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ABSTRACT In real-world environments, vehicle travel and service time will be affected by unpredictable
factors and present a random state. Because of this situation, this article proposes the vehicle routing problem
with soft time windows and stochastic travel and service time (SVRP-STW). The probability distribution
of vehicle travel and service time are introduced into the model, and a stochastic programming model
with modification is established to minimize the distribution cost. An Improved Tabu Search algorithm
(I-TS) based on greedy algorithm is proposed, in which adaptive tabu length and neighborhood structure
are introduced; the greedy algorithm is used instead of the random methods to generate the initial solution.
Experiments on different scale instances prove the effectiveness and superiority of the proposed algorithm.

INDEX TERMS Stochastic travel times, stochastic service times, soft time windows, stochastic program-

ming model, tabu search.

I. INTRODUCTION

With the rapid development of the distribution industry,
the expanding scale of logistics distribution, and the enhanc-
ing complexity of urban transportation networks, some phe-
nomena occur frequently, e.g., unreasonable distribution
route planning, empty distribution vehicles, and unreasonable
order allocation. These phenomena have led to the increasing
cost of distribution, which seriously affects the operation
and development of enterprises. The vehicle routing prob-
lem (VRP) is a hot issue in the field of operations research,
which refers to that the distribution center plans the optimal
path according to the distribution and demand of customers.
The VRP can effectively reduce the cost of distribution and
overcome the unreasonable phenomenon in the process of
distribution. Therefore, the vehicle routing problem has been
widely concerned by scholars.

In the actual distribution process, traffic accidents, weather
changes, road congestion, and other factors will affect the
original distribution plan, so it is more practical to study
the stochastic vehicle routing problem (SVRP) [1]. Shahpar-
vari and Abbasi [2] have established excellent mathematical
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models for SVRP. The SVRP can be divided into two situ-
ations: (i) vehicle routing problem with stochastic demand
(VRPSD) [3], [4], (ii) vehicle routing problem with stochastic
time (VRPST) [5], [6].

This article investigates an extended situation of the
VRPST problem, in which vehicle travel and service time are
stochastic, and the vehicle is required to deliver the goods
within the specified time to the customer [7]. This problem
is usually termed the vehicle routing problem with time win-
dows and stochastic travel and service time (SVRPTW). Time
windows define the earliest and latest time that a vehicle may
arrive at a customer and start service. In this article soft time
windows are considered, i.e., the vehicle can arrive before the
time window is opened or after the time window is closed, but
it shall be given certain punishment. The SVRPTW problem
involves a fleet of homogeneous vehicles stationed at a depot
to serve different geographically scattered customers. In this
process, the vehicle travel and service time are uncertain and
cannot violate the vehicle capacity constraints.

The SVRPTW is an NP-hard combinatorial optimization
problem. Exact algorithms can only be used to find solu-
tions for small-and-medium scale instances. For large-scale
instances, the exact algorithms cannot find solutions within
an acceptable time [8]. Therefore, scholars and experts begin
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to consider generating high-quality solutions in reasonable
computational time and shift their research efforts to the
application of heuristic or meta-heuristic approaches. Heuris-
tic and meta-heuristic methods for VRP and its variants have
emerged in recent years [9], [10]. Tabu search algorithm (TS)
is a meta-heuristic algorithm that has strong local develop-
ment ability and fast convergence speed. Many combinato-
rial optimization problems can be solved efficiently by TS.
It has been used to solve the VRP and its variants, e.g.,
VRP [11], VRPMTW [12], HFVRP [13], ConVRP [14] and
MCVRP [15].

In this context, a new stochastic programming model is
proposed considering the stochastic vehicle travel and service
time, and an improved meta-heuristic algorithm is proposed
considering the high complexity of the SVRPTW problem.
The main contributions of this article are:

1. The introduction of the vehicle routing problem with
soft time windows and stochastic travel and service
times (SVRP-STW).

2. A new mathematical model is established that better
reflects the randomness of travel and service times.

3. The design and implementation of improved tabu
search algorithm which includes specific components
such as the generation of the initial solution, the set-
ting of tabu length, and the setting of neighborhood
structure.

The remainder of this article is organized as follows.
Section II presents a literature review on the VRPST,
VRPTW, and SVRPTW. Section III formally defines the
SVRP-STW to be considered and develops a mathematical
model. Section IV describes in detail the proposed I-TS
and how to solve the SVRP-STW. Section V compares
the proposed I-TS with other algorithms in the literature
in various scale instances. Finally, conclusions are drawn
in Section VI.

II. LITERATURE REVIEW

A. VRPST

For the VRPST, vehicle travel time or service time is a
random variable subject to a probability distribution. VRPST
is closer to real conditions and has attracted more and more
attention.

Kuo et al. [16] develop a mathematical model for the
VRPST problem using fuzzy theory, which fully considers
the randomness of time. An improved fuzzy Ant Colony
System (ACS) is proposed, which embeds a cluster insertion
algorithm into the ACS algorithm. The results show that the
proposed algorithm performs better than the other algorithms.
Shi et al. [17] develop a stochastic programming model with
recourse (SPR) for the VRPST problem. A Hybrid Genetic
Algorithm (HGA) and stochastic simulation method are
proposed.

For the vehicle routing problem with stochastic service and
travel time, Gutierrez et al. [18] propose a Multi-Population
Memetic Algorithm (MPMA). The algorithm uses a log-
normal approximation to estimate the arrival time, taking into
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account that the failure of previous customers to improve the
estimation of the mean and variance of the arrival time. The
results show that MPMA is superior to different methods in
different target types, thus demonstrating its efficiency and
flexibility.

B. VRPTW

In the actual distribution process, customers will specify the
delivery time of the goods, which is called the vehicle routing
problem with time window (VRPTW). The VRPTW has
effectively improved the level of vehicle service and attracts
more research attention.

Marinakis et al. [19] study the vehicle routing problem
with time windows and a new variant of the Particle Swarm
Optimization (PSO) algorithm is proposed. Three different
adaptive strategies are used in the proposed Multi-Adaptive
Particle Swarm Optimization (MAPSO) algorithm. The first
adaptive strategy concerns the use of a Greedy Randomized
Adaptive Search Procedure (GRASP) and the second adap-
tive strategy concerns the use of the Adaptive Combinatorial
Neighborhood Topology. The algorithm is compared with
other versions of PSO and has better results.

Several heuristics algorithms have been proposed to solve
the VRPTW problem. Brandao [20] constructs an Iterated
Local Search (ILS) algorithm for solving this problem and do
numerical experiments with their instances. Molina et al. [21]
propose an Ant Colony System (ACS) algorithm with
local search for solving this problem. Perez-Rodriguez and
Hernandez-Aguirre [22] propose an estimation of distribution
algorithm for the problem. The algorithm uses the generalized
Mallows distribution as a probability model to describe the
distribution of the solution space. Experimental results show
that the algorithm is competitive.

C. SVRPTW

The vehicle routing problem with time windows and stochas-
tic travel and service time (SVRPTW) is directly related to
our questions. In recent years, it has begun to attract the
attention of scholars.

Miranda and Conceicao [23] study the vehicle routing
problem with hard time windows and stochastic travel and
service time. They analyze that the arrival time distribu-
tion would be truncated at the earliest time windows, thus
affecting the estimation of the arrival time of subsequent
customers. To solve this problem, a specific statistical method
is proposed to obtain the cumulative probability distribution
of the vehicles over the customers, and a meta-heuristic
algorithm based on Iterative Local Search (ILS) is proposed.
A benchmark is used to evidence the superior performance
and accuracy of the proposed method.

Several heuristics algorithms have been proposed to
solve the SVRPTW problem. Tas et al. [24] propose
a Tabu Search (TS) and an Adaptive Large Neighbor-
hood Search (ALNS) for solving this problem and do
numerical experiments for well-known problem instances.
Gutierrez et al. [25] propose a Multi Population Memetic
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Algorithm (MPMA) for solving this problem and do
numerical experiments on modified instances proposed
by Solomon [26] for the deterministic counterpart.
Miranda et al. [27] propose a Multi-objective Memetic
Algorithm (MMA) and a Multi-objective Iterated Local
Search (MILS) for solving this problem. Experiments based
on an adapted version of the 56 Solomon instances demon-
strate the effectiveness of the proposed algorithms.
Although a large number of literatures have been published
on VRPST and VRPTW problems, few types of researches
have attempted to solve SVRPTW problems, and there is a
lack of efficient solutions. Besides, this article differs from
the existing work in the following aspects: (1) the vehicle
travel time and service time are set as random variables sub-
ject to normal distribution at the same time, soft time window

TABLE 1. Variable definitions.

Sets

N set of vertexes to be served including depot

Vv set of vertexes to be served excluding depot

K set of vehicles

Parameters

Cij cost for traveling from vertex i to vertex j

ti time required for traveling from vertex i to
vertex j

d; distance between vertex i and vertex j

0; service time at vertex i

q; demand of vertex i

(0] maximum vehicle capacity

Aw penalty cost of one unit of earliness

Ad penalty cost of one unit of delay

E(Wy) expected earliness at vertex j served by
vehicle &

E(Dy) expected delay at vertex j served by vehicle
k

|SK] total number of vertexes served by vehicle &
including depot

Decision variables

Xijk 1, if vehicle k travels from vertex i to vertex
J, 0, otherwise

YVik 1, if vertex i is served by vehicle £, O,
otherwise

TABLE 2. Constraints.

constraints are adopted, and a stochastic programming model
with modification is proposed; (2) an improved tabu search
algorithm is proposed.

Ill. PROBLEM FORMULATION
In the SVRP-STW, vehicle travel and service time are
unknown and the customers will specify the vehicle arrival
time. The problem can be described as the depot planning the
optimal distribution path according to the stochastic distribu-
tion of customers.

Let G = (N, A) be a complete digraph, where

= {0,1,2,...,n} is a set of nodes and A = {(i, j): i,

Jj € N,i # j}is aset of arcs. Each arc {i, j} € A has an
associated distance dj;, the travel time #;, and the travel cost
cij. Vertex O represents the depot, V = {1, 2, ..., n}isasetof
customers. Each customer i € V has a non-negative demand
gi, service time §;, and a time window [e;, /;], where e; is the
start of the time window and /; is the end of the time window.
If the vehicle arrives at customer i before e; or after /;, it needs
to be punished. K = {1, 2, ..., m} is a set of vehicles, each
vehicle k € K has the same capac1ty Q. Both #;; and §; are
random variables that subject to normal distribution.

Before presenting the mathematical formulations,
we define the following notations in Table 1.

Based on these variable definitions, the model for the
problem can be described as follows:

minZ = Z Z CiiXijk + Z Z/\WE(W/k)

i,jeAkeK JEN keK

+> ) MEDR) (1)

jeN keK

The objective function (1) is formed by three parts: the
vehicle travel cost, the penalty cost for vehicles arriving
earlier than the agreed time, and the penalty cost for vehicles
arriving later than the agreed time. Where A,, and A4 represent
the penalty cost for per unit earliness time and delay time of
vehicle k; E(Wji) and E(Djy,) represent the expected earliness
time and the expected delay time at customer j served by
vehicle k.

The following are constraints:

Constraints

z X =1 VkeK 2) each vehicle route must start from the depot

ieN

2 or=1 Vkek 3) each vehicle route must end at the depot

JjeN

z X g — z k=0 VmeV, Vke K ) each vehicle must depart from a customer location after it
ieN jeN visits the customer

z yig=1 VieV 5) each customer is served exactly once by exactly one vehicle
ke K

2 z 4 %5 <0 Vkek (6) for every vehicle route, the total demand cannot exceed the
ieN jeN ' capacity of the vehicle

Z 2 i kS ‘Sk Vke K ) for every vehicle route, no sub-loops are allowed

ieN jeN
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A. EXPECTATION AND VARIANCE OF THE ARRIVAL TIME

ajx = Z tic1,i+ Z 8 (®)
i€Ajx i€Bjk

Eq.8 indicates the time when the vehicle k arrives at cus-
tomer i, where Aj; represents all customer points the vehicle
k has passed since it arrived at customer i; Bj; represents all
customer points the vehicle k has passed before it arrived at
customer i. The difference between A;; and B;; is whether it
includes the customer point i where the vehicle k is currently
located.

Vehicle travel time and service time obey normal distri-
bution. Due to the additivity of normal distribution, vehicle
arrival time also obeys normal distribution. The expectation
and variance of vehicle arrival time are as follows:

wr = Y Eti)+ Y E@) ©)
icAir i€Bik

op = Y Var(ti )+ Y Var(s) (10)
€Ak i€Bjk

B. ANALYSIS OF THE OBJECTIVE FUNCTION

The last two parts of the objective function are the penalty
cost for vehicles arriving earlier than the agreed time and the
penalty cost for vehicles arriving later than the agreed time.
Among them, the expected value of the vehicle’s early arrival
and delayed arrival time can be calculated.

As the vehicle travel time, service time, and arrival time
are all random variables subject to the normal distribution,
the expectation of vehicle early arrival time can be calculated
by the following process:

E(Wj) = (¢j — 1) P(t < ¢))
) (t*ujk)z
— Mjk 1 K T 02
=¢ ¢( ) — / t-e o dt
’ Ojk «/ TOjk  J—o00
/’L/k
=e ( ) — ——
P9 27
”'.Ik )
(ojkx + wjk) - e~ T dx
—00
()’
I‘ij 202
= (e — mp)-p( Ly 1 T (1)
! Ojk \/27‘[

Similarly, the expected value of vehicle delay arrival time
is as follows:

— Wjk
E(Dj) = i — i+ ( — pjx) - p(E—" b " )
]
(1 —u k)
O]k 2a2
+ e ik (12)
N2
IV. IMPROVED TABU SEARCH ALGORITHM TO SOLVE
THE SVRP-STW

The above research shows that SVRP-STW is an NP-hard
problem with high complexity, and it cannot be solved by
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the exact algorithm. Meta-heuristic algorithms can provide a
more effective solution approach. Our algorithm is based on
Tabu Search algorithm which has been applied successfully to
solve various vehicle routing problems [28]. TS is a random
heuristic search algorithm that uses an initial solution as a
starting basis for seeking improved solutions by searching for
different neighborhoods. Some factors that affect the perfor-
mance of Tabu Search algorithm, such as the pros and cons
of the initial solution, tabu length, etc. In this section, we
give brief information about the improved greedy algorithm
to generate an initial solution, the selection of tabu length, and
the definition of neighborhoods.

A. AN INITIAL SOLUTION

In general, the initial solution can be obtained randomly or
generated by heuristic algorithms such as a glowworm swarm
optimization algorithm [29] and a genetic algorithm [30].
A better initial solution can help the algorithm search for
the global optimal solution quickly. Here, the initial vehicle
routes are constructed by using an improved greedy algo-
rithm. A detailed description of the algorithm can be obtained
from Shenmaier [31].

The Greedy algorithm proposed in this article is a simple
and efficient insertion procedure that takes into account travel
distance, residual capacity, and time window constraint.
In short, the initial vehicle routes construction process can
be summarized as follows. With the depot as the initial node,
in each iteration, the customer with a narrow time window
and close to the current node is preferred and inserted at the
best feasible insertion place in the current route. When a route
cannot admit any new customer due to capacity constraints, a
new route is constructed. This is repeated until all customers
are visited.

B. TABU LENGTH
To avoid falling into local optimum in the search process,
some movements will be recorded in the tabu list. The
recorded movements are called tabu object, and the tabu
length refers to the time when the tabu object is forbidden.
The tabu length decreases with the increase of the num-
ber of algorithm iterations. When the tabu length is zero,
the recorded movement will be deleted from the tabu list.
Tabu length is a key factor in the performance of tabu
search algorithm because it directly affects the search process
and behavior. On the one hand, the algorithm is easy to
fall into the local optimal solution with a smaller value of
tabu length. On the other hand, the search time of the algo-
rithm will become longer and the algorithm may eventually
crash when the value of tabu length is set larger. Therefore,
an adaptive tabu length is proposed in this article to improve
the performance of tabu search algorithm. Specifically, tabu
length is randomly selected from the tabu length interval
at the beginning of each iteration. If the better solution is
searched in the search process, the value of tabu length will be
increased. Otherwise, the value of tabu length will be reduced.
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TABLE 3. Results obtained by the proposed I-TS under different values of tabu lengths.

Tabu length
Instance 20 30 40 50 60 70
0S AS 0S AS 0S AS OS AS 0S AS 0S AS
R101 1690.78 1727.12 1679.32 1687.68 1667.89 1683.59 1670.25 1686.41 1692.75 1708.60 1691.96 1697.52
C104 939.90 940.86 900.44 911.46 902.56 906.60 907.85 919.43 921.41 933.94 934.63 950.74
RC101 1685.92 1705.63 1668.32 1695.72 1683.91 1698.68 1675.43 1688.69 1715.15 1739.98 1730.69 1747.62
R201 1258.97 1262.28 1209.62 1218.41 1226.53 1229.05 1218.47 1226.02 1239.77 1253.79 1254.80 1270.09
C203 699.243 703.32 660.04 660.27 678.11 680.83 697.84 698.37 738.33 738.60 719.35 721.40
RC207 1103.42 1105.31 1063.81 1074.21 1041.41 1051.56 1082.83 1087.03 1134.17 1134.94 1143.12 1175.11
In this article, the left and right boundaries of the tabu = ~ — — . —  — . 1
; po e ; . O la—rrfd- [d—ch—{1]->O
length interval are determined by experimental compari- Lo = ¢ i
son. Six instances were randomly selected from Solomon’s .'"“"“",
. ——d] S
VRPTW benchmark and the experiment was conducted on L= = __ = '
the different values of tabu lengths. These results are susm- Q _____
marized in TABLE 3. It is worth noting that the OS repre- O3] e [d]-eeeer ! e
- __ 1

sents the optimal solution and the AS represents the average
solution.

Based on the results presented in TABLE 3, when the
tabu length is between 30 and 50, the performance of tabu
search algorithm is optimal. Therefore, the left and right
boundary of the tabu length interval are set to 30 and 50,
respectively.

C. NEIGHBORHOOD STRUCTURE

The neighborhood structure plays a key role in the perfor-
mance of tabu search algorithm, since it determines the extent
and the quality of the explored solution space. There are
several general neighborhood structures, e.g., 2-opt, 3-opt,
swap, cross, relocate and reverse, which have been widely
applied to solve the combinatorial optimization problems.
The improved tabu search algorithm proposed in this article
comprises of four neighborhood moves: one specific neigh-
borhood and three common neighborhoods (2-opt, swap and
reallocate). At the beginning of each iteration, one of the
four neighborhoods is randomly selected to explore solu-
tions. If the improved tabu search algorithm stops searching
in the neighborhood, it will continue to explore the next
neighborhood. This is repeated until all neighborhoods are
explored. The details of the neighborhood movements are as
follows:

Specific neighborhood: Randomly select customer i to
delete it from current path / and insert it into another path
k. The path k must satisfy the capacity constraint and the
customer i satisfies the time window constraint after inserting
the path k, otherwise it will be inserted into the path k£ + 1.

2-opt: Randomly select two customers in the path and flip
the path between the two customers, which is indicated by
FIGURE 1.

Swap-operation: Randomly select two customer points
on the path and exchange positions, which is indicated
by FIGURE 2.

Reallocate-operation: Randomly select customers in the
path and insert them anywhere in the other path, which is
indicated by FIGURE 3.
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FIGURE 1. 2-opt.
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FIGURE 2. Swap-operation.
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FIGURE 3. Reallocate-operation.

D. IMPROVED TABU SEARCH ALGORITHM

Tabu search algorithm (TS) is a modern heuristic algorithm
that has flexible memory ability and aspiration criterion,
so it is not easy to fall into the local optimum in the search
process. It has been successfully applied to solve various
complex combinatorial optimization problems [32]. Gener-
ally, TS uses a randomly generated initial solution as a start-
ing basis for seeking improved solutions by searching for a
certain neighborhood. It is improved with parallel compu-
tation and a combined neighborhood approach by Kiziloz
and Dokeroglu [32]. In this article, the greedy algorithm is
proposed to replace random methods to generate the initial
solution, and adaptively adjust the tabu length and the type of
neighborhood structure. The specific process of the improved
tabu search algorithm proposed in this article is shown in
FIGURE 4:
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Algorithm 1 Improved TS for stochastic VRPTW
1. s « initial feasible route using the improved greedy

algorithm
2. Shest <— S
3. iterNum = 1, neighborNum = 1
4. While iterNum < maxIterNum do
5. tabuLength = round(a+(b-a)*rand(1,1))
6. While neighborNum <maxNeighborNum do
7. s'= local search(s) s' e Ni(s) ({ represents
neighborhood structure)
8. Iff(s') <f(Shes) Then
9. Slsves) =f(s)
10. s=s'
11. tabuLength = tabuLength + 1
12. Continue to search with N(s)
13.  Else
14.  neighborNum = neighborNum + 1
15. tabulLength = tabuLength - 1
16. Endif
17. End while
18. iterNum= iterNum+1
19. End while
20. Return s

FIGURE 4. Pseudo-code of I-TS for stochastic VRPTW.

V. EXPERIMENTS AND RESULTS

In this section, we demonstrate the effectiveness of proposed
algorithm by testing it using well-known benchmark data
sets. This section is divided into four sub-sections with dif-
ferent experiments. Section 5.1 describes the influence of
variance changes of stochastic travel time and service time on
the results of the algorithm. Section 5.2 shows the comparison
results of the proposed algorithm and other algorithms in
25-customer instances. Section 5.3 describes the comparison
results of the proposed algorithm and other algorithms in
50-customer instances. Section 5.4 shows the comparison
results of the proposed algorithm and other algorithms in
100-customer instances. The improved tabu search algorithm
was developed in a JDK8 environment and all experiments
were tested in a computer with Window 10, 8GB RAM,
I7 2.8GHz; the parameters related to proposed algorithm are
summarized in TABLE 4.

TABLE 4. Parameters setting.

Parameters The value
maxlIterNum 2000
neighborNum 4

a 30

b 50

A 0.1

Aa 0.1
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A. DISCUSSION ON THE VARIANCE OF STOCHASTIC
TRAVEL TIME AND SERVICE TIME

Six types of VRPTW examples (C1 type, C2 type, R1 type,
R2 type, RC1 type and RC2 type) of Solomon were used
to test I-TS. In the process of applying the improved tabu
search algorithm, the variance of vehicle travel time and
service time was set as 10%, 20%, 30% and 40% of the mean
respectively, and a comparative analysis was carried out. The
algorithm was run independently for 5 times in each case, and
the optimal solution and the average solution were compared
to analyze the influence of randomness on the results. The
experimental results are shown in FIGURE 5.

FIGURE 5 shows the optimal solution and average solution
of each instance at different variance levels. For different
instances, the greater the variance, the stronger the random-
ness of vehicle travel time and service time, and the worse
the optimal solution and average solution obtained by the
algorithm. Based on the results presented in FIGURE 5,
the effect of the algorithm at different variance levels may
be summarized as follows:

e For most instances, when the variance is set to 20%, 30%
and 40% of the mean value, the optimal solution and average
solution obtained by the algorithm are worse than the optimal
solution and average solution obtained by the algorithm when
the variance is set to 10% of the mean value.

In conclusion, the variance is taken to be 10% of the mean
in all experiments.

B. RESULTS FOR THE 25-CUSTOMER INSTANCES

Based on Solomon’s VRPTW benchmark (56 instances
in total), select the first 25 customers to construct a
new benchmark. Under this benchmark, the Genetic
Algorithm (GA) [33], the Simulated Annealing algo-
rithm (SA) [34], the Ant Colony Optimization algorithm
(ACO) [35] and the proposed I-TS were compared. These
results are summarized in TABLE 5.

C. RESULTS FOR THE 50-CUSTOMER INSTANCES

For the 50-customer instances of the Solomon’s VRPTW
benchmark, each instance is formed by selecting the first
50 customers in the corresponding instance. Under these
instances, the Ant Colony Optimization algorithm (ACO)
[35], the Simulated Annealing algorithm (SA) [34], the Tabu
Search algorithm (TS) [36] and the proposed I-TS were com-
pared. These results are summarized in TABLE 6.

D. RESULTS FOR THE 100-CUSTOMER INSTANCES

In the Solomon’s VRPTW benchmark, there are totally
56 instances which can be divided into six categories:
C1 type, C2 type, R1 type, R2 type, RC1 type and RC2 type.
Among the C1, Rl and RCI1 type instances, the vehi-
cle capacity is small; among the C2, R2 and RC2 type
instances, the vehicle capacity is large. Under the benchmark,
the Ant Colony Optimization algorithm (ACO) [35], the
Tabu Search algorithm (TS) [36], the Simulated Annealing
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FIGURE 5. Differences between variance levels.
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TABLE 5. Comparison of the proposed I-TS with other algorithms on 25-customer instances.

Instance GA SA ACO I-TS _
(o8] AS (o8] AS (o] AS 0Os AS Time(Sec.)
R104.25 503.686 522.102 417.960 445.040 442.296 461.095 438.874 442.163 1.15
R107.25 488.532 499.166 457.340 464.924 473917 481.583 449.220 453.302 1.09
R110.25 484.349 491.905 464.130 477.482 453.042 460.538 459.490 466.276 1.03
R111.25 494.412 502.224 454.090 460.320 460.133 467.047 452.924 455.472 1.09
R112.25 476.016 486.927 436.820 458.696 403.490 409.485 403.768 404.296 1.08
RC104.25 350.486 383.739 384.790 388.048 307.936 346.020 324.233 326.190 1.06
TABLE 6. Comparison of the proposed I-TS with other algorithms on 50-customer instances.
Instance ACO SA TS I-TS ]
(ON) AS [ON AS (O8] AS oS AS Time(Sec.)
C102.50 402.868 425.818 398.060 440.988 419.830 433.135 389.584 413.754 3.49
C103.50 405.987 438.090 397.240 426.202 404.130 422.499 381.163 420.531 341
C104.50 400.731 433.023 404.780 442.894 385.364 404.323 400.517 420.470 3.25
C105.50 402.154 424.039 396.680 417.532 396.010 427.179 381.863 381.863 3.63
C107.50 383.610 406.685 398.010 422.154 394.515 449.890 373.810 373.810 341
C108.50 388.471 416.679 396.350 416.302 413.215 452.285 364.977 366.651 3.34
C109.50 378.904 405.754 371.020 390.034 368.959 421.353 363.247 364.760 3.27
R106.50 958.340 968.852 841.060 864.724 811.199 841.877 840.885 845.142 3.32
R107.50 854.394 878.377 736.440 757.678 764.621 781.818 734.737 745.385 3.35
R108.50 718.852 737.544 629.910 646.56 640.661 678.664 638.141 643.460 3.25
R109.50 931.737 941.785 824.750 843.766 802.489 855.411 822.123 837.203 341
R110.50 798.627 819.062 747.250 752.754 770.687 790.243 738.719 744.739 341
R112.50 708.356 719.664 660.830 686.908 640.022 655.416 658.799 662.105 3.52
R208.50 542.726 562.406 561.696 603.471 648.422 666.192 669.276 692.960 3.60
RC104.50 606.525 617.398 565.020 605.586 562.703 580.200 561.978 568.520 3.20
RC106.50 949.871 981.032 730.510 759.454 851.052 867.626 777.954 812.562 3.40
RC108.50 638.398 641.282 621.360 648.352 769.806 812.562 617.097 622.135 3.21
RC204.50 512.848 519.359 707.485 758.654 524.764 571.991 668.858 684.964 3.28
TABLE 7. Comparison of the proposed I-TS with other algorithms on 100-customer instances.
Instance ACO TS SA I-TS
(O8] AS (ON) AS (ON) AS (ON) AS Time(Sec.)
C101 1035.736 1095.905 828.937 828.937 828.937 873.108 828.937 828.937 12.31
C105 1232.364 1248.115 828.937 851.959 862.370 963.812 828.937 831.561 14.93
C106 1206.036 1231.830 829.711 851.265 878.900 942.808 828.937 834.409 12.61
C107 1283.488 1322.327 828.937 904.984 904.150 966.502 828.937 829.067 12.34
C108 1162.571 1199.763 872.349 926.619 935.950 967.256 830.849 832.844 12.54
C109 1222.784 1262.173 873.533 916.469 975.240 1030.976 830.456 835.137 12.28
C201 816.163 862.311 634.155 671.313 591.557 691.704 591.557 603.879 17.11
C202 855.714 892.463 626.663 659.399 783.418 858.618 609.224 627.411 16.51
C205 666.521 688.388 611.524 644.236 670.058 785.307 604.377 626.034 15.55
C206 634.503 669.592 615.186 650.402 754.084 842.721 603.994 618.145 16.77
C208 684.065 714.551 601.723 633.295 772.360 844.855 591.671 643.316 15.06
R104 1330.814 1364.238 1079.007 1106.420 1045.650 1055.466 1073.358 1097.578 13.24
R108 1270.738 1288.029 1006.655 1034.074 1017.410 1022.476 1004.369 1016.113 13.04
R112 1270.406 1283.982 1024.265 1064.500 1002.650 1020.674 1013.520 1025.754 12.31
R208 1002.322 1024.805 819.509 839.512 912.819 946.809 1025.858 1083.247 16.20
R211 1055.760 1097.463 925.706 966.865 1084.490 1117.472 1043.735 1248.884 18.89
RC104 1417.134 1435.799 1191.848 1231.757 1222.620 1247.684 1190.453 1213.514 12.55
RC107 1614.689 1649.215 1351.017 1378.626 1302.110 1329.500 1328.371 1342.716 12.97
RC108 1443.811 1479.778 1209.629 1243.994 1200.280 1236.266 1189.728 1208.539 12.72
RC208 1115.148 1150.269 922.804 957.131 1115.360 1185.804 1237.108 1290.488 17.68

algorithm (SA) [34] and the proposed I-TS were compared.
These results are summarized in TABLE 7.

E. ANALYSIS OF RESULTS

TABLES 5, 6 and 7 give comparisons between the I-TS
and the comparing algorithms in different scale instances.
OS and AS give the best and average results obtained by algo-
rithms, respectively; Time(Sec.) gives the computational time
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(in seconds) of the I-TS. Bold numbers indicate that the
solutions obtained by I-TS are better than the results obtained
by all comparing algorithms.

As can be seen, the best solutions obtained by I-TS
that are better than the best results obtained by all com-
parison algorithms for instances R107.25 and R111.25 in
TABLE 5. And the average solutions obtained by I-TS are
better than the average solutions obtained by all comparison
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algorithms for instances R104.25, R107.25, RI111.25,
R112.25, and RC104.25 in TABLE 5.

From TABLE 6, we can see that the best solutions are
obtained by I-TS are better than the best solutions obtained by
other three comparison algorithms in 10 out of the 18 tested
instances. And the average solutions are obtained by I-TS
are better than the average solutions obtained by other three
comparison algorithms in 12 out of the 18 tested instances.
As is shown in TABLE 7, the performance of I-TS is better
than ACO, TS, and SA in 14 out of the 20 tested instances.
In general, the results obtained by the proposed I-TS method
are good in terms of solution quality, robustness, and compu-
tational time, when compared with the state-of-the-art algo-
rithms from literatures in different scale instances. The results
demonstrate the effectiveness and superiority of the proposed
algorithm.

VI. CONCLUDING REMARKS AND FURTHER RESEARCH
This article approaches the vehicle routing problem with
soft time windows and stochastic travel and service time.
Since vehicle travel and service time are random variables,
a stochastic programming model with modification is estab-
lished. The tabu search is improved according to the char-
acteristics of the problem. The improved greedy algorithm
is used to generate the initial solution, and an adaptive tabu
length and neighborhood structure are designed. Meanwhile,
the influence of the variance of random variables such as
vehicle travel time on the objective function is analyzed
through experiments. The greater the variance, the greater
the randomness of the problem, and the larger the objective
function.

In the process of generating the initial solution, some con-
straints are considered, e.g., capacity constraint and soft time
window constraint. Therefore, the initial solution obtained by
the proposed algorithm has a low penalty cost for violating the
constraints, which plays a key role in generating the optimal
solution by the algorithm.

Most algorithms first determine the vehicle travel and ser-
vice time in the process of searching for the optimal solution,
which will generate a large correction cost. The proposed
algorithm in this article fully considers the randomness of
vehicle travel and service time, and obtains the expected
earliness time and the expected delay time according to its
probability density function and distribution function. When
the vehicle travel and service time change randomly, the pro-
posed algorithm has a low probability of generating a large
correction cost. Based on the above analysis, we can see that
the proposed algorithm has a significant effect on solving
the vehicle routing problem with soft time windows and
stochastic travel and service time.

To demonstrate the effectiveness of the I-TS algorithm,
an experimental study has been carried out in 25-customer
instances, 50-customer instances, and 100-customer instances
respectively from Solomon’s VRPTW benchmark and com-
pared to other meta-heuristics algorithms. Experimental
results show the effectiveness of the proposed algorithm for
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solving the SVRP-STW problem, and the proposed algorithm
has strong optimization ability and high robustness.

Future researches mainly focus on three aspects: (1) intro-
ducing stochastic demand into the problem; (2) making the
variables in the problem subject to probability distributions
such as gamma distribution, exponential distribution, and
logarithmic normal distribution; (3) designing more efficient
algorithms, such as constructing multi-objective optimization
algorithms.
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