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ABSTRACT Underwater images suffer from different types of quality degradation, including haze, blur,
low contrast, and color distortion, owing to light scattering and absorption. This article proposes a novel
underwater image restoration algorithm based on the complete underwater image formation model (UIFM).
Although the majority of the existing methods consider the direct transmission and backward scattering
components only, this study, in addition, includes forward scattering in the UIFM. We estimate the trans-
mission map based on the observation that the scene distance is inversely proportional to the geodesic color
distance from the background light. We also approximate the point spread function in the forward scattering
term to estimate the scene radiance more faithfully. Moreover, we obtain the optimal parameters of the UIFM
required for transmission estimation and scene radiance restoration by minimizing a cost function composed
of the sharpness, information loss, and dark background prior. The experimental results confirm that the
proposed algorithm considerably improves the quality of the estimated transmission maps and restores scene
radiance compared with the existing state-of-the-art methods.

INDEX TERMS Underwater images, image restoration, image enhancement.

I. INTRODUCTION
Underwater imaging systems are used in numerous
applications, e.g., monitoring underwater environments, con-
struction of underwater artificial facilities, and searching
for and rescue of sunken ships. In addition, people capture
underwater imageswithwaterproofmobile cameras for enter-
tainment purposes while scuba diving or snorkeling. How-
ever, extreme underwater environments often degrade the
quality of the underwater images compared to that of ordinary
images captured in the air. Accordingly, image processing
and computer vision methods yield poor performance when
applied to such quality-degraded underwater images.

As shown in Fig. 1, light absorption and scattering are two
main causes of quality degradation in underwater images. The
ambient light illuminating the underwater scene is typically
regarded as the sunlight attenuated by the water. The scene
radiance, the reflected light from the surface of underwater
scene, is also attenuated by water while traveling toward the
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FIGURE 1. Underwater imaging. (a) Light scattering. (b) Light absorption.
(c-f) Typical underwater images with quality degradation.

camera. The attenuated scene radiance is called the direct
transmission component (DTC), where the ratio of the DTC
to scene radiance is the transmission. Moreover, the amount
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of light attenuation varies according to the wavelength of the
light such that red is more rapidly attenuated than blue or
green. Both the ambient light and attenuated scene radiance
cause color distortion such that that we typically see bluish
or greenish underwater images. The direction of the DTC is
perturbed in small angles generating the forward scattering
component (FSC), which is a blurred version of the DTC.
Moreover, the scattered ambient light is observed as the
backward scattering component (BSC), which covers target
underwater scenes and generates a haze effect. Owing to the
blur and haze, underwater images, in general, yield low con-
trast. Figs. 1(c-f) display typical quality-degraded underwater
images where we can observe blur, haze, low image contrast,
and color distortion.

From the literature, there has been other research for under-
water image restoration or enhancement. Underwater image
enhancement methods basically attempt to provide visually
pleasing images [1]–[4], and thus cannot recover the original
scene radiance correctly. McGlamery [5] proposed an under-
water image formation model (UIFM) composed of the DTC,
FSC, and BSC. Jaffe [6] also revised the FSC in the UIFM.
Underwater image restoration methods estimate the original
scene radiance from an input image based on UIFM. How-
ever, it is difficult to determine all the related parameters
in the UIFM completely, and hence the existing methods
have typically used simplified UIFMs by removing either
BSC or FSC from UIFM. For example, Trucco and Olmos-
Antillon [7] ignored the BSC assuming underwater images
captured in shallow water, and Schechner and Karpel [8]
omitted the FSC by investigating the amount of degradation
associated with the BSC and FSC. In practice, the majority of
the existing underwater image restoration methods [8]–[14]
adopt a simplified underwater image model (sUIFM) that
considers the DTC and BSC only.

Note that sUIFM is equivalent to the image formation
model used for dehazing [15], [16]. Therefore numerous
underwater image restoration methods have been inspired
by ordinary image dehazing methods where the unknown
parameters of the background light and transmission map are
mainly estimated. For example, the background light ahs been
estimated as the brightest pixel color searched using quad-tree
subdivision schemes [17], [18]. Moreover, the background
light of underwater images can also be estimated more
reliably by considering the characteristics of the underwa-
ter images such as color difference [19] or blurriness [20].
Regarding transmission estimation, Chao and Wang [10]
applied the dark channel prior (DCP) [21] such that the
intensity in the dark channel of a haze free image is almost
zero. Drews et al. [12] modified the DCP by considering
only the green and blue channels as candidates of the dark
channel. A non-local prior [22] has also been applied to
underwater image restoration [13], [14] assuming that the
pixels in a haze free image are composed of several color
clusters; however, a hazy image exhibits lines in color spaces
that connect the color clusters to the background light color.
A physical light degradation model based on the relative

distance between the target scene and camera has been used
to estimate the transmission map of an underwater image [9],
[23]. Carlevaris-Bianco et al. [9] estimated the transmission
based on the maximum intensity of the red channel prior
such that the absorption rate of the red color was greater than
that of the green and blue colors. Peng et al. [23] proposed
the blurriness prior for transmission estimation such that the
captured scene becomes more blurred at farther distances.

Conversely, attempts have been made to reliably estimate
the attenuation coefficients of the UIFM for underwater
image restoration. Although the attenuation coefficients in
the image formation model for ordinary hazy images cap-
tured in the air are the same across the color channels,
those for underwater images are different based on the color
channels [24]. Chiang and Chen [11] estimated the coef-
ficients for the three color channels using the statistical
ocean characteristics categorized in [25]. Zhao et al. [26]
derived the ratios of the attenuation coefficients by assuming
that the ambient light is constant across the color chan-
nels. Berman et al. [13] obtained the sets of the coefficient
ratios measured for 10 water types, and selected the best
set of the ratios satisfying the Gray World Assumption [27].
Akkaynak and Treibitz [28] estimated different attenuation
coefficients associated with the DTC and BSC using the fact
that the attenuation coefficients for the DTC and BSC are
different from each other [29], [30].

Recently, deep-learning-based underwater image enhance-
ment methods have been proposed [31]–[34]. For training
deep networks, it is typically challenging to obtain the test
datasets of the pairs of the real underwater image and its
corresponding ground truth restored image. To obtain training
images, Li et al. [31] synthesized underwater images from
clear images, and Li et al. [32] employed a generative adver-
sarial network [35] to generate realistic underwater images.
However, owing to the lack of sufficient reality in the training
datasets, the performance of deep-learning-based underwater
image enhancement methods is limited [34].

The majority of the existing underwater image restoration
methods estimate the related parameters based on simplified
imaging models and/or assumptions, and thus frequently fail
to remove the blur and haze artifacts completely. In this
article, we propose a novel underwater image restoration
algorithm based on the complete UIFM. We first estimate the
transmission maps based on the observation that the scene
distance is inversely proportional to the geodesic color dis-
tance from the background light. Although the majority of
existing methods consider the DTC and BSC only, we regard
an underwater image as the superposition of the backscat-
tering layer of the BSC and scene layers of the DTC and
FSC. Using the estimated transmission map, we decompose
an input underwater image into the backscattering layer and
scene layer. We also approximate the point spread func-
tion (PSF) associated with the FSC to extract the DTC from
the scene layer. Then, we restore the scene radiancewith addi-
tional white balancing using the optimal parameters of the
UIFM determined by minimizing a cost function composed
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of the sharpness, information loss, and dark background
prior (DBP). The experimental results demonstrate that the
proposed algorithm estimates the transmission maps more
faithfully and restores the original scene radiance more reli-
ably compared with existing state-of-the-art methods.

The remainder of this article is organized as follows.
Section II describes the complete UIFM. Section III explains
the proposed algorithm and Section IV presents the experi-
mental results. Section V concludes the paper.

II. UNDERWATER IMAGE FORMATION MODEL
The complete UIFM is composed of three components,
the DTC, FSC, and BSC [6].

Ic(x) = Jc(x)tc(x)+ Jc(x)tc(x) ∗ kc(x)+ Bc(1− tc(x)) (1)

where Ic(x) and Jc(x) denote the intensities of the c ∈ {red,
green, blue} color channel at the pixel location x in an input
underwater image and scene radiance image, respectively.
The term Jc(x)tc(x) is the DTC that represents the attenuated
scene radiance by transmission

tc(x) = e−βcd(x) (2)

where d(x) denotes the distance at x between a target scene
and camera, and βc denotes the attenuation coefficient of the
c color channel. The term Jc(x)tc(x) ∗ kc(x) in (1) is the FSC
where kc(x) denotes the PSF defined at x given by

kc(x) = (e−Rcd(x) − e−βcd(x))F−1{e−hcd(x)ω}. (3)

Rc and hc are the empirical coefficients of the c color channel
related to the blur artifact, such that |Rc| < |βc|.F−1 denotes
the inverse Fourier transform and ω is the radial frequency.
The term Bc(1 − tc(x)) in (1) corresponds to the BSC where
Bc is the background light of the c color channel, which is
the accumulated BSC from infinitely far to the camera. Note
that Bc is highly correlated with the ambient light [26] which
depends on the water depth of the target scene. In this article,
we assume that βc and Bc are constant over the entire image
for each color channel.

III. PROPOSED ALGORITHM
For a given input underwater image, we estimate the trans-
mission map using the geodesic color distance from the back-
ground light. Then, we decompose the input image into the
backscattering and scene layers based on the UIFM, where
the DTC is extracted from the scene layer. We restore the
scene radiance from the DTC and remove the color cast. The
optimal parameters of the UIFM are determined by minimiz-
ing a cost function composed of the sharpness, information
loss, and DBP.

A. TRANSMISSION ESTIMATION
Note that according to (1), Ic(x) ≈ Jc(x) when tc(x)
approaches one; simultaneously, the scene distance d(x)
approaches zero. This means that the original scene radiance
for objects close to the camera is highly likely to be con-
veyed intact without severe haze. Conversely, as the scene

FIGURE 2. Relationship between the scene distance and the geodesic
color distance from the background light. (a) An input image. (b) The
scene distance map where the invalid pixels are colored in blue. (c) The
geodesic color distance map where the superpixels in the far background
region are colored in red. (d) The plot of the geodesic color distance and
the corresponding scene distance with a fitted curve in red.

distance becomes greater, it is mainly the background light
that attenuates the scene radiance and eventually Ic(x) ≈ Bc
when tc(x) ≈ 0 at the infinitely far regions. We estimate the
transmission value at each pixel by deriving the relationship
between the scene distance and contribution of the back-
ground light to the intensity of the input underwater image.

Fig. 2(a) displays an underwater image and Fig. 2(b)
indicates its scene distance map provided in [36], where
pixels with invalid distance values are colored in blue.
We first estimate the background light B = [Br ,Bg,Bb]
using [20]. We partition the input image into superpixels
using SLIC [37], and extract the far background regions as the
set �, representing top 10% superpixels with average colors
most similar to the background light. When the ratios are
excessively small, less than 10%,� cannot represent the char-
acteristics of the entire far background region. Conversely,
with considerably greater ratios than 10%, certain superpixels
of the foreground scene structures can be included in �,
which can cause an incorrect estimation of the far background
regions. Then, we construct a graph, where the nodes corre-
spond to the superpixels and edges are defined between all
the pairs of adjacent superpixels. We assign a weight to each
edge as the Euclidean distance of the colors between the two
connected superpixels, where the color of the superpixel is
computed as the average of the pixel colors in the superpixel.
We define the geodesic color distance G(p) of each superpixel
p from the background light as

G(p) =
∑

q∈� z(p,q)

|�|
(4)

where z(p,q) is the geodesic distance between two super-
pixels of p and q along the shortest path of the connected
superpixels, which yields the minimum value of the sum
of edge weights among all the possible paths from q to p.
Fig. 2(c) displays the geodesic color distance map of the input
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image in Fig. 2(a), where the superpixels in � are depicted
in red.

As observed in Figs. 2(b) and (c), the scene distance is
inversely proportional to the geodesic color distance from the
background light. Fig. 2(d) plots the distribution of the pairs
of G(p) and d(p), where d(p) is the average scene distance of
the pixels in p. We notice that the data points are distributed
along a red curve. Fig. 3 empirically plots the pairs of G(p)
and d(p) for more images provided in [28], [36] capturing
diverse underwater scene structures. We can also observe
similar results of the inverse relationship between G(p) and
d(p), which is modeled by

d(p) =
τ

(G(p))δ
(5)

where τ and δ are positive parameters. Fig. 3(b) displays the
best fitted curves on the data distributions in red obtained by
determining the optimal parameters of τ and δ in (5) using
RANSAC [38].

FIGURE 3. Empirically observed inverse relationship between the
geodesic color distance and the scene distance. (a) Real underwater
images. (b) The plots of the geodesic color distance and the
corresponding scene distance with fitted curves.

Based on this observation, we estimate the transmission
for each superpixel from the geodesic color distance from the
background light. We assume that the scene distances at the
pixels in a certain superpixel are identical to their average

distance. At each superpixel p, we first obtain an initial trans-
mission in the blue channel as a reference, by substituting (5)
into (2), given by

t̂b(p) = e−βbd(p) = (α)1/(G(p))
δ

(6)

where α = e−βbτ . Then we compute the transmission in
the other color channels using the ratios of the attenuation
coefficients [13], [26] as

t̂c(p) = e−βcd(p) = e−γcβbd(p) = t̂b(p)γc (7)

where γc =
βc
βb
. Figs. 4(b) and (c) display the geodesic color

distance map and initial transmission map in the blue channel
for a given image in Fig. 4(a). We can observe that the back-
ground, which is far from the camera, has low transmission
values, whereas the close scene structures to the camera such
as the floor and rocks are assigned relatively high transmis-
sion values. However, the initial transmission map exhibits
discontinuities at the boundaries of the superpixels. To obtain
refined transmission maps while preserving the edges of the
scene structures, we apply guided image filtering [39] on
the three initial transmission maps using each channel of the
input image as a guide image. The resulting refined transmis-
sion maps in the red, green, and blue channels are presented
in Figs. 4(d), (e), and (f), respectively. The blocky artifacts in
the initial transmission map are successfully alleviated in the
refined transmission map.

FIGURE 4. Transmission map estimation. (a) An input image. (b) The
geodesic color distance map with respect to the background light. (c) The
initial transmission map in the blue channel. The refined transmission
maps in the (d) red, (e) green, and (f) blue channels, respectively.

Note that we have an arbitrary input underwater image
without knowing its scene distance map. Therefore, the opti-
mal parameters of α, δ, and γ should be estimated to com-
pute the transmission from the geodesic color distance. The
parameter estimation will be explained in Section III-C.

B. SCENE RADIANCE RESTORATION
Based on the UIFM in (1), we interpret an underwater image
as the superposition of the scene layer

Sc(x) = Jc(x)tc(x)+ Jc(x)tc(x) ∗ kc(x) (8)

associated with the scene radiance Jc(x), and the backscatter-
ing layer

Vc(x) = Bc(1− tc(x)) (9)
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which covers the scene radiance. We first estimate the
backscattering layer using the background light and trans-
mission estimated in Section III-A, which is then subtracted
from the input underwater image leaving the scene layer.
Fig. 5 displays examples of layer decomposition. We can
observe that the proposed algorithm can bleach the input
underwater images leaving the scene layers by subtracting
the backscattering layers effectively regardless of diverse
background lights with distorted colors.

FIGURE 5. The layer decomposition. (a) Input images. (b) The
decomposed scene layers and (c) the backscattering layers.

To obtain the scene radiance, we estimate the PSF kc(x)
in (3), and further decompose the scene layer of (8) into the
DTC and FSC. Note that it is typically difficult to estimate
the weight term of (e−Rcd(x) − e−βcd(x)) in (3) completely,
and thus we regard it as constant for simplicity [7], [40] and
suggest estimating kc(x) using the transmission. We rewrite
kc(x) in terms of tc(x) as

kc(x) = (tc(x)ηc − tc(x))F−1{tc(x)νcω}, (10)

where ηc =
Rc
βc
∈ (0, 1) because |Rc| < |βc|, and νc =

hc
βc
> 0. Large values of ηc are associated with clean water

and small values of ηc with turbid water. Note that when
ηc = 1, the FSC can be ignored. as in the majority of the
existing methods based on sUIFM [8]–[14]. To simplify the
problem, we assume that the transmission is constant in each
color channel, and that ηc and νc are constant across the color
channels. Then, we obtain an approximated PSF k̃c(x) given
by

k̃c(x) = ((t̄c)η − t̄c)F−1{(t̄c)νω} (11)

where t̄c denotes the average transmission value in c color
channel.

To extract the DTC from the scene layer, we use k̃c(x) to (8)
and take the Fourier transform and inverse Fourier transform
in order. Then, we have

Dc(x)=Jc(x)tc(x)=F−1
{

F{Sc(x)}
1+

(
(t̄c)η − t̄c

)
·(t̄c)νω

}
. (12)

We estimate the scene radiance as

Ĵc(x) =
Dc(x)

max(tc(x), εc)
(13)

where εc is a parameter to avoid division by zero. We set
εc = (εb)γc following the relationship in (7) and εb =
(ε)γm . We empirically determine ε = 0.1 and γm =

min(γ−1r , γ−1g , 1), because excessively low values of ε cause
saturation, whereas overly high values of ε yield limited con-
trast enhancement. Fig. 6(b) displays examples of the clipped
restored scene radiance images, Jc(x) = max(Ĵc(x), 0); how-
ever, we continue to have a certain amount of global color cast
due to the color distortion in the ambient light.We remove this
color cast from Jc based on the Gray World Assumption [27]
and estimate the white balanced scene radiance Oc as

Oc(x) =
Ā
Ac
Jc(x) (14)

where Ac denotes the average of Jc(x) in an image and Ā
denotes the average of Ac over the three color channels.
As indicated in Fig. 6(c), the greater part of the global
color cast is effectively removed in the white balanced scene
radiance images.

FIGURE 6. White balancing. (a) Input images. (b) The initially estimated
scene radiance images. (c) The white balanced scene radiance images.

C. PARAMETER ESTIMATION
To obtain the transmission and restore the scene radiance,
we require six parameters, α and δ in (6), γr and γg in (7),
and η and ν in (11). Let us denote the set of the parameters
as 2 = [α, δ, γr , γg, η, ν]. The optimal parameters can
vary according to the capturing environments of underwater
images, e.g., the turbidity or water type. In this Section,
we estimate the optimal set of parameters, 2∗, to restore the
scene radiance image with a minimum quality degradation
including haze, blur, color distortion, and low contrast.

1) COST FUNCTION
We formulate a cost function to quantify the quality degrada-
tion of the restored scene radiance, given by

E(2) = −Esharp(2)+ λ1 Eloss(2)+ λ2 EDBP(2). (15)

The first term measures the average sharpness of the image,
which is defined as

Esharp(2) =
1
3N

∑
c

∑
x

‖∇ Ĵ2c (x)‖2, (16)
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where N is the number of pixels in the image and ∇ is the
gradient operator. Ĵ2c (x) is the intensity of the scene radiance
at x in the c color channel when restored with the parameter
set 2. Note that the original scene radiance is attenuated
and blurred while traveling to the camera. Moreover, it loses
information owing to the haze caused by the backscattering
of the light. Therefore, it would be beneficial to increase
the sharpness Esharp(2) of the restored image. In addition,
the restored scene radiance values could fall beyond the valid
range of [0, 1] by (13), which could cause the information
loss. Hence, we also employ an information loss cost

Eloss(2) =
1
3N

∑
c

∑
x

∣∣∣min
(
Ĵ2c (x), 0

)
+ max

(
Ĵ2c (x)− 1, 0

)∣∣∣ . (17)

On the other hand, the BSC can also increase the sharp-
ness of an image, and therefore, the restored scene radiance
obtained by combining (16) and (17) frequently retains the
BSC, especially in the far background regions. To bleach the
BSC reliably from the scene radiance image, we, in addition,
propose a DBP: the scene radiance transmitted from infinitely
far is completely absorbed by the water, and therefore, in an
underwater image the far background region contains only
the BSC and should be dark in the restored scene radiance.
Specifically, we formulate this prior using the geodesic color
distance from the background light because a large scene dis-
tance d(p) implies small geodesic color distance G(p) accord-
ing to (5) and low scene radiance intensity Jc(p) accordingly.
In practice, we define a weight w(x) as

w(x) = e−
(G(p))2
κ , x ∈ p, (18)

where κ controls the effective area of the far background
region; a higher value of κ is associated with a larger back-
ground area and vice versa. We empirically set κ = 5×10−3.
Then, we employ the cost function for DBP given by

EDBP(2) =

∑
x w(x)J̄

2(x)∑
x w(x)

, (19)

where J̄2(x) is the intensity of the restored scene radiance
averaged over the three color channels, J̄2(x) = 1

3

∑
c Ĵ

2
c (x).

Note that the behavior of (19) encourages the far background
regions to have dark intensities, whereas the close scene
structures preserve their scene radiance information. Finally,
we minimize the total cost function in (15) and obtain reliable
transmission maps and faithful scene radiance images with
less of the BSC in the far background regions accordingly.
In this work, we empirically set λ1 = 2 and λ2 = 0.1
in (15). Higher values of λ1 limit the performance of the
contrast enhancement, whereas lower values of λ1 tend to
cause saturation due to over-enhanced contrast. Moreover,
as we increase λ2, the estimated transmission values decrease
in the far background regions causing color distortion and
saturation. Conversely, as indicated in the ablation study,
excessively low values of λ2 retain the BSC in the far back-
ground regions.

2) OPTIMIZATION
We first constrain the valid ranges of the parameters in 2 =
[α, δ, γr , γg, η, ν]. Note that the parameters in2 are all non-
negative. We empirically observed that δ < 1 for the majority
of the test images in [36]. We consider the measured values
of γr and γg for Jerlov water types [13], [25] to set their valid
ranges, and ignore water types with γ−1r > 1, which rarely
occur. Consequently, the valid ranges of the parameters are
set as α ∈ [0.1, 0.9], δ ∈ [0.1, 1], γ−1r ∈ [0.1, 1], γ−1g ∈

[0.4, 1.4], η ∈ [0, 1], and ν ∈ [0, 1].
Unfortunately, it is difficult to find the optimal solution to

globally minimize the cost function E(2) in (15) owing to the
high dimension of 2 ∈ R6. Instead, we iteratively optimize
partial sets of the parameters to search for the local minima of
E(2) by employing the Nelder–Mead (NM) simplex search
algorithm [41] and alternative optimization [42]. We first
initialize 2 by setting each parameter θ ∈ 2 as a randomly
selected value fromNθ (µ, σ 2), the truncated normal distribu-
tion with mean µ and standard deviation σ , where the range
ofNθ (µ, σ 2) is same as the aforementioned valid range of θ .
We set µ = 0.9 for γ−1g , µ = 0.5 for the others, and σ = 0.1
for all the parameters.

Then, we partition 2 into three groups, θ1 = [α, δ] asso-
ciated with the transmission estimation in the blue channel,
θ2 = [γr , γg] associated with the transmission estimation in
the red and green channels, and θ3 = [η, ν] associated with
the estimation of the PSFs. The three groups of parameters
are alternatively optimized. At the s-th iteration, we find the
optimal solution for θ s1 while fixing θ s−12 and θ s−13 . Then,
we find the optimal solution for θ s2 while fixing θ s1 and θ s−13 .
Finally, we find the optimal solution for θ s3 while fixing θ s1
and θ s2. This process is repeated until2

s
≈ 2s−1. The overall

process is summarized in Algorithm 1. We set ζ = 0.1 and
smax = 10.

Algorithm 1 Iterative Parameter Estimation

1: Initialization of 20

2: s = 1
3: while s < smax do
4: θ s1← argminθ E([θ , θ

s−1
2 , θ s−13 ])

5: θ s2← argminθ E([θ
s
1, θ , θ

s−1
3 ])

6: θ s3← argminθ E([θ
s
1, θ

s
2, θ ])

7: 2s
← [θ s1, θ

s
2, θ

s
3]

8: if ‖2s
−2s−1

‖2 < ζ then
9: 2∗← 2s

10: break
11: else
12: s← s+ 1

Specifically, to solve each step of lines 4–6 inAlgorithm 1,
we employ the NM algorithm three times and use the best
solution as θ s in terms of E(2) in (15). The NM algorithm
requires three initial points to construct an initial simplex as
θ ∈ R2. We suggest reusing θ s−1 as an initial point to find θ s

to guarantee the convergence of the proposed algorithm, and
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randomly select the other points from Nθ (µ, σ 2). Moreover,
if any side of the initial simplex is less than 0.1, new points
are randomly selected again to avoid an overly small simplex.

Fig. 7 displays the restored white balanced scene radiance
images with iteratively estimated sets of parameters. We can
observe that the quality degradation factors of the underwater
images, such as blur, haze, and color distortion, are alleviated
gradually as the parameter estimation is repeated.

FIGURE 7. Results of iterative parameter estimation. (a) An input
underwater image and (b∼f) the white balanced scene radiance images
restored by using the iteratively estimated sets of parameters.

IV. EXPERIMENTAL RESULTS
We defined DB 1 as the set of underwater images with
corresponding scene distance maps by collecting 56 images
from [36] and 91 images from [28]. We also employed
DB 2, a set of ordinary underwater images without scene
distance maps, 80 images from [43] and 10 images from [44].
We excluded the images that did not contain far background
regions. We applied the preprocessing scheme in [13] to the
images in DB 1, which were then downsampled to 512×342
images to reduce the computational complexity.

A. EVALUATION OF THE PROPOSED ALGORITHM
We evaluated the performance of the proposed algorithm
in Fig. 8, where the top four rows are the images from
DB 1 [28], [36] and the others are from DB 2 [43], [44].
As indicated in Fig. 8(a), the input underwater images exhib-
ited different quality degradations caused by the water, such
as haze, blur, color distortion, and low contrast. The pro-
posed algorithm reliably estimated the transmission maps
in the blue channel in Fig. 8(b), where the far background
regions were assigned low transmission values, whereas the
near scene structures had high values. It is worth noting that
although we derived the formula in (5) from the images in
DB 1, we could also obtain reliable transmission maps of
the images in DB 2. The proposed algorithm decomposed the
input images into the backscattering and scene layers, as indi-
cated in Figs. 8(c) and (d), respectively, where we can observe
that the overall effect of the background light was success-
fully removed in the scene layers. In particular, the proposed
algorithm darkened the far background regions, which have
virtually no scene radiance information, by removing the

BSC completely with the assistance of accurate transmission
maps. Then, from the scene layers, we restored the scene
radiance images in Fig. 8(e), where we can observe that the
details of the underwater objects and scenes such as the rocks
and coral reefs are clearly visible by successfully removing
the haze and blur and improving the image contrast. Finally,
the color cast was alleviated by white balancing as indicated
in Fig. 8(f). The experimental results demonstrate that the
proposed algorithm can remove the quality degradation from
underwater images and restore the original scene radiance.

We also measured the running time of the proposed algo-
rithm. We implemented and executed the proposed algorithm
in MATLAB on an Intel i7-9700F @ 3.00 GHz CPU. The
running time depended on the number of iterations required to
estimate the optimal parameters in Algorithm 1; the average
iteration numbers were 3.18 for DB 1 and 3.26 for DB 2,
meaning that 22 was selected as optimal in the majority
of cases. We can observe that the average running time for
DB 1 was 50.9 seconds, where the images in DB 1 were
downsampled to have a spatial resolution of 512× 342. The
images in DB 2 had diverse resolutions from 404 × 303 to
750× 1000, and yielded a running time of 147.9 seconds on
average.

B. ABLATION STUDY
We also tested the effect of the FSC and DBP in the proposed
algorithm.

1) FSC
Whereas the majority of the conventional methods [10], [11],
[13], [19], [20] are based on the sUIFM, which ignores the
FSC in the UIFM, the proposed algorithm considers the FSC
in (1). Fig. 9 compares the results of the proposed algorithm
with and without FSC. In practice, we set η = 1 and skipped
line 5 in Algorithm 1 to ignore the FSC. In Fig. 9(b), we can
observe that the restoration results without FSC were fre-
quently saturated, e.g., the first scene, or color distorted, e.g.,
the second scene; however, considering the FSC yielded the
restored results with less saturation owing to the denominator
in (12) being greater than one, and improved the color cor-
rection with more reliable transmission values, as indicated
in Fig. 9(c). Moreover, the FSC further improved the perfor-
mance of the haze and blur removal, e.g., the rock and floor
remain hazy and blurred in Fig. 9(b), which are sharpened
in Fig. 9(c). Consequently, the underwater image restoration
based on the complete UIFM provided more faithful and
detailed scene radiance compared with that of the sUIFM.

2) DBP
Fig. 10 compares the restoration results of the proposed
algorithm with and without DBP. We set λ2 = 0 in the cost
function in (15) to ignore the effect of DBP. When DBP was
not considered, an amount of blue color remained in the BSC
to increase the image contrast in the background regions via
Esharp in (15). In such cases, the white balancing relatively
amplified the red and green colors while suppressing the blue
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FIGURE 8. Results of the proposed algorithm. (a) Input underwater images. (b) The estimated transmission maps in the blue channel. (c) The
backscattering layers and (d) the scene layers. (e) The restored scene radiance and (f) the white balanced scene radiance.

color on average, and hence caused a yellowish color distor-
tion, especially on the close scene structures, e.g., the rocks
and deck of the sunken ship as indicated in Fig. 10(b).
Conversely, DBP encouraged a reliable estimation of the
transmission maps and assigned low transmission values to
the far background regions. Therefore, the scene radiance
was restored more faithfully by removing the bluish colors
from the background regions more completely, as indicated
in Fig. 10(c).

C. COMPARISON WITH CONVENTIONAL METHODS
We compared the performance of the proposed algorithm
with six state-of-the-art methods [12], [13], [19], [20], [31],
[40]. We generated the results using the source codes pro-
vided by the authors with the default parameters.

1) PERFORMANCE OF TRANSMISSION ESTIMATION
We first compared the estimated transmission maps of the
proposed algorithm with those of the three state-of-the-
art methods with available transmission maps: UDCP [12],
IBLA [20], and NLP [13]. Fig. 11 displays the estimated
transmission maps with the provided scene distance maps.
From top to bottom, each test image was selected from
the ‘Nachsholim’, ‘Katzaa’, ‘Satil’, ‘Michmoret’, and ‘D5’
categories of DB 1 [28], [36]. Because the assumption of
DCP is not valid for the images in DB 1 [28], [36], UDCP
failed to estimate reliable transmission maps in the major-
ity of the cases. For example, the floors of the images in
the ‘Nachsholim’ and ‘Michmoret’ categories were assigned
lower transmission values than the rocks or the background
owing to brighter colors, as shown in Fig. 11(c). IBLA uses
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FIGURE 9. Effect of FSC. (a) Input images. The restoration results of the
proposed algorithm (b) without FSC and (c) with FSC, respectively.

FIGURE 10. Effect of DBP. (a) Input images. The restoration results of the
proposed algorithm (b) without DBP and (c) with DBP, respectively.

the blurriness to estimate the transmission, and assigned sim-
ilar transmission values to the homogeneous regions of the
floor and background as indicated in the first and fourth rows
in Fig. 11(d). Conversely, NLP, which uses non-local prior,

provided relatively faithful transmission maps where the
background regions had lower values than the close objects,
e.g., in the first row in Fig. 11(e). However, it assigned high
transmission values to the background as indicated in the sec-
ond and fourth rows in Fig. 11(e), and even assigned higher
transmission values to the far rocks than the close floor, which
is not true, as indicated in the last row in Fig. 11(e). Compared
with the existing methods, the proposed algorithm estimated
reliable transmission maps in the majority of cases, as shown
in Fig. 11(f), where the close objects were assigned higher
transmission values than the far background regions. More-
over, the far background regions had virtually zero trans-
mission values, except for the image in the ‘Satil’ category.
However, note that all the existing methods also failed to
estimate the correct transmission values for this challenging
image with non-homogeneous background lights as indicated
in the third row in Fig. 11.

Berman et al. [36] proposed a metric to measure the per-
formance of the transmission estimation using the Pearson
correlation coefficient ρ ∈ [−1, 1] between the ground truth
scene distance map and negative logarithm of the estimated
transmission map. Table 1 quantitatively evaluates the per-
formance of the transmission estimation in terms of the cor-
relation coefficients averaged over all images in the images
of DB 1. UDCP and IBLA yielded relatively low values
of ρ. NLP indicated a higher score than UDCP and IBLA.
However, the proposed algorithm achieved the highest score.

TABLE 1. The average Pearson correlation coefficient ρ evaluated on
DB 1. The higher ρ implies that the negative logarithm of the estimated
transmission map is highly correlated with the scene distance map. The
best score is colored in red.

2) PERFORMANCE OF SCENE RADIANCE RESTORATION
In Fig. 12, we qualitatively compare the underwater image
restoration results of the proposed algorithm with those of
the seven state-of-the-art methods: UDCP [12], SDCP [40],
MIL [19], HP [19], IBLA [20], NLP [13], and WCNN [31].
Note that [19] first restores the scene radiance based on the
sUIFM with a minimum information loss, and then applies
enhancement methods to the restored scene radiance. Thus,
we compared both of the scene radiance restoration method
as MIL, and the histogram prior-based enhancement method
as HP. We also compared the results of NLP without apply-
ing a standard image processing pipeline. Because there are
eight different sets of pre-trained parameters forWCNN [31],
we generated all the results and selected the most visually
pleasing result for each test image. UDCP and SDCP employ
modified versions of DCP [21], which is not valid for typ-
ical underwater images, and thus have limited performance
ability for removing the BSC in the background regions as
indicated in Figs. 12(b) and (c). Moreover, they frequently
provide saturated results, e.g., the floor in the first scene
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FIGURE 11. Comparison of the estimated transmission maps on DB 1 [28], [36]. (a) Input images. (b) The scene distance maps provided in [28], [36]
where the pixels with invalid distances are colored in blue. The estimated transmission maps in the blue channel obtained by using (c) UDCP [12],
(d) IBLA [20], (e) NLP [13], and (f) the proposed algorithm, respectively.

and fish in the fifth scene. SDCP restored more sharpened
results by considering the FSC, as indicated in the first scene
in Fig. 12(c). MIL and HP retained a substantial amount
of haze and blur in the resulting images, e.g., the floor
in the first scene and rock in the last scene as indicated
in Figs. 12(d) and (e). As shown in Fig. 12(f), IBLA also
demonstrated limited performance in the complete removal
of haze and the BSC, and furthermore, frequently failed to
correct the color distortions owing to an incorrect estimation
of the parameters γr and γg. NLP restores the scene radiance
by selecting the best parameters of γr and γg among the
measured values for 10 Jerlov water types in terms of the
Gray World Assumption [27], and therefore, demonstrated
acceptable color correction performance, such as the first two
scenes in Fig. 12(g). However, it is possible that 10 mea-
sured values are not optimal for diverse underwater images
as indicated in the third and fourth scenes. Moreover, NLP
indicated limited performance of haze removal and contrast
enhancement. WCNN uses synthetic underwater images for
network training. Owing to the domain gap between the real
underwater images and synthesized images, the results of
WCNN remained hazy and blurry as shown in Fig. 12(h).
Conversely, the proposed algorithm estimates reliable trans-
mission maps using the geodesic color distance from the
background light, and hence removed the BSC in the far
background regions well as indicated in Fig. 12(i). Moreover,
the proposed algorithm restores the scene radiance based

TABLE 2. Evaluation of the quantitative quality of the restored
underwater images in terms of UCIQE [45] and UIQM [46]. The best and
the second best scores are colored in red and blue, respectively.

on the UIFM considering the FSC, and thus removed the
haze and blur effectively and restored more sharpened scene
structures, e.g., the second and third scenes in Fig. 12(i). The
proposed algorithm finds the optimal values of γr and γg by
minimizing the cost function of (15), and alleviates the color
distortions well. In particular, as compared in the third scene
of Fig. 12, UDCP, SDCP, and MIL failed to remove the color
cast and thus resulted in bluish color charts in the restored
images. Moreover, the results of HP were overly saturated,
and the results of IBLA and NLP were actually greenish
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FIGURE 12. Qualitative comparison of the restored underwater images. The top four scenes are from DB 1 [28], [36], the next two scenes are from
DB 2 [43]. (a) Input images. The restored scene radiance images obtained by using (b) UDCP [12], (c) SDCP [40], (d) MIL [19], (e) HP [19], (f) IBLA [20],
(g) NLP [13], (h) WCNN [31], and (i) the proposed algorithm, respectively.

owing to the incorrect estimation of γ ’s. Conversely, the pro-
posed algorithm successfully reconstructed the color chart to
become white and sharpened. In addition, as shown in the
fourth scene of Fig. 12, the restored images of HP and IBLA
suffered from saturation and color distortion, respectively,
and those of the other existing methods continued to exhibit
haze artifacts. The proposed algorithm removed the color cast
successfully and restored clear scene structures faithfully.

Next, we evaluated the quantitative performance of the
proposed algorithm in terms of two measures: underwater
color image quality evaluation (UCIQE) [45] and underwa-
ter image quality measure (UIQM) [46]. Table 2 compares

the scores of the two measures according to the two test
datasets. A higher value implies a superior image quality. For
WCNN, we generated eight results for each input image and
selected the best score. Note that these are non-reference-
based metrics designed to measure the quality in terms of
the colorfulness, sharpness, and contrast. Therefore, it is
possible they do not correctly evaluate the performance of
the image restoration compared to the ground truth. Based on
Table 2, HP achieved the best scores in terms of both UCIQE
and UIQM, as HP is mainly designed to increase the image
contrast. However, as observed in the qualitative results of
Fig. 12, HP frequently resulted in overly saturated results due
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to over-enhanced image contrast. Despite the inadequacy of
the quantitative measures in this work, the proposed algo-
rithm yielded the second best UCIQE and UIQM scores for
DB 1, and provided comparably high scores for DB 2.

V. CONCLUSION
In this article, we proposed a novel underwater image restora-
tion algorithm based on the complete UIFM. We estimated
the transmission with the observation that the scene distance
is inversely proportional to the geodesic color distance from
the background light. We decomposed an input underwater
image into scene and backscattering layers, and restored the
scene radiance with the optimal parameters of the UIFM,
which were obtained by minimizing a cost function reflecting
the sharpness, information loss, and DBP. The experimental
results demonstrated that the proposed algorithm estimated
the transmissionmapmore accurately, and therefore achieved
considerably superior scene radiance restoration performance
compared with the existing state-of-the-art methods.
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