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ABSTRACT With the development of the wireless network techniques, the number of cyber-attack increases
significantly, which has seriously threat the security of Wireless Local Area Network (WLAN). The
traditional intrusion detection technology is a prevalent area of study for numerous years, but it may not have
a good detection performance in a real-time way. Therefore, it is urgent to design a detection mechanism
to detect the attacks timely. In this paper, we exploit a CDBN (Conditional Deep Belief Network)-based
intrusion detection mechanism to recognize the attack features and perform the wireless network intrusion
detection in real time. To avoid the impact of the imbalanced dataset and the data redundancy on the detection
accuracy, a window-based instance selection algorithm ‘‘SamSelect’’ is adopted to undersample the majority
class data samples, and a Stacked Contractive Auto-Encoder (SCAE) algorithm is proposed to reduce the
dimension of the data samples. By doing so, our proposed mechanism can effectively detect the potential
attack and achieve high accuracy. The experiment results show that CDBN can be effectively combined with
‘‘SamSelect’’ and SCAE, and the proposed mechanism has a high detection speed and accuracy, with the
average detection time 1.14 ms and the detection accuracy 0.974.

INDEX TERMS Intrusion detection, conditional deep belief network, Samselect algorithm, stacked
contractive auto-encoder, real-time detection.

I. INTRODUCTION
With the extensive popularization of Wireless Local Area
Networks (WLAN) technology used in hardware devices,
the IEEE 802.11 protocol based short-distance transmission
wireless network is facing great security challenges [1]. Any
illegal users may have access to the local area network
through the wireless access point [2], [3]. As the reasonable
complement of the firewall, intrusion detection systems (IDS)
can detect abnormal network behavior to the maximum
extent [4]–[6]. It is necessary to design the effective intrusion
detection mechanism for the wireless network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Firooz B. Saghezchi .

Various researches have been developed on proposing
various IDSs in which the data-mining based methods have
been proved to be very effective. Barbara et al. [7] proposed
a wireless IDS, e.g., ADAM based on the association rule
mining algorithm Apriori. In reference [8], the authors
incorporated the cluster theory into Apriori algorithm to
improve the efficiency of mining the association rules.
To reduce the false positives, the authors in reference [9] pro-
posed an unsupervised intrusion detection method based on
sparse Auto-Encoder. To detect special attacks, Saxena et al.
proposed an efficient IDS by analyzing the active entropy of
the network abnormal traffic [10]. Other machine learning
based methods, e.g., Peng proposed an IDS based on
Mini Batch K-means combined with Principal Component
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Analysis (PCA), and this method can be used over big
data environment [11]. Farnaaz built a model for intrusion
detection system using RF classifier, the model was efficient
with low false alarm rate and high detection rate [12].
Besides, the deep learning based methods, e.g., Khan
proposed a novel two-stage deep learning (TSDL) based
approach to detect intrusion and the authors investigate the
impacts on the performance of the proposed model [13].
Kim applied Long Short-TermMemory (LSTM) architecture,
the experimental results show this deep learning approach
was effective [14]. Kasongo proposed a Feed-Forward Deep
Neural Network (FFDNN) based wireless intrusion detection
method, and the experimental results show this method can
achieve high detection accuracy [1]. At the same time,
Al-Abassi proposed an ensemble method using Deep Neural
Network (DNN) and Decision Tree (DT), and this method
shows it can achieve high detection accuracy with low false-
positive [12]. References [15], [16] used other deep learning
algorithms to detect network intrusion manners, which can
effectively identify various attacks. Although the above
methods achieved good detection performance, the detection
processes of these methods are offline, as a result, it is
difficult to give a warning timely and to minimize the risk
of network abnormal.

With the continuous expansion of network data, a large
amount of non-linear network data brings new challenges
to intrusion detection [17]. The performance of the existing
methods heavily depends on the feature vectors in which
some features may be redundant. In the wireless network
environment, the commonly used experimental dataset is
AWID which has the characteristics of high dimensionality
and have some data redundancy [18].The high dimensional
features may cause the ‘‘curse of dimensionality’’. To elimi-
nate the impact of the data redundancy on intrusion detection
performance, the dimension reduction methods such as
principal component analysis (PCA), linear discriminant
analysis (LDA), independent component analysis (ICA) and
their variants have been adopted for dimensionality reduction
in different research areas [19], [20]. However, these methods
are linear and have good effects when the data is linear
structure and Gaussian distribution. It is very difficult for
these methods to find the nonlinear structure of the data
when the data is with high distortion in the high dimensional
space. The nonlinear dimension reduction methods such
as isometric feature mapping (ISOMAP) and locally linear
embedding (LLE), etc., have been adopted to improve the
dimension reduction ability for the nonlinear data [21], [22].
However, these nonlinear dimension reduction methods are
not effect to reduce the dimension for the new data. Interested
readers can refer to [23], [24] for details on the nonlinear
dimension reduction methods.

Moreover, the AWID dataset is a real-world dataset and
it is imbalanced between the normal and attack samples.
Using the imbalanced dataset to train the machine learning
based detector will lead to the increase of the rate of
false positives in minority samples [25]. To solve these

issues, Reference [26] proposed a resampling strategy
inside Oversampling based Online Bagging (OOB), and
looked into their performance in both static and dynamic
data streams. In reference [27], the authors proposed a
new traffic classification method for imbalanced network
data, by introducing and improving Synthetic Minority
Oversampling Technique (SMOTE) algorithm, an improve
SMOTE algorithm was proposed to realize the balance
of traffic data [28]. However, these methods need to
synthesize the minority-class samples, and this will lead to
the minority-class samples tend to overlap with the majority-
class samples [29].

II. MOTIVATION AND CONTRIBUTIONS
Based on the above analyses, we can see that there are some
major challenges to develop an effective wireless intrusion
detection mechanism: (1) When dealing with the AWID
dataset, how to process the high-dimensional data samples in
case of the ‘‘curse of dimensionality’’? (2) Due to the AWID
dataset is imbalanced, how to balance the dataset in case of
leading to the over-fitting problem and improve the detection
performance? (3) How to design a detect model to detect
the abnormal in a real-time way with a satisfactory detection
performance?

Motivated by the above challenges, in this paper, a wireless
network intrusion detection mechanism based on Conditional
Deep Belief Network (CDBN) that is composed of the
Conditional Gaussian-Bernoulli RBM (CGBRBM) is pro-
posed to detect the network abnormal in a real-time way.
To overcome the amount imbalance between the normal data
and the attack data in AWID training dataset, a window-
based under-sampling selection algorithm ‘‘SamSelect’’ is
adopted to balance the dataset. In addition, to overcome the
disadvantages of the existing methods in data dimension
reduction, a Stacked Contractive Auto-Encoder (SCAE) is
proposed to reduce the dimension of the data sample. The
main contributions of this paper can be summarized as:

1) This work is among the pioneer studies of using CDBN
in wireless network intrusion detection research. In addition,
the proposed mechanism is performed in a real-time way,
which is novel and effective.

2) To avoid the impact of the excessive normal samples
in AWID dataset on training the detection model. It is
the first time that adopting the ‘‘SamSelect’’ algorithm to
balance the dataset by under sampling the normal samples.
The dimensionality of the feature vector is reduced by an
improved Auto-Encoder (SDAE) method, which is novel.

3) We evaluate the performance of the proposed intrusion
detection mechanism on two dataset (AWID, LITNET)
processed by ‘‘SamSelect’’ and SCAE. The experimental
results show the proposed mechanism has high detection
accuracy.

4) The impact of the time observation window size of
CDBN on the detection performance is carefully studied.
Moreover, the robustness of our proposed mechanism to the
noise is also investigated in this paper.
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The remaining parts of this paper are organized as follows.
Section 3 introduces the overview of our proposed IDS,
and the data pre-processing methods including ‘‘SamSelect’’
algorithm and the proposed SCAE algorithm. Section 4 elab-
orates the implementation of the proposed real-time CDBN
based IDS. Simulation results and conclusions are presented
in Sections 5 and 6, respectively.

FIGURE 1. Overview of the proposed detection mechanism.

III. OVERIVEW OF OUR PROPOSED MECHANISM AND
DATE PRE-PROCESSING METHODS
A. OVERIVEW OF THE PROPOSED INTRUSION
DETECTION MECHANISM
The wireless intrusion detection can be regarded as a multiple
classification problem. As depicted in Fig. 1, to effectively
train the CDBN detector based on the balanced training
dataset, the AWID training dataset is firstly normalized,
and then we adopt the ‘‘SamSelect’’ algorithm to select
the normal samples. By doing so, the number of the
normal samples will be basically equal to that of the
attack samples. To eliminate the redundancy of the data in
AWID dataset as well as improve the response speed of
intrusion detection, the balanced training dataset and the
testing dataset will be inputted into the SCAEs model to
generate the low-dimensional datasets. At last, the CDBN
model will be trained by the pre-processed dataset, by setting
the observation window 1 and inputting the testing data,
the attack will be identified by the output label yt in a
real-time way.

Different from the existing publications which adapt
CDBN to model human motion, we would like to clarify
that there are two main differences between our proposed
mechanism and [30], [31]. The CDBN in our paper is
designed as a classifier while that in the two references is
a time-series generative model to predict the human motion.
Moreover, the CDBN in our paper employs only one CGRBM
as the first hidden layer and uses the conventional RBMs as
the other hidden layers.Moreover, the CDBN adapt in the two
references employ CGRBMs as all the hidden layers.

B. DATA NORMALIZATION AND DATA BALANCE
PROCESSING
Due to the AWID dataset contains qualitative and quantitative
data we should standardize it first. We use ‘‘factorzie’’

method of ‘‘pandas lab’’ in python, to map the symbol
value attributes to integer values [32]. Some attributes with
hexadecimal data type are also converted to integer values.
Some attributes retain the continuous data type, and the data
also contains unusable marks such as ‘‘?’’ which will be set
to 0. After converting all attribute values to integer values, we
use the following equation to normalize each attribute value
with the range of [0, 1].

y =
x −min(x)

max(x)−min(x)
(1)

where x is the standardized AWID data. The AWID training
dataset contains 1795575 samples, of which 1633190 normal
samples and 162385 attack samples [25]. The AWID training
dataset is imbalanced which may cause the decrease of
detection performance of the CDBN detector. It is necessary
to select the instances from the AWID training dataset and
consequently effectively suppress the dataset imbalanced
problem. To ensure the number of the attack samples
basically equals to that of the normal samples, the normal
samples are under sampled. Due to the normal samples
are distributed in all the sampling period, we use the
window-based algorithm ‘‘SamSelect’’ [33] to collect the
normal samples. Assuming that the sample sequence as
T = {T1,T2, . . . ,Tn}, and the current sample as Tt and the
‘‘SamSelect’’ can be summarized as Algorithm 1.

Algorithm 1 Data Balance Using ‘‘SamSelect’’
Input: AWID training dataset DA, window size ω, normal
sample counter c = 0
Output: Under-sampling dataset DB
for t = 1 to |DA| do:
if Tt is normal then:

c = c+ 1
if c ≤ ω then:

put this sample into DB
end if

end if
if Tt is not normal then:
c = 0
put this sample into DB

end if
end if
return DB

C. DATA DIMENSIONALITY REDUCTION BASED ON SCAE
Auto-Encoder (AE) is an unsupervised learning neural
network, which reconstructs the input data as much as
possible. Two main processes involved in training AE, which
are pre-training that initializes the network weights using the
L-BFGS algorithm and fine-tuning that adjusts the network
parameters using the BP (backward propagation algorithm)
algorithm [34]. AE can achieve the dimensionality reduction
function when the dimension of reconstructed data is smaller
than that of the original data. By decreasing the unrelated
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and redundant features in the feature vector we can get
more abstract high-level and low-dimension representations
of the original feature data [35]. The structure of AE is
composed of input layer, output layer, and hidden layer. The
input layer and the hidden layer constitute the Encoder, and
the input data is compressed in the encoder. The hidden
layer and the output layer constitute the Decoder, and the
input data is reconstructed in the Decoder. The encoding and
decoding processes are shown in Fig. 2. f is a non-linear
encoding function. After encoding, the n-dimensional input
can be mapped into a m-dimensional hidden layer vector.
Afterwards, the hidden layer vector is reversely reconstructed
to n-dimensional vector z through the decoding function g.
Define

∑
x∈X

L(x, z) as the loss function, where X is the dataset.

The training process of AE is to minimize the loss function
which can be solved by BP algorithm [34].

FIGURE 2. The processes of encoding and decoding.

After encoding, x is compressed into y, and after decoding,
y is further reconstructed into z. Since the reconstruction
process ensures that error is minimized, z not only retains
the features of x, but also has lower dimension than x. The
Contractive Auto-Encoder (CAE) [36] is proposed to ensure
the reconstructed data contain the distribution characteristic
of the input data and remove the noise. The loss function of
CAE can be rewritten as follows:∑

x∈X

L(x, g(f (x)))+�(h, x) (2)

where � is the square Frobenius norm which is defined as

�(h, x) = λ

∥∥∥∥∂f (x)∂x

∥∥∥∥2
F

(3)

To learn the deep-level representations of the original data,
in this paper, we use the output of the previous CAE as the
input of the next CAE to form the stacked CAE (SCAE), and
achieve the purpose of layer-by-layer encoding. Define xi as
the encoded data of the ithCAE, and the encoded data of each
CAE can be defined as follows:

xi = fθ (xi−1) i = 1, 2, 3... (4)

After layer-by-layer greedy training and fine- the SCAE
dimensionality reduction model is constructed. The differ-
ence between the original input data and the reconstruction
training weights is minimized to achieve the initial param-
eters in the greedy training process. Fig. 3 is the SCAE
dimensionality reduction model.

FIGURE 3. The dimensionality reduction model based on SCAE.

In the fine-tuning process, to ensure the reconstruction
error is minimized, the BP algorithm is adopted to adjust the
cross-entropy of the initial parameters. After the fine-tuning
in the first CAE, the hidden layer output is calculated
and inputted into the second CAE. Then the parameters of
the second CAE can be obtained by training and fine-tuning.
By doing like this, the SCAEmodel is trained by training and
fine-tuning all the CAEs.

IV. REAL-TIME WIRELESS INTRUSION DETECTION
MECHANISM
A. THE STRUCTURE OF CDBN DETECTOR
The CDBN structure is integrated by the standard deep belief
network structure with one CGBRBM and stacking by few
RBMs [36]. The CGBRBM can capture the correlations
between the historical and the current input data. Based on
CGBRBM, the proposed CDBNdetector can effectively learn
the temporal behavior features of the pre-processed dataset
and detect the attacks in a real-time way. The input data
of CGBRBM is a time-series data and the CGBRBM can
capture the correlations between the historical and the current
input data. After training the CDBN model, the testing data
will be inputted to the CDBN model step by step by time
instance instead inputting thewhole testing dataset, so this is a
real-time way to detect the newly inputted data. As illustrated
in Fig. 4, our proposed CDBN-based detector employs the
CGBRBM unit as the first layer and on the top of the
CGBRBM there are N − 1 conventional RBMs, so there are
N hidden layers in the whole CDBN architecture. We would
like to clarify that a multiple classifier output unit is added
on the top of the CDBN architecture, which can output the
classification label and indicate whether the inputted data
is an attack sample. In the next two subsections, we will
introduce the pre-training and fine-tuning process of CDBN.

B. THE PRE-TRAINING PROCESS OF CDBN
CDBN uses the pre-training process to initialize the network
parameters which are the connection weights between layers
and the offset values of each layer neurons. Take a RBM as
an example, which contains a visual layer withm visible units
and a hidden layer with n hidden units. The energy function

VOLUME 8, 2020 170131



L. Yang et al.: Real-Time Intrusion Detection in Wireless Network: A Deep Learning-Based Intelligent Mechanism

FIGURE 4. The structure of CDBN architecture.

of a conventional RBM can be defined as follows:

E(v, h) = −
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

cjvj −
n∑
i=1

dihi (5)

where vj is the jth element of the visible layer vector, and
hi is the ith element of the hidden layer vector, wij is the
ijth element of the weight matrix between the visible and
hidden units. We define di and cj as the ith element of
bias vector for the hidden layer and the jth element of
the bias vector for the visible layer, respectively. Based on
Eq. (5), given the adjacent layer unit values, the activation
conditional probability distributions of hidden and visible
units are calculated as follows: p(hi = 1|v) = sigm(di +

∑m

j=1
wijvj)

p(vj = 1|h) = sigm(ci +
∑n

i=1
wijhi)

(6)

where sigm(.) is sigmoid function. By using the CD
(gradient-based Contrastive Divergence) method [37],
the weights and biases of the conventional RBMs are updated
as follows: 

wij = wij − α(
〈
vjhi

〉
m −

〈
vjhi

〉
l)

di = di − α(〈hi〉m − 〈hi〉l)
cj = cj − α(

〈
vj
〉
m −

〈
vj
〉
l)

(7)

where α is the learning rate, and 〈.〉m and 〈.〉l are the
expectations computed over the data and model distributions.

FIGURE 5. The structure of CGBRBM for CDBN.

Figure 5 illustrates the structure of the CGBRBMwith one
hidden layer and K+1 visible layers. Define K as the size of

the time observation window. Same like Eq. (5), the energy
function of CGBRBM is defined as follows:

E(vt , . . . , vt−K , h) = −
n∑
i=1

m∑
j=1

vj
σ̂ 2
j

hiwij −
n∑
i

di,thi

+

m∑
j

(vj,t − cj,t )2

2σ̂ 2
j

(8)

where vj and hi are the jth element of the layer visible vector
and the ith element of the hidden layer, respectively. wij is the
ijth element of the weight matrix between the visible layer
units and hidden layer units, σ̂j is the standard deviation of the
jth element of the visible vector, n and m are the number of
the hidden units and number of the visible units, respectively,
Define b and c as the bias vector of hidden layer vector and
the bias vector of the visible layer, dt and ct are calculated as
follows: 

dt = d +
K∑
k=1

vt−kBk

ct = c+
K∑
k=1

vt−kAk

(9)

where vt−k is the kth previous visible layer vector. Based on
Eq. (8), the conditional probability distributions of the hidden
and visible layer units can be calculated as follows:

p(hi = 1|vt , . . . , vt−N ) = sigm(di,t +
∑m

j=1

wijvj,t
σ̂ 2
j

)

p(vj,t = v|h) = N (cj,t +
∑n

i=1
wijhi ,̂σ 2

j )

(10)

Applying the gradient-based CD technique, the structure
of the CGBRBM can updated as follows:

wij = wij − α(

〈
vj,t
σ̂ 2
j

hi

〉
m

−

〈
vj,t
σ̂ 2
j

hi

〉
l

)

aijk = aijk − α(

〈
vj,t−k
σ̂ 2
j

vi,t

〉
m

−

〈
vj,t−k
σ̂ 2
j

vi,t

〉
l

)

bijk = bijk − α(

〈
vj,t−k
σ̂ 2
j

hi

〉
m

−

〈
vj,t−k
σ̂ 2
j

hi

〉
l

)

di = di − α(〈hi〉m − 〈hi〉l)

cj,t = cj,t − α(

〈
vj,t
σ̂ 2
j

〉
m

−

〈
vj,t
σ̂ 2
j

〉
l

)

(11)

Define the weight matrices as W , Ak and Bk in which
the elements are defined as wij, aijk and bijk , respectively.
Define the 〈.〉l and 〈.〉m as the expectations calculated by
the data and model distributions. After pre-training, we add
a fully connected output node on the top of the model.
To present the two labels indicating the attack and the
normal samples, the output node is designed as a multiple
node with sigmoid activation function defined in Eq. (6).
After the above operations, the model will be fine-tuned
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using back-propagation supervised training with the available
labeled data to fully achieve the trained structure of the neural
network [38].

C. THE FINE-TUNING PROCESS OF CDBN
After pre-training process, the fine-tuning procedure is used
to adjust the parameters such as the weights and biases. Take
the hth hidden layer as an example, and define the learning
rate as η, the weight matrix and the bias vector of it can be
updated as follows:{

1Wh,i,j = −ηδh,iph−1,j
1dh,i = −ηδh,i

(12)

where 1Wh,i,j and 1dh,j are the updated value for the ijth
element of the weight matrix and for the jth element of the
bias vector, respectively. ph−1,j is the activation probability
of the jth element of the (h− 1)th hidden layer, and

δh,j = ph,j(1− ph,j)
M∑
k

δh+1,kWh+1,j,k (13)

where M is the number of elements in the (h + 1)th
hidden layer. Wh+1,j,k and ph,j are the jkth element of the
weight matrix of the (h + 1) hidden layer and the activation
probability of the jth element of the hth hidden layer,
respectively. Same like Eq. (12), the weight vector and the
bias value of the output layer with single-unit are updated as
follows: {

1Wo,j = −ηδopH ,j
1do = −ηδo

(14)

where 1Wo,j is the updated value for the jth element of the
weight vector, 1do is the updated value for the bias, and
1do is the updated value for the bias, pH ,j is the activation
probability of the jth element of the last hidden layer whose
index is h = H and

δo = po(1− po)(lo − L) (15)

where lo and L are the predicted output label and the actual
value of the output label, respectively. po is the activation
probability of single output unit. By doing the processes
in Section III-B and III-C, we can train the CDBN model
which is subsequently used for detecting the attack inwireless
network environment.

V. CASE STUDY
A. EXPERIMENT PREPARATION
In this paper, the AWID-CLSR-R-Trn and AWID-CLSR-tst
datasets are adopted to train the CDBN detector and to test
the detection performance, respectively [39]. The AWID-
CLSR-R-Trn dataset contains 1795575 instances, including
1633190 normal samples and 162385 attack samples. The
AWID-CLSR-tst dataset contains 575643 samples, including
530785 normal samples and 44858 attack samples. We would
like to clarify that in this paper we use ‘‘SamSelect’’

algorithm to undersample the AWID-CLSR-R-Trn dataset
regardless of the binary class and multiclass. Table 1 illus-
trates the distributions of different types of attacks in the
training and test datasets.

TABLE 1. The attack distributions of training and testing dataset.

According to the above analysis, we can see that the
AWID-CLSR-R-Trn dataset is imbalanced in which the
number of the normal samples is larger than that of the attack
samples, and the ratio between normal and attack samples is
about 10:1. Using the imbalanced dataset to train the detector
may cause the over-fitting problem and thereby reduce the
detection accuracy [40]. After normalizing the AWID-CLSR-
R-Trn dataset, the normal samples are undersampled by
the window-based ‘‘SamSelect’’ algorithm. To balance the
dataset as much as possible, the window size of ‘‘SamSelect’’
should be carefully investigated. As shown in Table 2, we can
see that the dataset is almost balanced when the window size
is set to 2.

TABLE 2. The relation between the window size and sample size.

After balancing the training dataset, there are 201007
normal samples and 162385 attack samples in AWID-
CLSR-R-Trn dataset and these data will be adapt to the
following experiments. In this paper, the average results of
10-fold cross-validation of 10 times are used to evaluate the
performance of our proposed mechanism.

B. THE FEASIBILITY ANALYSIS OF SCAE ON
DIMENSIONALITY REDUCTION
In this subsection, we will investigate the feasibility of
SCAE on dimensionality reduction. The essence of SCAE
on dimensionality reduction is to verify whether the
low-dimensional data outputted from SCAE can represent
the original information contained in the input data, in other
words, to verify the difference between the reconstructed data
and original data. We use the Mean Squared Error (MSE) to
evaluate the reconstruction performance during the training
process [41]. The MSE is defined as follows:

MSE =
1
N

N∑
i=1

(yinput − yrecon)2 (16)
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where yinput is the original input data and yrecon is the output
data reconstructed by SCAE, respectively. N is the number
of the samples. After normalizing the original AWID data,
we can get 154 features for each AWID sample. In this
experiment, the 154-dimensional sample is used as the input
of SCAE, and we set 20 as the dimension of the output
reconstructed data. In this paper, we design a 4-layer SCAE
network structure, CAE1 154-120, CAE2 120-80, CAE3 80-
50, CAE4 50-20, the numbers of the neurons in each hidden
layer are: 120-80-50-20. The training times for each CAE and
SCAE are set to 10.

FIGURE 6. The reconstruction errors of CAEs.

FIGURE 7. The reconstruction errors of SCAE.

From Fig. 6 and Fig. 7, we can see that that after
5 training times, all the reconstruction errors of the MSEs
tend to be stable with the values below 0.015. Moreover,
the MSE of SCAE also tends to be stable and less than
0.007 when the training time is greater than 4. Therefore,
we can conclude that the 20-dimensional reconstructed data
can basically represent the original data with a relative small
reconstruction error, which proves that the feasibility of
SCAE on dimensionality reduction.

C. THE IMPACT OF THE TIME OBSERVATION WINDOW
SIZE ENVIRONMENT NOISE ON DETECTION
PERFORMANCE
In this subsection, we continually investigate the impact
of the time observation window size of the CDBN on

the performance of our proposed detection mechanism.
As shown in Table 3, we introduce the evaluation matrices
such as Accuracy (Acc), Precision (Pre), Recall, F1, and
MCC (Matthews correlation coefficient) [42].

TABLE 3. Evaluation metrics.

For the following simulations, we need to determine the
best time observation window because larger window may
learn more temporal information in the input sequence.
Hence, it is important to investigate the impact of the
time observation window size on the detection performance.
Define the time observation window size as 1 which ranges
from 2 to 5 with the increment s = 1. In this experiment,
we set the number of hidden layers to 5. As shown in
Fig. 8, the detection performance is the best when the time
observation window size 1 = 4. At the same time, The
accuracy for Normal sample, Flooding attack, False attack
and Injection attack is 0.989, 0.808, 0.727, 0.991.

FIGURE 8. The detection performance with different time observation
window sizes.

To study the robustness of the proposed mechanism to
the environment noise, we firstly model the environment
noise as the Additive White Gaussian Noise (AWGN) ∼
N (0, σ ) with the standard deviation σ ranging from 0.5 to 3,
and add the noise to the training data. Then the training
data is preprocessed by ‘‘SamSelect’’ and SCAE. In this
experiment, we use the preprocessed training data to train
the CDBN-based, DBN-based [43] and RNN (Recurrent
Neural Network)-based [44] detectors, by comparing the
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detection accuracy of the three detection models, from
Fig. 9, we can see that our detection method can achieve
the highest detection accuracy among the three different
methods. Furthermore, as the standard deviation σ increases
the detection accuracy decreases our proposed detection
mechanism can achieve the accuracy of detection above 75%.
This demonstrates that our proposedmechanism is robustness
to the environment noise.

FIGURE 9. The detection accuracy with different noise level.

D. THE IMPACT OF THE CDBN STURCTURE AND DATA
PREPROCESSING OPERATION ON DETECTION
PERFORMANCE
We continue to numerically investigate the impact of
the CDBN’s structure on detection performance. In this
experiment, the learning rates of pre-training and fine-tuning
process of CDBN are both set to 0.5, and the size of
mini-batch is 100, and the time observation window size is
set to 5. We assume that each RBM has the same number
of the hidden units 128, and the number of CDBN hidden
layers ranging from 1 to 5with an increment 1. The dimension
of the sample in this experiment is reduced to 20. We will
investigate the impact of the CDBN structure on the detection
performance on different datasets, e.g., the datasets processed
by ‘‘SamSelect’’ algorithm with different window size {5, 4,
3, 2}. The detection accuracy of the CDBN based architecture
with different numbers of hidden layers is shown in Fig. 9 and
Fig. 10. We can see that the detection accuracy goes up as the
number of the hidden layers increases. When the number of
the hidden layers is bigger than 5, the detection accuracy does
not change much. However, the computational complexity
will increase as the number of hidden layers increases.
To achieve a good balance between detection accuracy and
the computational complexity, we can say that the number of
the hidden layers can be set to, and meanwhile the detection
accuracy is 97.38%.

At this time, the learning rates for all the training
procedures of RBMs and CGBRBM α are set to 0.1. The
learning rate η for the fine-tuning procedure is set to 0.1.
By doing the experiments, we set the number of hidden
layers to 5. In the following simulation, we use the CDBN
having 5 hidden layers and 50 units for each hidden layer.

FIGURE 10. The impact of CDBN structure on detection performance.

The activation functions are chosen as the Sigmoid function.
The momentum is set to 0.9, the minibatch is set to 100 and
the number of initial iterations is set to 100. Moreover, it is
easily found that when the window size of ‘‘SamSelect’’
is 2, the detection accuracy is the highest because the
CDBN-based detector is trained by themost balanced dataset.

Furthermore, we do the 10-fold cross validation for 10
times to calculate the average detection accuracy and the
detection error and then present the confidence limits for
the detection error. The detection error is the percentage
of the incorrect predictions from all predictions made and
can be defined as follows: Err =(FN + FP)/ (TP + FN
+ TN + FP). The confidence interval can be calculated
and presented as part of the model evaluation. A confidence
interval is comprised of two things: Range is the lower and
upper limit that can be expected on the model. Probability
is the probability that the skill of the model will fall within
the range. The confidence limits for detection error can be
calculated as follows:

Err + /− const ∗
√
(Err ∗ (1− Err)) /n (17)

where const is a constant value that defines the chosen
probability, and n is the number of the samples used to
evaluate the model. The values for const are provided from
statistics, and in our paper we choose 1.96 as the const
which corresponds to the probability 95%. In this experiment,
the window size of ‘‘SamSelect’’ is set to 2, and the hidden
layer is set to 5, the time observation window size of CDBN is
set to 4 and n is 36339. Under these conditions, the detection
error is 7.147% and the confidence limits can be calculated
as: 0. 07147+/−1.96∗sqrt((0.07147∗(1−0.07147))/36339),
and the lower and upper limits are 0.07012 and 0.07282.
For the sake of simplification, in this experiment we just
investigate the confidence limits for the binary classification.

In addition, we evaluate the impact of the data
preprocessing operations on detection performance. We
investigate the detection performance of four detec-
tion mechanisms including CDBN, SamSelect+CDBN,
SCAE+CDBN, SamSelect+SCAE+CDBN in which the
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TABLE 4. Date pre-processing operations on detection performance.

order of the algorithms indicates the execution order in the
detection mechanism. In this experiment, the number of
hidden layers of CDBN is set to 5. The results of the data
pre-processing operations on the detection performance are
illustrated in Tab. 4. We would like to clarify that the metrics
In Tab. 4 are calculated in a micro-average way, which are
detailed explained and defined in [45]. From Tab. 4 we can
conclude that the mechanism SamSelect+SCAE+CDBN
can achieve the best detection performance. This is because
the original high dimensional data contains more redundant
features which can’t be used to train the perfect detector.

We continually investigate the detection performance of
our proposed mechanism using the newly developed dataset
LITNET. There are 12 types of attack e.g., Smurf, ICMP
flood, TCP flood, UDP flood, Http flood, Land attack,
Blaster worm, Code Red worm, SPAMReaper worm, Reaper
worm, Scanning attack, Fragmentation attack. Each type of
attack contains 85 network flow features [46]. The normal
and under-attack flow datasets can be downloaded from
https://dataset.litnet.lt, and the two datasets are reconstructed
one dataset including the normal and under-attack data.
After preprocessing these dataset, we use the average
result of 10-fold cross validation of 10 times to evaluate
the detection performance of our proposed mechanism.
As shown in Tab. 5, we can see that our proposed mechanism
can effectively detect the attack especially for the DoS attacks
such as smurf, flooding and Land attack. This is because
these attacks have more significant network flow features
compared with other types of attacks.

TABLE 5. The detection accuracy of LITNET dataset.

E. THE OVERALL DETECTION PERFORMANCE OF THE
PROPOSED DETECTION MECHANISM
In this paper, we would like to calculate the confusion
matrixes of the performance metrics based on testing the

FIGURE 11. Detection accuracy of different attack types under different
window size of ‘‘SamSelect’’.

AWID-CLSR-tst dataset. That is to say there are 530785 nor-
mal data and 44858 attack data including 20079 false attack
data, 8097 Flooding attack data, 16682 Injection attack data
in the testing dataset. The confusionmatrix is shown as Tab. 6.
From Tab. 6 we can see that the proposed mechanism can
easily detect the normal data with a low false alarm rate.
For different attacks, the mechanism is effective to detect
inject attack but has a relatively low detection accuracy for
the flooding attack and false attack. Moreover, we compare
the proposed detection mechanism with the similar methods,
e.g., the data balancing method SMOTE (Synthetic Minority
Oversampling Technique) and the dimensionality reduction
method PCA (Principal Component Analysis). From Fig. 12,
we can see that the proposed mechanism is better than
the combination of SMOTE, PCA and CDBN. It is clear
that SCAE is better than PCA in reducing the dimension
of the experimental dataset, and SCAE+CDBN is more
effective than PCA+CDBN. Similarly, the dataset processed
by ‘‘SamSelect’’ is more effective than that processed by
SMOTE.

At last, we validate the advantages of our detection mech-
anism by comparing with RNN-based detection mechanism
and DBN-based detection mechanism using the Receiver
Operating Characteristic (ROC) [47] curve which is plotted
in Fig. 13. True Positive Rate (TPR) is defined as the
probability that the attack data is identified to be attack.
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TABLE 6. The fusion matrix of the propose detection mechanism.

FIGURE 12. The detection performance with different methods.

FIGURE 13. The detection accuracy with different noise level.

False Positive Rate (FPR) is defined as the probability
that the normal data is identified to be attack [48]. From
the result shown in Fig. 13, we can observe that the
proposed mechanism can achieve the best performance,
and the area under the curve which is called AUC equals
to 0.978, the AUC of DBN-based method is bigger than
that of the RNN-based method. We can conclude that our
proposed detection mechanism is superior to RNN-based and
DBN-based methods.

Moreover, the performance comparisons with other shal-
low learning methods are also investigated. We compare
the proposed mechanism with the existing shallow methods
such as SVM (Support Vector Machine) [49] and Logistic
Regression (LR) [50] using the WEKA machine learning
platform [51]. From Figure 14, it is clear that the proposed
mechanism can remarkably outperform SVM- and LR-based
detection mechanisms. According to the above analysis,
we can also conclude that the detection performance of
the deep learning based methods can get a better detection
performance compared with the shallow learning based
methods. This is because that the deep learning based
methods can learn the essential features of the dataset.
We would like to clarify that the ROC curves in Fig. 13 and

FIGURE 14. The ROC curves of three detection methods.

14 are for the binary classification which means that they are
plotted by analyzing the results on detecting the attack and
normal samples.

Our detection scheme employs the CDBN to recognize
the high-dimension features of attacks. To achieve this goal,
our proposed detection mechanism consists of two essential
mechanisms: (1) Preprocess the original dataset and train the
CDBN-based detector (2) Detect the potential FDI attacks by
using the trained model. We would like to clarify that these
two essential mechanisms are implement in parallel, and the
dataset is ready-made and it is firstly processed and stored
in the feature history database. Therefore, the computing
time of the preprocessing and training procedures do not
lead to any delay in the detecting procedure. The average
time consumption on balancing and reducing dimensionality
for each data sample is about 4.7ms. Moreover, like the
reference [52], our proposed detection mechanism does
not consider the time consumption of data preprocessing.
The simulation time of our proposed scheme to detect the
unobservable FDI attacks is 1.14ms, which can satisfy the
requirement of the real-time detection.

TABLE 7. The results of different detection performance indicators.

Moreover, we continually to evaluate the performance
of our detection scheme by comparing with SVM- and
LR-based methods. In this experiment, we use the perfor-
mance indicators such as Precision, Recall, Mcc, Acc to
illustrate the results. From Tab. 7 we can see that the proposed
mechanism can achieve the best detection performance.
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VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an improved Deep Belief Network
based scheme for detecting wireless network intrusion.
Our proposed scheme employs Conditional Deep Belief
Network (CDBN) to efficiently learn the temporal behav-
ior features between the experimental data. We adopt a
window-based under-sampling algorithm ‘‘SamSelect’’ to
balance the numbers of the normal samples and that of the
attack samples in the AWID training dataset. We use Stacked
Contractive Auto-encoder (SCAE) algorithm to eliminate
the redundancy of experimental data. In the simulations,
we illustrate our work by four cases, and the first two cases
show that SCAE is feasible to reduce the dimensionality
with the average reconstruction error 0.058. The detection
accuracy increases as the number of the hidden layers of
CDBN increases, and the highest detection accuracy is
0.974 when the number of hidden layers is 6. In the third
case, we carefully investigate the impact of time observation
window size of CDBN on the detection performance, it shows
that as this size goes up the detection performance get
better, and when the observation window size is 4, the
detection accuracy is the highest with the values for Normal
sample, Flooding attack, False attack and Injection attack
are 0.989, 0.808, 0.727, 0.991. In the last case, we validate
the robustness of our proposed mechanism by changing
the environment noise, and the detection accuracy is higher
than 75% with different noise intensity. The experimental
results show that our detection method can achieve a better
detection performance compared with other deep learning
and shallow learning methods. These experiments show
that the proposed mechanism can be performed in a fast
way with the average detection time 1.14 ms and CDBN
can be effectively combined with ‘‘SamSelect’’ and SCAE.
In the future, we will extend our work by studying an
efficient detection method in big data environment and how
to apply the proposed mechanism in detecting wider range of
cyber-security attacks is worth investigating.
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