , kD) as shown in Fig. 3. The node
that shows the highest deviation error is then selected and
divided sequentially to finer scales [e.g. 12→(3×4) and then
4→(2 × 2)] to explore accurately the tubular changes. For
example, following the steps from Epk towards Epk+1 in Fig. 3,
initial border analysis highlights that the third node (kC ) is
the start of the tracing error. The finer scales are illustrated
using dark blue and orange rectangles respectively. Note that
the proposed border analysis method can be defined as a
parametric discrete convolution where the initial length is
set to an arbitrary value and the border change investigation
is performed using hierarchical coarse-to-fine scales. It is
assumed that the convolution value will not be deviated if the
tracing angle does not change along the tubular structure. The
tracing process is terminated if the convolution responses at
each node satisfy the following condition:

T1 < (CRTk + CRBk + CRLk + CRRk) /4 < T2 (4)

where {CRTk ,CRBk ,CRRk ,CRLk} are convolution responses
at (kA, kB, kC or kD); T1 and T2 are the sensitivity thresh-
olds for tracing termination determined as a percentage of

FIGURE 4. Illustrating a segment of 3D cochlea. Cross-section calibration
is used to fine-tune the traced centerline coordinates along the segment.
Each calibration is shown using a grey circle where the diameters d1 and
d2 are derived using the vectors perpendicular to the vertical-horizontal
walls. There is γ ◦ angular error in tracing centerline coordinates from Epk

to Epk+1 which is eliminated using the indicated calibration path.

the maximum convolution response used in identifying (Eukσ ).
As interpreted from the experiments in this work and the
simulations in [16], values of thresholds (T ) in the range
T1(= 5%) < T < T2(= 30%) indicate that the tracing
algorithm performs reliably. However, low values of T in
the range 5% < T < 15% result in slow tracing and more
sensitivity to noise. On the other hand, high values of T
in the range 20% < T < 30% may result in neglecting
tortuous tubular changes and premature tracing termination.
To achieve a good balance between accuracy and speed of
tracing, the average sum of the ‘‘right’’, ‘‘left’’, ‘‘top’’ and
‘‘bottom’’ current convolution responses is configured to fall
in the range T1(= 15%) < T < T2(= 20%).

2) CROSS-SECTION CALIBRATION ENGINE
Two features are derived from cross-section calibration,
angular error suppression and monitoring of geometrical
variations such as width and height along the cochlea.
The proposed calibration engine focuses on localized
two-dimensional (2D) cross-section analysis of 3D model
before defining the optimal tracing angle

(
Eukσ
)

over(
Epk+1 . . . Epk+n

)
where n shows nth tracing node as shown

in Fig. 4. Cross-section diameters d1 and d2 are calculated
from Epk+1 to the borders by counting the number of pixels
along the perpendicular vectors as shown in Fig. 4. The
centerpoint coordinates of d1 and d2 reveal the degree of
vertical and horizonal deviations of the traced centerline from
the optimal coordinates (defined as the ground truth). The
centerline tracing error is due to angular offset accumulation
along the tracing step (α), and the calibration unit will cor-
rect it by step-by-step elimination. Offset calibration is done
either by adding a normalized correction factor

(
Eukerror

)
for

negative offsets or subtracting it from the traced centerline
coordinate for positive offset values and defined as:

Eukerror =
abs

(
Epk+1 − Epk+1

′
)
xyz

α
(5)

where Epk+1
′

shows the corrected seed point. The least
deviation occurs at Epk and has maximum deviation
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when it progresses towards the end of the centerline
Epk+1. Therefore, the coordinate correction is performed
using the following series between start Epk and end
Epk+1 points

(
1× Eukerror, 2× Eukerror, . . . , α × Eukerror

)
,

mathematically expressed as:

Calibratedxi =
α∑
i=1

(
Coordinatexi ± i× Eu

kerror
)

(6)

where Calibratedxi and Coordinatexi show the calibrated and
uncalibrated values of x coordinates respectively and ± is
used in ascending and descending calibrations. Similarly,
the notation for the other two coordinates (y and z) is defined.
In addition to the calibration of centerline coordinates, d1
and d2 are also used to monitor the horizontal and vertical
width variations in cochlea centerline tracing. The placement
of ‘‘right’’, ‘‘left’’, ‘‘top’’ and ‘‘bottom’’ convolution ker-
nel engines are based on captured tubular border locations
from d1 and d2. After correcting the centerline coordinates,
the convolution kernels are rotated to identify the next tracing
angle. Since the tubular changes are limited, the next tracing
angle search is carried within a small number of directions,
denoted by 9, that are adjacent to Eukσ :

9 =
{
Eukσ + (±ζ1,±ζ2

}
,

∣∣ζ1, ζ2 = 1θ,ϕ∣∣ (7)

where 1θ,ϕ is the maximum number of neighboring direc-
tions and can be set either manually or adaptively through
estimation of noise level. The typical value of1θ,ϕ is empiri-
cally set to 1θ,ϕ= 20; therefore the number of computations
for identifying the next tracing angle is reduced substantially
from 576 to 28 directions. The proposed algorithm is referred
to as Supercylinder for the rest of the paper.

B. OTHER TRACING ALGORITHMS FOR COMPARISON
1) 3D CYLINDER [20]
This is a rapid and fully automatic 3D tracing algorithm
which utilizes directional kernels to identify the neuronal
topology, guided by a generalized 3D cylinder model with
elliptical cross sections. Starting from a seed point Epk , four
kernels perpendicular to the tube are exploited in a 3D cylin-
der, to discretize the possible angular orientations. The ori-
entations of the kernels that produce the maximum response
yield an initial estimate of the tracing direction Euk that is used
in tracing the tubular structure by predicting the centerline
points

(
Epk , Epk+1 . . . Epk+S

)
, where S is the tracing length.

A variable-length continuous template is employed to
identify S at each iteration.

2) FRANGI VESSELNESS [12], [29]–[31]
Frangi vesselness is based on local shape descriptors or tube
detection filters. It uses multiscale tube detection filters to
construct a representation of tubular objects of different sizes
at different scales. The tubes are filtered with bottom-up
local shape descriptors or tube detection filters based on an
eigenvalue analysis of the Hessian matrix (H) [12]. It is capa-
ble of coping with anisotropic voxels with varying widths.

The eigenvalues of H are represented by λ1, λ2 and λ3 where
λ1 < λ2 < λ3. Their corresponding normalized eigenvectors
are Ev1, Ev2, and Ev3; Ev1 provides the tube direction, Ev2 and Ev3 rep-
resent the tube cross-section vectors. The tube cross-section
is constructed along a 2D plane using the vesselness function
(U) and the derived eigenvectors. Thus, Frangi vesselness
provides both the centerline coordinates and the radius of
the tube. Frangi vesselness is a powerful multiscale filter for
identifying tubular objects but designing the filtering scales
to capture the tubular changes is a tedious task and overall it
requires extensive computational costs.

3) ACTIVE CONTOUR [32]–[35]
Active contour is a region growing algorithm represented by
a parametrized surface that deforms through the structure
of interest in volume. Its evolution is driven by inter-
nal and external forces that act on the contour in spe-
cific directions. Active contour uses different approaches to
define internal and external forces, i.e. deriving the external
force from the gradient magnitude of image intensity [36].
A notorious problem with using Active contour is initializa-
tion. In general, the starting contour must be close to the true
boundary otherwise it is likely to converge at the wrong point
[37]. However, in tracing the cochlea centerline the difficulty
of initialization is addressed by having access to the initial
seed point in the scala tympani. Active contour in this work
uses the minimization of energy function through solving
Euler equations and the iterative numerical method in [37].
The major disadvantage of Active contour is that the limited
use of structural information in the deformation iterations
might lead to a high chance of leakage. In addition, iterative
modifying of the contour is complex and very time
consuming.

V. RESULTS AND VALIDATION
The tracing algorithms were applied to a set of three images:
one synthetic cochlea (Model 1) and two real cochlea models
constructed from micro-CT [38] images (Model 2 and Model
3). The purpose of utilizing synthetic data is to provide
an analysis of the algorithms under controlled conditions
that mimic the cochlea structure. The synthetic model used
for centerline tracing validation was made by the following
expressions:

x =
( s
5

)
sin (s) , y =

( s
5

)
cos (s) , z =

(
−
s
3

)
(8)

where s ranges from 6.5 to 21.25 to resemble the anatomical
human cochlea with a mean length and diameter of 41.5 mm
and 2 mm respectively [5]. The synthetic 3D cochlea was
for a 10 mm × 10 mm × 10 mm volume comprising the
cochlea model and the pad arrays to obtain consistent (x, y, z)
dimensions for examination of tracing performance. Model
2 and Model 3 evaluate the centerline tracing algorithm
against the ‘‘golden standard,’’ i.e., a hand-traced centerline
by clinicians in realistic reconstructed cochlea models. The
realistic cochlea models were reconstructed using micro-CT
images of 512 × 512 pixels per slice databases from the
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FIGURE 5. Automated tracing along a 3D cochlea. The columns represent three cochlea models including one synthetic (Model 1) and two real models
(Model 2 and Model 3) for centerline tracing visualization. The rows, from top to bottom, show the tracing algorithms utilized to detect centerline
coordinates: 3D cylinder [20], Frangi vesselness [12], [29]–[31], Active contour [32]–[35] and Supercylinder. The ground truth and traced centerline
coordinates are shown in cyan and red colors respectively in each model. The figure also identifies dotted rectangles at different regions for visual
assessment of deviations (i.e. minor, moderate, and major) in centerline tracing. Evaluation of the traced centerline coordinates

(
Epk , Epk+1′ . . . Epk+n′

)
to the ground-truth also shows there is less than 6 pixels deviation error in the calibrated centerline coordinates in the proposed algorithm.

Royal National Throat, Nose and Ear Hospital, and a man-
ually defined ground-truth was used to quantify traversal
performance [39].

Fig. 5 shows the 3D cochlea models, their corresponding
ground truth and the traced centerline coordinates. The rows
are associated with the 3D cylinder, Frangi vesselness, Active
contour and Supercylinder algorithms. In each example dot-
ted rectangles are superimposed on the 3D cochlea models in
appropriate regions to highlight minor, moderate and major

deviations. The first row in Fig. 5 shows that the 3D cylinder
does not perform reliably when it is faced with high-order
tubular changes, especially in cochlea models with complex
geometrical variations. In the second row, Frangi vesselness
has moderate deviations in tracing the centerline coordinates.
In the third row the traced centerline coordinates using Active
contour shows a similar performance to Supercylinder. The
disadvantage of Frangi vesselness and Active contour is that
they are applied to the whole 3D volumes and 3D structures
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TABLE 1. Processing time in seconds taken for centerline extraction
using different algorithms.

to detect the centerline coordinates which is not suited to
real-time surgical procedures. In each tracing trial, center-
line coordinates are recorded and compared with the ground
truth. The traced centerline coordinates present the optimal
path for surgical purposes as studied in [39], [40], where
an impedance model estimates the proximity of an inserted
surgical electrode array to the cochlea wall.

A. PROCESSING TIME
A standard and reliable technique to obtain the computational
cost of tracing algorithms is to derive the execution time
which effectively correlates with the number of arithmetic
operations (i.e. number of additions (or subtractions) and
the number of multiplications (or divisions)) per voxel. For
example, in the Supercylinder the arithmetic operations are
related to identifying the optimal tracing angle (Eukσ ), the dis-
crete border analysis to monitor tubular changes, and the
cross-section calibration engine to readjust the centerline
coordinates.

All 3D cochlea models used in visualization (Models 1,
2, 3) and also five additional generated 3D cochlea mod-
els (Models 4, . . . ,8) were traced using Matlab on a PC
with 2 GHz Intel Core i7 processor, and 128 Mbytes of
RAM. The constructed models (Models 1, . . . ,8) represent
height and width (M1 < M2) variations in human cochlea
anatomy.

Table 1 shows the processing time required for centerline
extraction by Frangi vesselness, Active contour, 3D cylin-
der and Supercylinder. Supercylinder is on average around
21.6 times faster than Frangi vesselness, 12.2 times faster
than Active contour and 1.3 times faster than 3D cylinder.
The main reason for the reduction of the execution time in
Supercylinder is the application of sparse voxel processing to
reduce the overall tracing cost. As shown in the last column
of Table 1, the average computed tracing time for the cochlea
models (Models 1, . . . , 8) comprising (650× 650× 650) pix-
els with pad arrays, is 7.6 seconds. For a 16 electrode cochlear
implant array [41], each insertion step on average requires
about 480 ms computation suggesting that Supercylinder is
suitable for realizing accurate real-time cochlear guidance
surgery. Note that∼= 40% of the overall tracing time is used to
identify the first cochlea segment tracing angle (Eukσ ) as a result
of the number of rotated kernels employed in directional
quantization N 2

= 576.

TABLE 2. Tracing perfomance analysis.

B. TRACING PERFORMANCE EVALUATION
This section highlights the important criteria for quantitative
evaluation of tracing performance. The first criterion is the
centerline detection ratio (CDR) which is used to distinguish
between the tracing proficiency exploiting the ground-truth
and the traced centerline coordinates. It is defined as:

CDR =
TTP

TTP+ FTP
× 100% (9)

where TTP is the number of true traced pixels and FTP the
false traced pixels due to random noise or artefacts.

Table 2 compares the CDR performance of Supercylinder
and the other tracing algorithms discussed in Section IV.
It demonstrates the CDR performance superiority of Super-
cylinder using the variable geometrical complexities embed-
ded in Model l, Model 2 and Model 3. Averaging the CDR
yields 92.9% tracing performance (i.e. maximum tracing
error is below 6 pixels) on cochlea models for Supercylin-
der compared to 54% for 3D cylinder which highlights its
sensitivity to geometrical complexities. The overall CDR
difference between Supercylinder and Frangi vesselness is
8% with 21.6× lower execution time. Table 2 also shows
that Supercylinder produces almost the same total average
CDR compared with Active contour on different cochlea
models.

The second criterion is the measured tracing performance
with varying degrees of noise added to each cochlea model.
The assessment procedure in noisy conditions estimates
and records the mean-squared-error (MSE) of the traced
coordinates (Tr) to the ground truth (Gr). In each noisy trial:

MSE =
1
Le

Le−1∑
i=0

(Tri − Gri)2 (10)

where Le is the tracing length. Fig. 6 (a)-(c) show the calcu-
lated MSE as a function of noise for the synthetic (Model
1) and two real cochlea models (Model 2 and Model3).
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FIGURE 6. (a)-(c) The calculated MSE in the centerline coordinates to the ground truth as a function of noise compiled for the synthetics (Model
1) and two real cochlea models (Model 2 and Model3). (a)-(c) also compare the MSE of Supercylinder to 3D cylinder [20], Frangi
vesselness [12], [29]–[31] and Active contour [32]–[35]. Note that the MSE in the calibration zone of the Supercylinder algorithm is within
approximately 10 pixels to the ground truth except noise level σN >0.4 where MSE rises rapidly. Frangi vesselness and Active contour maintain low
MSE at increasing noise levels. (d)-(f) Show the ratio of successful iterations completed by Supercylinder as a function of noise compared with 3D
cylinder, Frangi vesselness and Active contour.

Typically, the added noise corrupts the decision-making pro-
cess in defining optimal tracing angle (Eukσ ) and this results
in either minor or major deviations from the ground truth
(i.e. the safe surgery path). The results in Fig. 6(a) show
that for σN< 0.4, the average MSE of the three models for
Supercylinder is below 0.3 (i.e. approximately 10 pixels)
compared with 0.4 to 0.7 for 3D cylinder. For σN> 0.4 the
MSE of Supercylinder increases rapidly. Fig. 6(b) shows
that for Frangi vesselness the average MSE is below 0.4 for
σN< 0.4 and increases immediately for σN> 0.4. Fig. 6(c)
also shows that for both Supercylinder and Active contour,
MSE increases linearly up to σN = 0.4, and for σN> 0.4
the MSE of Active contour outperforms Supercylinder in all
cochlea models.

Next, the ability of the four algorithms to generate smooth
and contiguous traces under noisy conditions is examined.
The ratio of successful trials in tracing centerlines in all
trials is calculated and shown in Fig. 6 (d)-(f). The graphs
are computed from a total of 90 trials for all three cochlea
models (30 trials per model). Note that at (0.05 < σN < 0.4)
in Fig. 6(d), all tested models are traversed contiguously
because of the decision-making process [Eq. (2)] and the
calibration unit which successfully corrects the unwanted
deviations due to embedded noise in the Supercylinder algo-
rithm. In Fig. 6(f), the ratio of successfully traced centerline
coordinates by Active contour algorithm are higher compared
to Supercylinder but has 12.2× longer execution time.

VI. CONCLUSION AND DISCUSSION
A novel algorithm (Supercylinder) has been presented that
automatically tracks 3D tubular structures (e.g. cochlea
model) without the need of user intervention. Supercylinder
comprises three main blocks: 1) angular border analysis,
2) discrete and adaptive kernels for identifying the tracing
jump and 3) utilization of a calibration engine. The calibra-
tion engine as part of Supercylinder performs cross-section
tuning of identified coordinates to the ‘‘right’’, ‘‘left’’, ‘‘top’’
and ‘‘bottom’’ borders before establishing the next tubular
segment optimal tracing angle

(
Eukσ
)
. Supercylinder has been

tested on three 3D cochleamodels. Onewas a synthetic image
and two were constructed based on real models. Using these
datasets, Supercylinder was validated for centerline accuracy,
noise robustness analysis, and processing time to demonstrate
its key strengths. The results confirm reliable 3D tracing with
an average CDR of 92.9%. Supercylinder has a low MSE in
the presence of noise. The contingency test showed that the
number of successful tracing completed over 90 trials is over
0.8 (or 80%) for the noise limits 0.05 < σN < 0.4.

Other tracing algorithms including 3D cylinder, Frangi
vesselness and Active contour were also implemented for
comparison. In terms of processing time, only 3D cylinder
competes with Supercylinder but it provides poor tracing
performance. Compared with Active contour, Supercylinder
avoids high computational cost and has similar CDR and
MSE performance. Amongst the implemented algorithms,
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Active contour shows superior noise immunity even for
σN> 0.4. Supercylinder experiences minor deviations when
tracing the centerline coordinates and this issue is aggravated
when the noise is superimposed on the tube border. This is due
to the uncertainty when placing the tracing kernels to estimate
the optimal tracing angle (Eukσ ). In future designs, this issue
can be mitigated if the cross-section calibration engine is
incorporated with an enhancement filter to generate a smooth
cross-section structure. This aids the accurate identification
of where the locations of the convolution kernels are placed to
estimate Eukσ and consequently enhancing the noise robustness.
Design and implementation of a highly efficient CNN to
address both reliability and prevention of excessive com-
putations applicable to real-time surgical set-ups is another
approach that can increase the noise robustness consider-
ably. The Supercylinder tracing algorithm will eventually be
integrated into an online surgical guide for safe insertion of
cochlear implant electrode arrays.
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