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ABSTRACT Upsampling and denoising of magnetic resonance images are conventionally performed
separately, which would introduce unwanted artifacts such as blurring. To address this problem, we propose
an innovative adaptive interpolation framework to achieve simultaneous image upsampling, denoising, and
detail enhancement. First, local steering kernel (LSK) function is leveraged to adapt the interpolation weights
according to geometric structures in the magnetic resonance (MR) images. An adaptive sharpening of the
LSK weight matrix and a Rician bias correction are then adopted to remove Rician noise and enhance fine
details. In this regard, the adaptive LSK extends the zero-order point estimation framework to higher orders
of regression, and therefore facilitates edge preservation and detail reconstruction. The post-processing
Rician correction avoids the bias caused by the asymmetry of Rician noise distributions. Experimental
results using both real and synthetic clinical MR cranial images (with and without noise) demonstrated that
our algorithm produced better reconstruction results than several traditional interpolation-based upsampling
methods, including nearest neighbor (NN), non-local means (NLM), self-learning super resolution (SLSR),
Gaussian process regression (GPR), and even comparable to four deep-learning-based methods but with
less data requirements and computational complexity. The proposed technique resulted in PSNR and SSIM
values were∼3%–16% higher than any of the other traditional algorithms tested, and our method recovered
more clear textures from noisy images compared with deep-learning-based methods. As such, the presented
technique is a viable new approach to MR upsampling, particularly for noisy images.

INDEX TERMS Adaptive sharpening, image upsampling, local steering kernel, magnetic resonance
imaging, noise robust.

I. INTRODUCTION
One of the primary objectives of medical imaging is the
automated extraction and modeling of 3D anatomical regions
of interest (ROIs) within the human body [1]. A variety
of imaging modalities have been developed to achieve this
goal, including computed tomography and magnetic reso-
nance imaging (MRI). MRI is capable of achieving excel-
lent soft-tissue contrast and is thereby effective for viewing
differences between normal and diseased tissue. Higher res-
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approving it for publication was Nadeem Iqbal.

olution images provide a more comprehensive understanding
of anatomy at the cost of reduced signal-to-noise ratio (SNR)
and increased imaging time [2]. However, clinically, an MRI
scan is often fast because long scan time increases costs,
leads to patient discomfort, and induces motion artifacts in
images [2]. As a result, the resolution of a clinical magnetic
resonance (MR) image is limited.

Conventional interpolation methods, such as spline inter-
polation, have been used to increase MR image resolution.
More specifically, a voxel in a high-resolution (HR) image
is estimated using a weighted averaging of several sampled
voxels. The coefficient for each sampled voxel reflects the
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similarity between sampled and target voxels. Commonly,
sampled voxels are selected within a spatial neighborhood
of the target voxel, and thus coefficients are typically fixed
as a function of the spatial distance between target and
sampled voxels. Due to the simplicity, images reconstructed
using these traditional interpolation methods often suffer
from blurred edges and stair-casing artifacts.

To solve these two problems, several researchers have
proposed methods that performed adaptive interpolation [3]–
[10]. In the pioneering work of Manjón et al. [3], sam-
pled voxels were selected from a large cube centered on
the target voxel. Interpolation coefficients were then deter-
mined by intensity distances between two 3D image patches
located around the target and sampled voxels. Rather than
using fixed coefficients as conventional interpolation meth-
ods do, Manjón’s method used adaptive coefficients that were
more flexible to image structures and thereby avoid blurring
edges in the interpolated results. Several variant techniques
were subsequently proposed, which all focused on coefficient
refinement. For example, Plenge et al. [7] took advantage of
in-plane patches having a higher spatial resolution than those
resulting from slice-selection. They calculated coefficients by
measuring the 3D patch similarity in the in-plane directions,
so as to estimate voxels in slice-selection. Within a simi-
lar notion, high-resolution images acquired with other MRI
modalities have also been leveraged in several approaches to
calculate interpolation weights so as to better reflect image
structure [8], [9].

Besides image interpolation, deep learning has witnessed
a tremendous amount of attention over the last few years
in the field of image processing, because of the high repre-
sentational capacity. With extensive parameters and a good
learning process, deep-learning-basedmodels have the ability
of fitting on a large number of training data and exploiting
the underlying structures of natural images. Dong et al. [22]
introduced CNN into the SR task and proposed the SRCNN
model that was composed of a three-layer network to learn the
mapping fromLR images to HR images. This model achieved
much better performance compared with the traditional algo-
rithms. Kim et al. [24] proposed the VDSR model that used a
very deep network with 20 layers which produced improved
performance compared with SRCNN. Amain contribution of
this method was to employ residual learning which encour-
aged a fast convergence rate in the training process. Tai
et al. introduced recursive blocks in DRRN [25] and memory
block in Memnet [31] for deeper networks. Haris et al. [32]
developed a novel architecture which was named as DBPN.
This model exploited iterative up and down sampling layers,
providing an error feedback mechanism for project errors at
each stage. DBPN improved super-resolution performance,
yielding superior results and in particular establishing new
state-of-the-art performance for large scale factors such as
×8 on multiple datasets. Zhang et al. [33] proposed the
channel attention mechanism to build a deep model called
RCAN to further improve the performance of SR. An image
super-resolution feedback network (SRFBN) [34] was pro-

posed to redefine the low-level representation with high-level
information, which was realized by the hidden state in the
constrained recurrent neural network (RNN).

Although their performance is state-of-the-art, these deep-
learning-based methods also have some disadvantages.
Firstly, the deep-learning-based methods often require a large
number of training data sets, while a large MRI dataset is
hard to obtain. Second, the generalization capabilities of
deep-learning-based methods are also very limited, and they
require a close distribution of training data and testing data.
On the contrary, the conventional image processing methods
often have less data requirements and wide range of appli-
cations. Last but not least, there is a need for pre-denoising
before upsampling noisy images, so the edges of final results
are blurry or smooth. In this regard, this paper focuses on the
conventional method in MRI image upsampling.

For interpolation methods, they cannot consistently recon-
struct high-frequency details from low-resolution (LR)
images. This is because interpolation-based algorithms all
belong to the framework of zero-order regression estimation
[10]. To this end, a regression-inspired upsampling method
using second-order polynomials was proposed in our previ-
ous study [10]. However, both adaptive interpolation meth-
ods and our previous work fail to account for the noise
present inMR images, mainly produced by echo planar imag-
ing [11]. Image denoising is typically used in these meth-
ods to remove noise beforehand. It has been demonstrated
that a simultaneous interpolation and denoising eventually
outperforms an asynchronous framework [10]. Motivated
by this, we propose to develop a new unified MR image
upsampling framework that simultaneously performs HR
image reconstruction, denoising, and high-frequency detail
enhancement, and thereby leads to more accurate treatment
contours. Unlike the abovementioned adaptive interpolation
methods using intensity distance to calculate interpolation
coefficients, the proposed method refined the adaptive inter-
polation coefficient by comparing patches’ structure differ-
ence. Moreover, although the proposed method was also a
zero-order regression-based method, the incorporated adap-
tive weight sharpening strategy enabled detail preservation.

The main contributions of the proposed method are the
following four aspects:

1) With the assumption that input image is clean, most
image upsampling methods have to include an additional
step to remove image noise. But this denoising step blurs
fine image details as well. To this end, the proposed method
presents a unified framework that simultaneously carries out
upsampling, denoising, and detail sharpening.

2) Compared with deep-learning-based methods, the pro-
posedmethod recovers more clear textures from noisy images
with less data requirements and computational complexity.

3) Local steering kernel (LSK) is adopted to help interpo-
lation weights be sensitive to local structure of images.

4) An adaptive sharpening technique is proposed to extend
the traditional weighted-averaging interpolation framework
(zero-order estimation) to a two-order estimation framework.
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Besides, using adaptive weight sharpening enforces the
distribution of interpolation weights to be consistent with
local image structure, which helps denoise background and
sharpen fine details.

5) Rician noise correction is leveraged to correct the bias
caused by the asymmetry of Rician distributions.

Ourmethod is described in the following three subsections.
Specifically, details of the LSK and adaptive sharpening
methods are elaborated in section II-A and II-B. In section
II-C, a Rician noise correction step is introduced.

The remainder of this paper is structured as follows.
Section II details the proposed algorithm. Experimental
results for several MR phantoms and real data are provided in
Section III, together with visual and quantitative comparisons
with other methods. Finally, the conclusions are described in
Section IV.

II. METHODS
We have noticed that both image denoising and interpolation
could be realized by the weighted averaging framework:

ỹi =
1
Z

∑
k∈�(i)

w (yk , yi) yk (1)

where yi is the intensity value of voxel i that needs to be
estimated, � is a restricted search volume surrounding the
voxel i, and yk is the sampled voxel within the search zone, w
measures the similarity between voxels k and i respectively.
Z is a normalization constant. Intuitively, has a determining
influence on this intensity estimation.

As for denoising, averaging voxels with a similar structure
can reduce noise without compromising details [12]–[14].
More specifically, we have found in our pilot study [14] that
when denoising voxels in flat regions, the weights used for
averaging should be nearly isotropic since using sampled
voxels in all directions facilitates noise removal. Meanwhile,
when denoising voxels in textured regions, weights used for
averaging should be anisotropic so that details are preserved
by using sampled voxels along a particular direction. In other
word, weights should be adapted to image structures so that
noise removal and detail preservation are balanced in the
context of denoising.

On the other hand, coefficient computation is also a funda-
mental issue for interpolation-based MR image upsampling.
Previous studies [8], [10] have advocated that using high-
order patch statistics in deriving interpolation weights can be
a big help for reconstructing high frequency details. In other
words, weights should be adapted to high-order patch features
so that details are preserved in the context of interpolation.

Based on the above analysis, we propose a modified
weighting strategy to unify MR image upsampling and
denoising under the framework of weighted averaging. More
specifically, the coefficients should be sensitive to image
structure and reflect the similarity of high-order patch fea-
tures. To this end, a specific kernel based on image structure
tensor was adopted in the proposed method to compare high-
order patch structure. An adaptive sharpening scheme was

also used to ensure the coefficients responded appropriately
to image structures. Finally, a Rician correction step, which
was conventionally used in several MR image denoising
methods [11], was employed. Fig. 1 displays a flow chart for
the proposed technique.

A. INTERPOLATION WEIGHTING USING LOCAL STEERING
KERNEL (LSK)
LSK [26] is an image feature that describes the local structure
information of the image and has good robustness to noise.
The basic idea of LSK is to measure both geometric and pho-
tometric local similarity of a pixel to its neighbors. It analyzes
the pixel value differences based on estimated gradients in
a local window. It can robustly estimate the intrinsic image
structure and address pixel-level image noise and ambiguity
[27]. For example, patches containing a flat region, textural
clutter, or structural part can behave very differently for LSK-
based descriptors [26]. In addition, extensive experiments
have shown that feature descriptors using LSKs are robust to
brightness variation and noise interference through estima-
tion of the local intrinsic structure. The effectiveness of the
LSK has been verified in various applications, e.g., image
reconstruction [28], image deblurring [15], object detection
[29] and single image super-resolution [30].

By analyzing the intensity differences voxel-wisely on
estimated gradients, LSK captures structure information and
uses it to determine the shape and size of a canonical Gaussian
kernel. Mathematically, this kernel is represented as:

Kh (x − xi) =

√
det (Ci)
2πh2

exp

{
−
(x − xi)T Ci (x − xi)

2h2

}
,

(2)

where Ci denotes a 2 × 2 symmetric covariance matrix cen-
tered at voxel xi, which is estimated from a collection of first
derivatives along the vertical and horizontal directions. The
term x − xi represents the spatial distance between sampled
(xi) and target voxels (x); h is a smoothing parameter that
controls the decay of the Gaussian function. It is important
to note that the matrix Ci is an image structure tensor. The
specific formation of this matrix is described as:

Ci =
∑

mk∈N (xi)

[(
z1 (mk) z1 (mk) z1 (mk) z2 (mk)
z1 (mk) z2 (mk) z2 (mk) z2 (mk)

)]
, (3)

where N (xi) represents a search window centered at xi and
mk is the voxel located inside N (xi). The terms z1(∗) and
z2(∗) denote first derivatives along the vertical and horizontal
directions, respectively.

LSKs are able to reflect local structure because they are
computed using local statistics. Fig. 2 illustrates LSK shape
for neighboring sampled voxels for a variety of image struc-
tures (i.e., texture, flat, strong and weak edge) in a T1 image
with different noise levels (0%, 5%, and 9% of maximum
intensity). The yellow dot inside each red box denotes the
target voxel and the rest voxels inside the red box are sampled
voxels. The blue box depicts the LSK values of the sampled
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FIGURE 1. A flowchart for the proposed method.

FIGURE 2. The LSK weights (Wi) in various noisy conditions. The yellow
dot denotes the target voxel. Sampled voxels are contained inside the red
box, and their corresponding LSK are depicted in the blue box.

voxels. In the blue box, the dark red color indicates that
sampled voxels in this location have a comparatively large
weight (near 1) in the weighted averaging, while the blue
color represents corresponding sampled voxel with a smaller
weight (near 0). As is clearly shown in Fig. 2, LSKs reliably
capture local data structures for a clean image even in regions
of complex texture.

However, it is also important to note that, in the noisy case,
the shape and orientation of LSKs are quite deviated from
the noiseless case. This is possible due to the degradation of
image structures in the presence of noise. Therefore, for noisy

images, LSKs must be refined by certain strategies to reflect
the latent image structures that have been corrupted by noise.

B. ADAPTIVE WEIGHT SHARPENING
Although LSK is not capable of reflecting latent image struc-
tures for noisy images, it, as shown in Fig.2, still appears to
be anisotropic in textured regions and isotropic in flat regions
among these images. But compared to the distributions of
LSK for a clean image, we find that such distribution ten-
dency is actually weakened in noisy images. Motivated by
these two findings, we propose reinforcing the tendency of
LSK distribution on noisy images by adaptive sharpening
in order to mimic the LSK distribution on clean image. In
other words, for LSKs in flat regions, the spread of LSKs
becomes wider and essentially isotropic; for LSKs in tex-
tured regions, the spread of LSKs shrinks to the texture
outlines.

In order to achieve this adaptation, adaptive sharpening
was applied to LSK values. More specifically, after collecting
LSKs into a weighting matrix W i, an adaptive sharpening
was carried out on W i by adding or subtracting a fraction of
the high-pass filtered weight matrix back to the same matrix
again:

Ŵi = Wi + λ (Wi ⊗ H) . (4)

Here the matrix H represents a high-pass filter and λ is
a scalar used to modulate sharpness. As indicated in [17],
the sign λ of determines whether the input (W i) is sharpened
(positive) or smoothed (negative). Since a smoothed W i is
achieved by taking out the high frequency information ofW i,
the spread of its corresponding LSKs will be more isotropic
than the original one; similarly, a sharpened W i implies that
the spread of its corresponding LSKs will be biased towards
a particular direction. Therefore, according to the previous
analysis, for estimating voxels in flat regions,W i ought to be
smoothened; while for estimating voxels in textured regions,
W i ought to be sharpened. In this way, the adaptively sharp-
enedweight matrix adapts better to the latent image structures
than the original one does.

At first, before performing adaptive sharpening on weight
matrix, each image voxel ought to be classified according to
the type of its neighboring patch structure (i.e., flat, weak,
and strong texture). In this paper, image structure tensor (Ci
in Eq. (3)) was used to discriminate textured voxels from flat
voxels. The relative discrepancies between two eigenvalues
of Ci reflect how strongly the distribution of gradients in
an image patch is biased towards a particular direction [13].
In other words, smaller eigenvalue differences exist for voxels
in smooth regions, while larger differences exist for voxels in
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textured regions. Voxel classification can thereby be achieved
by examining eigenvalue differences for each voxel. More
specifically, if s1 and s2(s1 ≥ s2) denote two eigenvalues of
Ci, we use T = s1 − s2 to reflect the degree of texture for
every voxel. Voxels with different texture magnitudes can be
classified by analyzing the cumulative histogram of in T an
MR image slice:

(i, j) ∈


c1 T (i, j) > t1
c2 t2 < T (i, j) 6 t1
c3 T (i, j) 6 t2

(5)

Here T (i, j) is the T value of the voxel at location (i, j); t1
and t2 are the bin values corresponding to 80% and 50%
in the cumulative T histogram, respectively. The terms c1,
c2, and c3 represent strongly-textured, weakly-textured, and
smooth regions, respectively. Fig. 3 presents the results of
voxel classification for a T1 image using Eq. (5). It is
evident that voxel classification is consistently the same
in all images, regardless of whether they are heavily con-
taminated. This result indicates that image structure tensors
provide a reliable classification system in the presence of
noise.

FIGURE 3. Voxel classification results for various noisy images. The first
row: a typical MR slice. The second row: corresponding voxel
classification results. c1, c2, and c3 represent strongly-textured,
weakly-textured, and smooth regions, respectively.

Second, λ in Eq. (4) should be carefully designed in our
method to adaptively enhance weight matrix. Based on the
previous analysis, this parameter is empirically selected in
accordance with region type. Besides this, the problem of
voxel misclassification, which is inevitable in highly cor-
rupted images (for example, in Fig. 3(c) there are green
dots present in the red background, which indicates that the
noisy background is misclassified into the texture), is also
considered in the process of λ selection.More specifically, we
used a positive λ in classes c1 and c2 to preserve and sharpen
details and a negative λ in class c3 to remove background
noise. Additionally, a sigmoid function was used to refine λ in
c2 to remedy misclassification. With Qi (i= 1, 2, 3) denoting
the median value of T in each class type, the specific form of

λ is derived as follows:

λ(n,m)

=


0.2 l1 if (n,m) ∈ c1

0.15 l2 · f
(
T ∗
)

if (n,m) ∈ c2, li =

√
Qi
10
, i = 1, 2, 3

−0.15 l3 if (n,m) ∈ c3.
(6)

where f (∗) is a typical sigmoid function that returns a small
value when the input is low:

f (x) =
1

1+ exp(−10x + 5)
, x ∈ [0, 1] (7)

In Eq. (6), T ∗ is a normalized T for voxels classified as
c2. We observed that the misclassified voxels in c2 all have
small T values near t2. As such, we used a sigmoid func-
tion to assign these voxels to λ values near 0. This was
done to prevent improper sharpening or smoothing caused by
misclassification.

An illustration of the adaptive sharpened LSK (Eqs. (4)–
(7)) for the same regions in Fig. 2 is presented in Fig. 4. These
refined LSKs coincide better with local image structures and
are more adaptable than those of Fig. 2. For example, in the
flat region, the LSKs are wide and essentially isotropic. In the
edge regions, the LSK shrinks to accurately depict the edge
outline. Using the refined LSKs facilitates noise removal
and edge preservation, since samples with similar geometric
structure are more likely to be leveraged in a weighted aver-
aging framework.

C. RICIAN CORRECTION
It is worth noting that the weighted averaging framework
is designed for additive Gaussian noise. Nevertheless, MRI
image is commonly believed to be governed by noise
with Rician distribution [18]. Directly applying this frame-
work to MRI datasets would cause biasing because of the
asymmetry of Rician distributions [11]–[18]. To this end,
a post-processing bias correction introduced in [11]–[18] was
carried out in the proposed method. The final voxel intensity
estimation was calculated as:

z (xi) =

√
max

(
Ŵiy/sum

(
Ŵi

)
− 2σ 2, 0

)
, y ∈ N (xi) (8)

where z (xi) represents the estimated intensity value of a voxel
xi in the SR image, y ∈ N (xi) denotes xi’s neighboring sam-
pled voxels, and Ŵ i is amatrix comprised of the sampled vox-
els’ corresponding adaptively sharpened LSK values, sum(∗)
is an operator denoting the summation of matrix elements,
and σ is the standard deviation of MR image noise.

III. EXPERIMENTS AND DISCUSSIONS
The proposed algorithm was compared with other state-of-
the-art upsampling methods using both synthetic and clinical
MRI datasets. Two T1 MR phantoms from Brainweb (sim-
ulated images, http://brainweb.bic.mni.mcgill.ca/brainweb/
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FIGURE 4. Adaptive sharpened LSK weights (Wi) in various noisy
conditions. The yellow dot denotes the target voxel. Sampled voxels are
contained inside the red box, and their corresponding LSK are depicted in
the blue box.

selection _normal.html) and the Human Connectome Project
(HCP, real images, https://db.humanconnectome.org/) were
utilized to evaluate reconstruction performance for the pro-
posed technique in both cases with and without noise. More-
over, a real clinical MRI dataset was also used to evaluate the
robustness of the proposed method for a realistic scenario,
where subjects gave informed consent to participate and
recordings were used for study purposes. Note that the pro-
posedmethodmade no prior assumption of the image, it could
thereby be applied to other anatomical regions such as knees,
liver and heart. The LR volumes used in this study were
generated by blurring and downsampling. More specifically,
the blurred volumes were generated by convolving an HR
volume with a 3D Gaussian kernel of standard deviation 0.8
(in voxel space) along each dimension. The blurred volume

was subsequently downsampled to a lower voxel resolution
at 2× 2× 2 mm3 or 3× 3× 3 mm3.

A. ALL COMPETING MODELS
In this study, nearest neighbor (NN) interpolation, non-local
means (NLM) based upsampling [3], self-learning super reso-
lution (SLSR) [10], Gaussian process regression (GPR) based
upsampling [19], deep-learning-based methods (SCN [22],
VDSR [23], DRRN [24], and SRFBN [34]) were employed
for performance comparisons. GPR method, NLM method
and SLSR method are both interpolation-based methods. The
former two are zero-order based and the latter is second-order
based. As a pioneer CNN model for SR, super-resolution
convolutional neural network (SCN) predicts the nonlinear
LR-HR mapping via a fully convolutional network, and
significantly outperforms classical non-DL methods. Kim
[24] et al. proposed a super-resolution method using very
deep networks (VDSR). This work use residual-learning and
extremely high learning rates to optimize a very deep network
that fast maximizing the convergence speed. In DRRN [25],
an enhanced residual unit structure is recursively learned in
a recursive block, and several recursive blocks are stacked
to learn the residual image between the HR and LR images,
and then added to the input LR image from a global identity
branch to estimate the HR image. SRFBN [34] introduced
a feedback module that shared weights by using recurrent
network. Besides, a curricular approach was introduced to
handle different tasks. Variable parameters used in the latter
nine methods were selected per author suggestions. The only
parameters used in the proposed method are the size of 3D
patches, in which the sampled voxels are determined, as well
as the bandwidth in Eq. (2) that is used to calculate the LSK:
the 3D patch size was fixed to be 3×3×3 and the bandwidth
was selected according to noise level.

In general, NLM, GPR, and the proposed method belong
to a zero-order estimation framework. SLSR belongs to a
second-order estimation framework, which has been shown
to be beneficial for detail preservation [10]. In addition, GPR
and the proposed method require no additional denoising,
while NN, NLM, SLSR, SCN, VDSR, DRRN, and SRFBN
require a pre-denoising step. As a result, they were used to
perform on the denoised LR volumes. This was achieved by
filtering the original noisy LR volumes with the APW-NLM
method [14], which employs an adaptive bandwidth and patch
size.

The performance of the proposed method was evaluated by
comparing reconstructed HR volumes with the original HR
volumes, as well as those reconstructed using other meth-
ods. Peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [23] were used to quantify agree-
ment between images. A high PSNR score indicated that a
recoveredMR image contained little distortion and low noise.
An SSIMvalue near 1 implied reconstructedMR imageswere
close to the ground truth.

The utility and novelty of the proposed algorithm lie in its
ability to process corrupted MR images without additional

VOLUME 8, 2020 158543



J. Hu et al.: Noise-Robust MRI Upsampling Using Adaptive LSK

TABLE 1. Investigations of Racian correction and adaptive sharpening.
These upsampling results are from images with noise level at 3% of the
maximum intensity.

TABLE 2. A comparison of PSNR values [dB] and SSIM values
(PSNR/SSIM) for noisy MR image upsampling.

denoising. In section III-B, an ablation study was carried out
to demonstrate the effectiveness of the combined adaptive
sharpening and Rician correction. In section III-C, an exper-
iment was conducted with corrupted MR images to test how
well the proposed approach performed given different noise
levels. In addition, an experiment on noise-free MR images
was also carried out to demonstrate the detail preservation
capabilities of the proposed method (i.e. a sharp contour is
obtained using the proposed method), and it is described in
the following subsection. Last, an additional experiment on
real clinical datasets is described section III-E.

B. ABLATION STUDY
In order to investigate the effectiveness of the combined adap-
tive sharpening and Rician correction, an ablation study is
carried out where Rician correction and adaptive sharpening
are respectively removed.

Images with noise level at 3% of the maximum intensity is
used and the upscaling factor is set to 2. As shown in Table 1,
the adaptive sharpening technique is a key factor in the per-
formance improvement. Moreover, it is important to note that
post Rician correction (the second column in Table 1) has a
lower PSNR value than LSK-based upscaling framework (the
first column in Table 1). This is possibly due to the reason
that LSK is not capable of reflecting latent image structures
for noisy images, and therefore leads to an inaccurate weight
matrix. In this regard, the subsequent Rician correction would
worsen the weight bias.

C. MR IMAGES WITH DIFFERING NOISE LEVELS
Four different noisy T1 volumes (voxel resolution 1 mm3,
180 × 216 × 180 voxels) from a Brainweb phantom were
used in this experiment. They were corrupted by Rician noise

at levels of 3%, 5%, 7%, and 9% of the maximum intensity
respectively. The simulated LR data (voxel resolution 2mm3)
in these four noisy volumes were respectively upsampled to
1 mm isotropic resolution using the proposed technique and
various comparison methods. Fig. 5 compares the reconstruc-
tion results obtained using these different methods for each
noise level. Local regions of interest are also presented to pro-
vide a better comparison. Table 2 summarizes the quantitative
comparisons.

FIGURE 5. Comparison of upsampling results for images with different
noise levels: (a) the ground truth, (b) noise level at 3% of the maximum
intensity, (c) noise level at 5% of the maximum intensity, (d) noise level at
7% of the maximum intensity, (e) noise level at 9% of the maximum
intensity. From top to bottom: results produced by the NN method,
the proposed method, NLM, SLSR, GPR, SCN, VDSR, DRRN, and SRFBN.
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We observe from Fig. 5 that the proposed method recon-
structed more vivid details across all noisy images. Although
it was directly applied to noisy LR images, the proposed
method achieved a denoising effect comparable to that of
comparison methods processing denoised LR images. On the
other hand, fine details of the cortex and tissue boundaries
were more apparent with the proposed method, while com-
parison methods which relied on pre-denoising tended to
produce blurry or smooth edges. Moreover, the proposed
technique also produced better interhemispheric fissures than
the noise-robust methods like GPR method. It is important to
note that although SCN, VDSR, DRRN, and SRFBN were
able to reconstruct high-frequency image details and achieved
state-of-the-art performance in several image upsampling
scenarios, they are not suitable for super-resolving noisy
images. For instance, fine details they reconstructed were
blurred by the subsequent denoising method, so the over-
all performance of these deep learning-based methods
(denoising+SCN, denoising+VDSR, denoising+DRRN,
and denoising+SRFBN) deteriorate and even becomes
visually comparable to GPR, a noise-robust zero-order
based interpolation method. The degradation of these deep-
learning-based methods on noisy images implies that it is
important to incorporate image upsampling and denoising,
so as to obtain fine details.

Table 2 demonstrates that the proposed method also
achieved higher quantitative values than the other algorithms
we tested. Specifically, its average PSNR gain was 0.92 dB,
1.00dB and 0.48dB higher than that of the second-best
method with noise level at 3%, 5%, 7% of the maximum
intensity, respectively. And for noise level at 9% of the max-
imum intensity, our method achieves slightly lower PSNR
than the compared deep-learning-based methods (VDSR,
DRRN, and SRFBN). Regarding SSIM, the proposed method
also achieved the highest SSIM scores comparing with all
conventional methods, which indicates that our method faith-
fully recovered fine details. But the proposed method has
lower SSIM score than the compared deep-learning-based
methods. It is not surprising that ourmethod, an interpolation-
based method, gives slightly inferior performance over the
deep-learning-based methods, since their models are deep
enough to approximate the non-linear mapping between LR
andHR images. However, these deep-learning basedmethods
require much larger dataset e.g., DIV2K contains 1000 RGB
images with 2K resolution, more complex training processing
and more time-consuming than our methods. On the contrary,

our method uses the input LR image only and could be
generalized to any image.

D. MR IMAGES WITHOUT NOISE
We have observed in Fig. 5 that the upsampling results from
other compared methods are blurred, but this degradation
could be possibly caused by the pre-denoising step. Hence,
in order to make a fair comparison of detail preservation
ability for these upsampling techniques, we devised an addi-
tional experiment in which noise-free MR images were used.

These MR images without noise were downloaded from the
Brainweb phantom and corresponding LR images (downsam-
pled to 3 × 3 × 3 mm3) were generated using the described
workflow in section III-A.

FIGURE 6. Upsampling results (1 × 1 × 1 mm3) for simulated data with a
3 × 3 × 3 mm3 resolution. The PSNR and SSIM values for each method
are: (a) 26.18/0.89, (b) 24.90/0.91, (c) 27.80/0.93, (d) 28.52/0.93, (e)
28.25/0.91, (g) 30.03/0.96, (h) 30.97/0.94, (i) 30.06/0.94, (j) 31.48/0.95.

As shown in Fig. 6, both GPR and NLM resulted in sever
ghost artifacts along edges. This was caused by limitations
of the zero-order regression-based framework, which cannot
consistently reconstruct high-frequency details [10]. Con-
versely, the SLSR method, a second-order regression-based
framework, and SCN, the model in which was trained from
thousands of image patches via neural network, achieved
visually superior performance near edges. Although the pro-
posed method includes a zero-order regression-based frame-
work, the resulting contours were comparable to that of
SLSR. This confirms the adaptive weight sharpening strategy
embedded in the proposed technique not only helps to remove
noise, but also facilitates detail preservation.

E. REAL DATA
The proposed method was applied to two real clinical data
sets and its performance was evaluated both quantitatively
and qualitatively. The first was a T1 volume (260×311×260
voxels, 1×1×1mm3 resolution) from theHCP dataset, which
contained apparent noise. It was acquired on a Siemens 3T
scanner and processed by a structural pre-processing pipeline
that included spatial noise removal, surface generation, cross-
modal registration, and alignment in standard space [21].
The second was a T1 volume (256 × 256 × 78 voxels,
2×2×2 mm3 resolution) acquired on a GEMR750 scanner,
which contained little noise.

The first T1 volume was downsampled to a voxel reso-
lution of 2 × 2 × 2 mm3 and then upsampled to 1 × 1 ×
1 mm3 using the proposed technique and other conventional
methods. Fig. 7 compares the reconstructed results for a
sample slice processed using these methods. We observe the
ground truth still exhibits considerable noise despite the pre-
processing step in generation of this dataset, which indi-
cates noise cannot be neglected in MR image upsampling.
Although the blurring procedure involved in LR image gen-
eration may somewhat mitigate noise effects (i.e., the NN
result included less noise than the ground truth), the other
interpolation algorithms tended to amplify background noise.
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FIGURE 7. Upsampling of the HCP dataset subject using different
methods.

This excluded GPR and the proposed method, which reduced
noise. Using an extra denoising step, NLM, SLSR and SCN
could effectively remove noise, but fine details were also
washed out. On the other hand, the proposedmethod achieved
better detail preservation and edge reconstruction, due to
higher contrast in these texture regions.

The second T1 image was directly upsampled to 1× 1× 1
mm3 using SCN, SLSR, and the proposed method. It is
evident from Fig. 8 that the proposedmethod produced recon-
struction results comparable to the other two methods (in
terms of detail preservation) when dealing with MR images
containing low noise.

F. COMPUTATIONAL COMPLEXITY
As outlined in Fig. 1, the major computational cost of the
proposed method comes from these four parts: learning the
local steering kernel, computing the weight matrix, adaptive
weight sharpening, and Rician noise correction step. Given
an image with N pixels and the local window radius r, it takes
about O(Nr2) to learn the local steering kernel (including
estimation of the gradient covariance matrix and computation
of the weights according to Eq. (3) and (2) respectively).
And then, it takes about O(N) to calculate the weight matrix.
Regarding the adaptive weight sharpening process, two steps
were involved: voxel classification according to the type of
its neighboring patch structure, and adding or subtracting a
fraction of the high-pass filtered weight matrix back to the
same matrix. The computation complexity of these two steps

FIGURE 8. Upsampling results for an adult image.

is O(N). For Rician noise correction, it takes O(N) to obtain
the final voxel estimation. Therefore, the overall computa-
tional complexity of the proposed method is approximately
O(Nr2).

FIGURE 9. Upsampling results using different techniques. (a) The LR
image (enlarged by NN method for display), (b) and (c) are the proposed
method with and without adaptive sharpening on LSK.

G. DISCUSSION
From the above experimental results, we can see that the
proposed method achieves simultaneous MR image upsam-
pling, denoising, and detail enhancement, and it outper-
forms other state-of-the-art image upsampling method when
dealing images with noise. In general, our method contains
several techniques, including LSK, adaptive sharpening on
LSK and Rician correction. To discuss whether our noise
robustness benefits from the proposed adaptive sharpening
technique, the following experiment was carried out: the
noisy LR image from HCP dataset (used in Fig. 7) was
respectively processed by the proposed method with and
without adaptive sharpening on LSK, and the corresponding
results were shown at Figs. 9(b)-(c). It can be clearly observed
that without LSK sharpening technique, the proposed method
still produced noisy upsampling result. Moreover, without
LSK sharpening, the resulting image appeared blurry near
edges. These two findings suggested that the proposed adap-
tive sharpening technique contributes to the simultaneous
denoising and detail enhancing in our method. As shown
in Table 2, when processing noisy images, our proposed
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method can get better results than the deep-learning-based
method. For the deep-learning based methods, we firstly
perform a denoising step on a noisy image, and then use a
deep-learning-based method to upsample it. We can observe
from Fig. 7 that using the two-step framework cause the
edges of the reconstructed SR image blurred, and the details
is not as good as the proposed method, which is a simul-
taneous image resolution enhancement and noise removal.
However, Fig. 6 illustrates that when processing noise-free
images, the deep-learning-based method can obtain higher
PSNR. This make sense since deep-learning-based methods
use much more high- resolution images to learn the relations
between LR-HR image patches.

IV. CONCLUSION
In this paper, a unified interpolation-based SR method was
proposed to reduce noise during MR image upsampling.
By observing that both image interpolation and denois-
ing essentially belong to a weighted averaging framework,
we conducted simultaneous image upsampling, denoising,
and detail enhancement by carefully devising the weights
used in the averaging process. First, the LSK was employed
in weight computation to implicitly capture local geometric
structure. Additionally, an adaptive sharpening of the weight
matrix was integrated to enhance detailed areas and smooth
flat areas. Finally, by removing Rician bias from averaged
squared intensities, we adapted the averaging process to data
corrupted by Rician noise.

Experiments were conducted on both simulated and real
cranial MR datasets and the upsampling results, achieved
using various methods, were compared both quantitatively
and qualitatively. Experiments with noisyMR images demon-
strated that the proposed noise-robust interpolation method
produced less blurry edges than a traditional two-step upsam-
pling framework (upsampling and denoising), although the
utilized upsampling method in this two-step framework was
devised for detail preservation. Additionally, although the
proposed method was a zero-order regression-based, it suc-
ceeded in recovering fine brain structure, comparable to
SLSR, a second-order regression-based, in noise-free MR
images. These two findings confirm the proposed method
successfully adapted to spatial MR data structures and was
highly robust in the presence of noise.

Currently, the proposed method is mainly developed for a
single modality MR image upsampling. In the future, we plan
to use information from high-resolution images acquired in
other modalities to further refine interpolation coefficients,
and thereby improve upsampling quality.
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