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ABSTRACT Kernel partial least squares regression (KPLS) is a technique used in several scientific areas
because of its high predictive ability. This article proposes a methodology to simultaneously estimate both
the parameters of the kernel function and the number of components of the KPLS regression to maximize its
predictive ability. Ametaheuristic optimization problemwas proposed taking the cumulative cross-validation
coefficient as an objective function to be maximized. It was solved using nature-inspired metaheuristic algo-
rithms: the genetic algorithm, particle swarm optimization, grey wolf optimization and the firefly algorithm.
To validate the results and have a reference measure of the efficiency of the nature-inspired metaheuristic
algorithms, derivative-free optimization algorithms were also applied: Hooke-Jeeves and Nelder-Mead. The
metaheuristic algorithms estimated optimal values of both of the kernel function parameters and the number
of components in the KPLS regression.

INDEX TERMS Partial least squares regression, kernel-based method, cross-validation method, and
nature-inspired metaheuristic algorithms.

I. INTRODUCTION
Partial least squares (PLS) regression is a linear method that
seeks to predict a set of dependent variables (Y) from a
set of predictors (X) by extracting orthogonal factors that
maximize predictive ability, also called components [1], [2].
PLS is not appropriate for describing data structures when
these exhibit nonlinear variations [3], so Rosipal and Trejo [4]
proposed the kernel partial least squares regression method
(KPLS), which transforms the original datasets into a space
of arbitrary dimensionality characteristics, where the genera-
tion of a linear model is possible [5]. A recurring difficulty
when implementing KPLS regression is determining both
the number of components and kernel function parameters
that maximize its predictive capacity [6], [7], generating an
optimization problem.

In recent decades, so-called nature-inspired metaheuristic
algorithms have emerged, which are powerful and effective
in addressing various types of optimization problems, do not
require assumptions to work well and are flexible and easy
to implement [8]. In addition, according to Lin et al. [9],
metaheuristic algorithms obtain better search subsets to deter-
mine optimal or approximate solutions in the transformed
space, so they are suitable for determining both the kernel
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function parameters and number of components in the KPLS
regression [10].

The aim of this work is to propose a methodology to
optimize the predictive ability of KPLS regression through
nature-inspired metaheuristic algorithms such as the genetic
algorithm (GA), particle swarm optimization (PSO), grey
wolf optimization (GWO) and the firefly algorithm (FFA).
The relative performance of these algorithms is evaluated
in terms of accuracy, convergence of estimates and compu-
tational speed. To validate the results and have a reference
measure of the efficiency of the nature-inspired metaheuristic
algorithms, the performance of two derivative-free algorithms
is compared: Hooke-Jeeves (HJ) and Nelder-Mead (NM)
[11]. This article is an extension of the conference proceeding
presented for the International Workshop in Statistical Meth-
ods and Artificial Intelligence IWSMAI 20 [12], focused
on the use of GA as an optimization agent. The scope of
this article is broader in that it incorporates into the analysis
a set of both nature-inspired metaheuristic algorithms and
deterministic algorithms.

Several studies have chosen to use nature-inspired
metaheuristic algorithms to improve the performance of
PLS/KPLS regression, with different purposes and schemes
than those presented in this article. In the literature review,
it was found that the most recurrent metaheuristic algorithms
in PLS/KPLS regression problems are GA [10], [13], [14],
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Algorithm 1 KPLS Algorithm by Rosipal and Trejo [4]
1. Randomly initialize u (any column of Y)
2. t = K u, t ←−

t
||t||

3. c = YT t
4. u = Yc, u←−

u
||u||

5. Repeat steps 2 – 5 until convergence
6. Deflate K,Y matrices: K←−(I-ttT )K(I-ttT ); Y←−
(I-ttT Y) where I is an n-dimensional identity matrix
7. Repeat steps 2 – 7 until all the h-score vectors of T
and U are found.

PSO [15], [16], and less frequently FFA [17]. This article is
organized as follows. Section 2 presents the KPLS regression
method, its cross-validation coefficient Q2

cum and describes
the four nature-inspiredmetaheuristic algorithms to be imple-
mented: GA, PSO, FFA and GWO. Section 3 presents
the methodology. Sections 4 and 5 present the results and
conclusions, respectively.

II. BACKGROUND
A. KERNEL PARTIAL LEAST SQUARES REGRESSION
Given an (n× N ) matrix X of input variables {xi}n(i=1) ∈ RN

and the (n × L) matrix Y of output variables {yi}n(i=1) ∈
RL , assume a nonlinear transformation of the input variables
{xi}n(i=1) into a feature space F , i.e., a mapping φ : xi ∈
RN
−→ φ(xi) ∈ F . Denote by 8 an (n × M ) matrix whose

i-th row is the vector φ(xi) in a M -dimensional feature
space F , which can be very large [18]. The kernel function
k(xi, xj) = φ(xi)Tφ(xj) calculates the inner product in the
feature space F . We can see that K = 88T represents the
(n × n) kernel matrix of the cross dot products between
all mapped input data points {φ(xi)}n(i=1), i.e., the element
of the i-th row and j-th column of K is kij = k(xi, xj)
[19]. In this article, the Gaussian kernel function k(xi, xj) =
exp(−σ ||xi − xj||2) is used, where σ is a kernel parameter.
KPLS regression is essentially a technique based on the

decomposition of this kernel matrix K into singular values
[20]. Rosipal and Trejo [4] proposed the KPLS algorithm as
shown in Algorithm 1.
After all the h components are extracted, we can write the

matrix of the regression coefficients B in the following form
B = 8T U(TTKU)(−1)TT Y, where the (n × h) matrices T
and U represent the input and output scores, respectively.
To make predictions on the training data, we can write

Ŷ = K U (TT K U)(−1) TT Y = TT Y. For predictions made
on testing points, i.e., Ŷ t = Kt U (TTKU)(−1) TTY, where
Kt is the (nt×n) test matrixwhose elements are kij = k(xi, xj),
where {xi}

(n+nt )
(i=n+1) and {xj}

n
(i=1) are the testing and training

points, respectively. Before applying KPLS, mean centering
of the data should be carried out in the feature space [3].

KPLS regression predictive ability can be estimated for
each included h-component by means of the cross-validation

coefficient Q2
h = 1 −

PRESSh
RSSh−1

, where PRESSh denotes the

predictive residual sum of squares including the component
h and RSSh−1 the residual sum of squares with the previ-
ous components [21], [22]. The overall predictive perfor-
mance of KPLS regression can be assessed by the cumulative
cross-validation coefficient Q2

cum = 1−
∏h

1(1− Q
2
h), which

takes values between 0 and 1, and the higher the Q2
cum value

is, the better the predictive performance [23].
Cross-validation is probably one of the oldest resampling

techniques [24]. The procedure divides the dataset into blocks
of size equal to k and then use k - 1 blocks to fit the model
and validate it in the remaining block. This is done for all
possible combinations of k - 1 of the k blocks. The k-blocks
are usually called folds in the cross-validation literature [25].
In this article, the cross-validation procedure was applied to
randomly split the dataset into k = 10 segments of equal size
to obtain the coefficients Q2 and Q2

cum [26].
We can list two main problems in KPLS: the selection

of the kernel function and its parameters and the selection
of the number of components. However, kernel function
selection is still an open problem in KPLS [27]. This article
proposes a metaheuristic tuning procedure to simultaneously
estimate the kernel function parameter and the number of
components, where the objective function is the cumulative
cross-validation coefficient Q2

cum(h, θ) for the case of KPLS
regression is a function of both parameters. The optimization
task can be written as follows.

(h, θ) = argmax
h,θ

Q2
cum where h ∈ Z+ 6 N ∧ θ ∈ S ⊂ R

The domain of the number of components is the set of
positive integers smaller than the number of columns ofX and
the domain of the kernel function parameter is a predefined
subset S of real numbers.

The main differences with respect to [7] are both
the optimization task formulation and the cross-validation
approach based on grid-search that it proposes.This article
does not include a comparison of the accuracy of the estimates
and the computational costs associatedwith the two proposals
due to differences in the databases evaluated and the software
packages used.

An additional feature of this proposal is that it designs
an algorithm already embedded in a general iterative opti-
mizer, e.g., a nature-inspired metaheuristic or derivative-free
algorithms. The proposed method is universal for any ker-
nel function and easy to implement in any computer.
Algorithm 2 describes the steps of the method to be used with
nature-inspired metaheuristic algorithms.

To perform the statistical analysis of the estimates, several
runs of this procedure are performed for each optimizer, and
the convergence of the estimates with the gradual increase in
the optimizer iterations is also evaluated.

B. NATURE-INSPIRED METAHEURISTICS ALGORITHMS
Metaheuristics, in their original definition, are solution
methods that orchestrate an interaction between local
improvement procedures and higher-level strategies to create
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Algorithm 2 KPLS Parameter Selection
Given Xn×N the input matrix, Yn×L the output matrix,
a kernel function kij and its kernel parameter θ ∈ S,
and the number of components h ∈ Z+.
1. The optimizer randomly generates an initial
population p of θ (individuals).
2. From Xn×N the input matrix, p kernel matrices
Kn×n are generated, one matrix for each θ .
3. KPLS regression (Algorithm 1) between Kn×n and
Yn×L is executed with h = N components.
4. Q2

cum is calculated by 10-fold cross-validation for
each KPLS.
5. Identify θ associated with the maximum Q2

cum and
extract h for which this value is reached.
6. g optimizer iterations are performed. The fitness
function of the optimizer is maxQ2

cum.
7. The optimizer determines the best values of θ and h
and the optimal Q2

cum.

a process capable of escaping from local optima and perform-
ing a robust search of a solution space [28]. Metaheuristic
algorithms are appropriate for solving problems with com-
plex formulation because they do not use any specific infor-
mation of the problem in the exploration of the space of
feasible solutions [29]. An important set of nature-inspired
metaheuristic algorithms is that they mimic the behavioral
characteristics of biological agents [30]. Themost popular are
evolutionary algorithms and swarm intelligence algorithms,
which have demonstrated their potential for solving important
engineering decision-making problems [31].

The basic formulations of four nature-inspiredmetaheuristic
algorithms: GA, PSO, FFA, and GWO [32]–[34], are
described in this section. The derivative-free optimization
algorithms used in this work are also briefly presented [11].

C. GENETIC ALGORITHMS
GA is a population-based metaheuristic algorithm widely
used in search and optimization problems [35], [36].
GA works on a population of individuals (chromosomes).
Each individual represents a potential solution to the prob-
lem to be solved [37]. In the algorithm, an individual
(or chromosome) is represented by a binary bit string, an ini-
tial population of individuals is created randomly, the objec-
tive function for each individual is evaluated, and based on
these values, the individuals of the next iteration are produced
by selection, crossing and mutation operations. The basic
steps of the algorithm can be consulted in [14].

For the implementation of a GA, it is necessary to previ-
ously define its parameters such as crossing probability pc,
mutation probability pm [38], population size p and num-
ber of generations g [32]. The completion criterion can be
determined by the number of generations (iterations) g or
the convergence of results [39]. In Mello-Román et al. [12],
the optimization of the KPLS with GA was deepened, and

preliminary tests were carried out to determine the p and g
values.

D. PARTICLE SWARM OPTIMIZATION
PSO is a population-based metaheuristic optimization
technique inspired by the social behavior of bird flocks or
the movement of fish shoals [40]. Each particle in the swarm
is a potential solution to the optimization problem, which
moves through the search space and updates its velocity and
position with a learning mechanism based on its personal best
experience and the population best experience [15]. In each
iteration, every particle moves in a direction that is based
on the previous best individual position pbest and the best
overall position of the swarm gbest . For the dimension d of a
particle i, the velocity and position can be updated according
to the following equations:
v(t+1)id =ω · vtid+c1 · r1(pbest

t
id−x

t
id )+c2 · r2(gbest

t
id−x

t
id ),

(1)

x(t+1)id = v(t+1)id + x tid , (2)

where t is the iteration, vid is the velocity, xid is the particle
position, ω is an inertia factor, c1 and c2 are learning factors,
and r1 and r2 are random numbers between 0 and 1. More
details about the steps followed by PSO can be found in [16].

E. FIREFLY ALGORITHM
FFA is a swarm intelligence technique inspired by imitating
the light emissions of fireflies to attract each other [41].
To formulate the algorithm, the following conditions are
established: a firefly can be attracted by any other firefly,
the attraction is proportional to brightness for any pair of
fireflies, the less bright firefly will move towards the brighter
firefly, as the fireflies move away the perception of the
light decreases, and the intensity of the light emitted by
the firefly is determined by the value of the function to be
optimized [42].

Each firefly (candidate solution) flashes its lights with
some brightness (associated with the objective function)
attracting other fireflies within its neighborhood. This attrac-
tiveness depends on the distance between the two fireflies
and is determined by β(r) = β0 e

(−r2ij ), where r or rij is
the (Euclidean) distance between the i-th and j-th of two
fireflies, β0 is the initial attractiveness at r = 0 and γ is a
fixed light absorption coefficient that controls the decrease in
the light intensity [30]. The movement of the i-th firefly is
attracted to another more attractive firefly j and is given by
the following equation [42]:

xi = xi + β0e
−γ r2ij (xj − xi)+ αεi, (3)

where xi is the particular location of the i-th firefly, α is
the randomization parameter, and εi is a vector of random
numbers drawn from a Gaussian or uniform distribution. The
steps of the FFA algorithm can be found in [43].

F. GREY WOLF ALGORITHM
GWO is a recent metaheuristic optimization technique that
simulates the hierarchical mechanism and predatory behavior
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of the gray wolf pack, where under the leadership of the
main gray wolf, wolves capture prey through a series of
processes: surrounding, hunting and attacking [44]. GWO is
an optimization algorithm with a strong global search capa-
bility; however, studies continue to be conducted to verify
its performance in different types of problems and suggest
improvements [45], [46].

According to Mirjalili et al. [44], the process can be
described as follows: first, the gray wolves track the prey,
chase it and approach it; if the prey runs, then they chase
it, surround it and harass it until it stops moving. Finally,
the attack begins. Details of the steps followed by the GWO
algorithm and its parameters can be found in Gao and
Chao et al. [45].

G. DERIVATIVE-FREE OPTIMIZATION ALGORITHMS
The proposal of this work is to optimize the KPLS
regression by means of nature-inspired metaheuristic algo-
rithms. However, we intend to check the performance of some
deterministic algorithms on the same optimization problem,
both to validate the results and to have a reference measure
of the efficiency of the set of nature-inspired metaheuristic
algorithms evaluated. According to Sun et al. [47], when it is
necessary to determine the optimum of a real-value function
defined in n-dimensional space, but the derivatives are not
available because they are computationally expensive or there
is no explicit expression of the partial derivatives of the func-
tion, it is possible to resort to optimization methods called
derivative-free or direct search methods. These methods use
only function values and apply when no computer code can
be produced for the derivative of the function. In general,
they are robust methods, even for nonconvex or discontinuous
functions [48].

Two popular derivative-free optimization algorithms are
NM and HJ [11]. The NM algorithm is a direct search method
for the unrestricted optimization of multidimensional func-
tions, and it attempts to minimize a nonlinear scalar function
of n variables by using only values of the function [49]. The
HJ method is also a derivative-free optimization method that
searches for directions of descent by exploratory movements
through coordinate directions by performing two types of
searches: an exploratory search and a pattern search, which
are repeated until convergence [50].

III. METHODOLOGY
Taking as reference the good practices proposed by
Osaba et al. [29] for the implementation and comparison of
metaheuristics, in this work, we present for each algorithm the
number of runs performed, the mean and standard deviation
of both the objective functionQ2

cum and the KPLS parameters
θ and h [7], the convergence behavior, the run times, and an
appropriate statistical analysis with the results obtained.

The parameter estimation algorithm for the KPLS
regression was programmed in the R programming language.
This required the installation of the following packages:
plsdepot by Sanchez [51], kernlab by Karatzoglou et al. [52],
metaheuristicOpt by Riza and Nugroho [53] and dfoptim

[54]. The Gaussian kernel function was selected for this work
[7], [26].

Preliminary tests were performed to select the hyper-
parameters of the nature-inspired metaheuristic algorithms
[32], [33]. Several sets of hyperparameters were evaluated
while keeping both the population size and number of iter-
ations constant. Considering the overall goal of this work,
the sets of hyperparameters for which the algorithms showed
higher mean values of Q2

cum and with lower dispersion were
selected [55].

The iterations of the metaheuristic algorithms must be
stopped according to some criterion, which can be the con-
vergence of the algorithm or a preset number of iterations
[39]. In this article, we evaluated the convergence of estimates
for a set of iterations g = {10, 30, 50, 100, 150} keeping the
population size constant at the value p = 40 [53].
The parameter estimation procedure for KPLS regression

is presented in Algorithm 2. Thirty runs [43] of the algorithm
were performed, extracting the maximum value of Q2

cum and
its associated values of both the number of components h and
the parameter of the Gaussian kernel function σ for each run.
Furthermore, the running time was calculated in minutes.

For the different runs, the maximum Q2
cum reached,

the Gaussian kernel function parameter value σ , the num-
ber of components h and the running time were obtained.
The number of iterations of each metaheuristic algorithm
was gradually increased in g = {10, 30, 50, 100, 150}, and
the mean and standard deviation of these estimates were
extracted [29]. To validate the results and have a benchmark
of the efficiency of the GA, PSO, FFA and GWO algorithms
in the optimization task, the performance of the HJ and NM
algorithms was also evaluated. The NM and HJ algorithms
establish a set of random starting points, taking into account
the fact that these procedures are usually stuck in local optima
[56]. The parameters of these algorithms were established
with reference to recent research [57], [58].

Finally, a statistical analysis was carried out with the results
obtained to test the hypothesis that there are no statistically
significant differences between the estimates of the different
metaheuristic algorithms [29]. One-way ANOVA was per-
formed taking as a null hypothesis that the means of the
estimates of the objective function Q2

cum and the σ and h
parameters were the same for the different algorithms eval-
uated. The analysis was complemented with variance homo-
geneity tests and multiple post hoc comparisons to identify
the best-performing algorithms [67]. The Thamane T2 test
was used for post hoc comparisons. This test is indicated
when variances and/or sample sizes are unequal [68]. Addi-
tionally, the Kolmogorov-Smirnov normality test was applied
to contrast that the distribution of σ estimates is normally
distributed.

A. DATASET
For the implementation of the Algorithm 2, a dataset reported
by Tsanas et al. [60] in the Machine Learning Repository at
the University of Carolina at Irvine [61] was used. The dataset
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consists of biomedical voice measurements from 42 people
with early Parkinson’s disease recruited for remote moni-
toring of symptom progression. The predictor variables are
subject number, subject age, subject gender, time interval
from initial recruitment date, and 16 biomedical voice mea-
surements. The data are used in predictive tasks for scores
on the Unified Parkinson’s Disease Rating Scale (UPDRS),
motor and total scores [60], [62]. This scale is used to track
Parkinson’s disease [63].

Several research studies have used different techniques
to attempt to predict the severity of Parkinson’s disease
symptoms from speech cues [64]. In particular, on the same
dataset, feature selection methods [60], least squares regres-
sion techniques, nonparametric classification and regression
trees were applied. In [63], artificial neural networks were
tested. In both works, [63] and [64], despite the good results,
the high correlation between some measures of dysphonia
was highlighted, and it was suggested to further explore
nonlinear methods.

Additionally, we used another dataset [65] hosted in the
same repository [61] to implement Algorithm 2. It con-
tains data on the academic performance of three hundred
ninety-five (395) students of two Portuguese secondary
schools in mathematics and Portuguese language, measuring
forty-six (46) variables: grades of three periods, G1, G2 and
G3, demographic, social and other variables related to the
school, all compiled through reports and school question-
naires. More details about the variables can be found in [61].
This data file has been used in the past [65] for classification
and ordinal regression purposes. More specifically, univariate
ordinal regression was performed taking G3 as the response
variable, comparing the results when G2 and G1 were also
included as predictor variables and when they were excluded.
It has been noted that feature selection methods should also
be explored since only a small portion of the input variables
considered appear to be relevant.

IV. RESULTS
Preliminary tests were first carried out to select the
hyperparameters of the nature-inspired metaheuristic algo-
rithms for the two datasets used [60], [65]. The results are
presented in Table 1.

Below are the results of thirty runs of the parameter
estimation algorithm in KPLS regression proposed in
Algorithm 2 for the metaheuristic algorithms GA, FFA, PSO
and GWO and the derivative-free algorithms NM and HJ.
To generate the kernel matrixK, the Gaussian kernel function
was used with the parameter σ > 0.
The population size of each metaheuristic algorithm was

set at p = 40, and the iterations were gradually increased
by g = {10, 30, 50, 100, 150}. The derivative-free NM and
HJ algorithms took several random starting points σ0 > 0 in
given ranges for both datasets. The convergence criterion was
the value 1.e-06 [54].

Figure 1 presents the behavior of the estimates of Q2
cum for

both datasets. The metaheuristic algorithms estimated higher

TABLE 1. Hyperparameters of nature-inspired metaheuristic algorithms
by dataset.

FIGURE 1. Average of Q2
cum estimates by algorithm.

average values of Q2
cum and with a lower dispersion than

the free derivative algorithms. Estimates of Q2
cum were very

similar for all four metaheuristic algorithms, with minimal
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TABLE 2. Mean and standard deviation of estimates of Q2
cum, σ , h and running time for the biomedical voice measurement dataset.

TABLE 3. Mean and standard deviation of estimates of Q2
cum, σ , h and running time for the academic performance dataset.

variations observed with the increasing numbers of iterations.
Despite the above differences, the estimates of the determin-
istic algorithms do not differ considerably from the values
obtained by the metaheuristic algorithms. Details can be seen
in Tables 2 and 3.

A statistical analysis of Q2
cum estimates was carried out

[29]. First, one-way ANOVA was executed taking as a null
hypothesis that the means ofQ2

cum were equal for the different
algorithms. The analysis was complemented by a variance

homogeneity test and multiple post hoc comparisons to iden-
tify the best-performing algorithms [67]. The results pre-
sented in Table 4 indicate that there is statistical evidence
to reject the null hypothesis that the average estimates of
Q2
cum are the same for the different tested algorithms for

both datasets. Similarly, the result given by Levene’s statistic
indicates the nonhomogeneity of variances.

Estimates of the parameter of the Gaussian kernel function
σ were on average similar for the algorithms evaluated in
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TABLE 4. ANOVA and test of homogeneity of variances – Q2
cum and σ by

algorithms.

TABLE 5. T2 Tamhane’s post hoc comparisons – Q2
cum by algorithm.

both datasets. Details can be seen in Tables 2 and 3. NM and
HJ showed mean values of σ close to those obtained by the
metaheuristic algorithms, but with a much larger standard
deviation. Table 4 shows the results of the ANOVA carried
out to contrast the null hypothesis of equality of means of
σ obtained by the different algorithms implemented. The
ANOVA test indicates that there is statistical evidence to
reject the equal-means hypothesis at a significance level
of α = 0.05. Likewise, Levene’s statistic indicates the
nonhomogeneity of variances.

For post hoc comparisons, the T2 Thamane test was used
to indicate when variances and/or sample sizes are unequal
[68]. The results for the voice biomedical dataset indicate
a significant difference between the Q2

cum estimates of the
HJ algorithm and the other algorithms. In the academic per-
formance dataset, multiple comparisons found no statistical
evidence to state that Q2

cum estimates were different for the
algorithms evaluated. In this dataset, pairwise comparisons
were not significant, while the overall effect was weakly
significant [69]. This last claim could be justified by both the
weak overall effect and the conservative characteristics of the
T2 Thamane test. The results are presented in Table 5.
The number of h components estimated was equal to 6 for

all algorithms evaluated in the biomedical voicemeasurement
dataset. For the academic performance dataset, the estimates
were variable; however, the most frequent estimate for all the
algorithms was h = 7. The results are presented in Table 6.
A result that is favorable to the estimation in the interval

of the σ parameter is the approximately normal distribution
of the estimates for certain algorithms. Taking h = 6 for the

TABLE 6. Estimates of h for the academic performance dataset by
algorithm.

TABLE 7. Tests of normality - Kolmogorov-Smirnov of σ parameter.

biomedical voice measurement dataset and h = 7 for the
academic performance dataset, the Kolmogorov - Smirnov
normality test was applied. The null hypothesis of the con-
trast was that the distribution of sigma estimates is normally
distributed. At a significance level α = 0.05, the hypothesis
for the algorithms for PSO and GWO in both datasets was not
rejected. Details are shown in Table 7. The distributions of the
distribution of σ parameter estimates by the nature-inspired
metaheuristics algorithm are presented in Figure 2 for both
datasets.

According to [8], in a complex optimization problem
where there is no theory to find or verify the optimal, if several
nature-inspired metaheuristic algorithms with tuned hyperpa-
rameters converge to a solution, this solution ismost likely the
optimal solution.

A. CONVERGENCE ANALYSIS
The convergence of estimates ofQ2

cum, σ and hwas evaluated
with respect to the variation in the number of iterations of
each nature-inspired metaheuristic algorithm. Tables 2 and 3
do not show an overall effect in the increase in the iterations in
themeans and standard deviations obtained forQ2

cum, σ and h.
A statistical test was carried out taking as a null hypothesis
the equality of means ofQ2

cum, σ and h for the different levels
of iterations. Levene’s statistic was also calculated to verify
the homogeneity of variances. Table 8 presents the results.

There is no statistical evidence of the effect of increasing
iterations in nature-inspired metaheuristic algorithms on esti-
mates of Q2

cum, σ and h in the two datasets evaluated at
an α significance level = 0.05. However, for the academic
performance dataset and at a significance level of α = 0.10,
the null hypothesis of equality of means and variances in
σ estimates with the increase in the number of iterations is
rejected.

A relevant point in the comparison of the optimization
algorithms is the computational cost associated with each
algorithm. Tables 2 and 3 show a direct relationship between
the number of iterations and the running time in minutes for
the four metaheuristic algorithms. GA and PSO have a higher
associated computational cost in both datasets and for any
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FIGURE 2. Distribution of σ parameter estimates by algorithm.

number of iterations. However, the reduced running time of
the NM and HJ algorithms is noteworthy.

For the evaluated datasets and this specific optimization
task, the results are inconclusive regarding the contri-
bution to the accuracy of the estimates made by the
increased iterations and running time of the nature-inspired

TABLE 8. ANOVA and test of homogeneity of variances – Q2
cum and σ by

iterations.

FIGURE 3. Q2
cum estimates by running time for datasets.

metaheuristic algorithms. Figure 3 shows the estimates of
Q2
cum in both datasets with respect to the running time

of the nature-inspired metaheuristic algorithms. No direct
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relationship between the two variables is observed in either
cases.

These results are consistent with those of previous
publications [8], which suggest that deterministic algorithms
aremore computationally efficient than nature-inspiredmeta-
heuristic algorithms and refer to the slow convergence of
metaheuristic algorithms.

Due to differences in objectives and methodologies, it was
not possible to compare the results obtained with the biomed-
ical voice measurement dataset with other studies conducted
on the same dataset [60], [63]. The results obtained in
this article regarding the academic performance dataset first
verified the estimates obtained in [12], which exclusively
used GA as the optimizer to improve the predictive capac-
ity of the KPLS regression. However, the results in terms
of convergence of estimates with the increasing iterations
have not been repeated for the voice biomedical measure-
ment dataset or for the other nature-inspired metaheuristic
algorithms.

V. CONCLUSION
This article proposes a methodology to simultaneously esti-
mate both the kernel function parameter θ and the number
of components h, which maximize the predictive capacity in
the KPLS regression. An optimization problem is posed that
takes as an objective function the cumulative cross-validation
coefficient Q2

cum. To solve the problem, an algorithm is
designed that embeds nature-inspired metaheuristic algo-
rithms: GA, PSO, FFA and GWO. To validate the results
and have a reference measure of the efficiency of the set of
algorithms, the performance of derivative-free optimization
algorithms NM and HJ on the indicated problem is also
evaluated.

The results indicate that the nature-inspired metaheuristic
algorithms allow the estimation of approximate optimal val-
ues of the KPLS regression parameters. In the two datasets,
the mean estimates of Q2

cum, θ and h made by the four meta-
heuristic algorithms were similar with low dispersion. The
derivative-free algorithms obtained a similar performance in
the mean of the estimates, validating the results obtained,
but the dispersion in the estimates was generally higher.
Under the conditions established in this work, it is not pos-
sible to draw a conclusion about the convergence of the
estimates with the increase in the iterations in the meta-
heuristic algorithms. Additionally, the derivative-free algo-
rithms have shown a much lower computational time than the
metaheuristic algorithms.

The conclusions reached are limited to the optimization
problem posed and the datasets used. Future studies can
explore other approaches to optimize the predictive ability
of the KPLS regression, reduce the computational cost and
dispersion in the estimates, include more kernel functions in
the analysis, and test with more datasets.
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