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ABSTRACT This article presents an approach for cognitive radar to track the target state despite unknown
statistics or sudden changes in noise exposed to uncertain environments. Given the prior knowledge or
accurate estimation of the noise, cognitive radar can adaptively adjust the waveform in the transmitter by
perceiving the environment. However, the measurement noise usually contains a priori unknown parameters
which are difficult to be estimated, or the process noise without empirical model might be improperly
configured. Besides, they may change abruptly or time-varying in practice. These issues are prone to
occur in cognitive radar, leading to performance decline or failure in tracking ultimately. To alleviate this
problem, a robust cognitive radar tracking method based on adaptive unscented Kalman filter (AUKF)
is proposed in this article. Specifically, UKF is used to derive the cognitive mathematical model and
estimate the states in nonlinear systems. Moreover, a robust adaptive mechanism is designed in the cognitive
framework, which is independent of prior information. When the mismatch between the noise in the model
and the noise in the environment emerges, the noise covariance can be corrected adaptively. To verify the
efficiency of the scheme, maneuvering target tracking experiments are carried out in three uncertain noise
scenarios. Simulation results show that the scheme outperforms the existing adaptive UKF and cognitive
radar algorithms in terms of intelligence and robustness.

INDEX TERMS Cognitive radar, adaptive filtering, robust estimation, target tracking, uncertain noise.

I. INTRODUCTION
Since the concept of cognitive radar (CR) proposed in [1],
concepts, frameworks, algorithms, and even experimental
equipment have shown a process of gradual development.
A knowledge-aided fully adaptive architecture was proposed
in [2]. Thereafter, the first hardware device experiment was
carried out, using the cognitive sensor/processor system
framework [3], [4]. Many other existing works focused on
waveform design and other technologies [5]–[7]. In terms of
tracking methods, the Bayesian framework is considered to
be the basic component of cognitive radar. In the beginning,
the Kalman filter (KF) is used for target tracking in cognitive
radar with a linear Gaussian environment [8]. In [3], [9],
it is used in the framework design of cognitive radar, mean-
while, a cognitive radar engineering workspace is built to

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

present the first experimental results, and the KF is used as
the tracking filter again [4]. However, most of the tracking
problems to be solved in radar are nonlinear or even non-
Gaussian. For example, the multi-state transition of drone
from hovering to maneuvering is often nonlinear, and the
measurement noise is mostly flicker noise or heavy-tailed
noise [10]. Cubature Kalman filter (CKF) is first used to
deal with nonlinear problems in cognitive radar in [8]. Few
works are taken the particle filter (PF) into account. A parallel
structure of extended Kalman filter (EKF) and PF has been
adopted to deal with the nonlinear state estimation, but it is
still a standard KF in essence if the EKF is used in waveform
selection [11]. It is only applicable for the estimation of weak
nonlinear state because the state distribution is approximated
by a Gaussian random variable (GRV), which is then prop-
agated analytically through the first-order linearization of
the nonlinear system. This will introduce large errors in the
true posterior mean and covariance of the transformed GRV,
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which may lead to suboptimal performance and sometimes
divergence of the filter [Chap. 32 in 12].

It can be seen that KF or its variants are still the first
choice for cognitive radar under the Bayesian framework, but
few works are concerning about the unscented Kalman filter
(UKF), used as a tracking method in cognitive radar. In fact,
UKF can be used in severe nonlinear state and Gaussian
noise [13]. It has a higher order of accuracy in the noise
statistics estimation than the EKF, while would not add much
calculation consumption compared to PF [14]. UKF and
other traditional nonlinear estimation methods can estimate
the state of nonlinear systems, while the noise parameter
is assumed as a priori known, or it is configured properly.
Otherwise, the filter may fail and the tracking results become
inaccurate [15].

On the other hand, if the uncertain environment results
in improper configuration, the parameters cannot be adap-
tive to the change of the environment. When the noise
mismatch emerging in the tracking problem, adaptive
KF (AKF), adaptive UKF (AUKF) and some other adaptive
covariance-matching algorithms were developed to estimate
the statistical properties of the system noise and solve the
problem in an uncertain noise scenario [16], such as the
methods based on multiple model [17], [18], the methods
based on innovation or residual, and the windowing meth-
ods [19]–[21]. Moreover, an adaptive UKF extended the win-
dowing concept from the linear KF to the nonlinear UKF [22].
In another novel adaptive UKF algorithm, the process noise
covariance is adapted by a scaling factor [23]. However,
most of the traditional adaptive filters have a small effect on
robustness. Subsequently, the robust UKF is used to estimate
the state when both process noise and environment noise
are unknown [24]. Furthermore, a robust adaptive UKF is
proposed in [13], based on that, an online fault-detection
mechanism is adopted to reduce the computational burden
in [25]. But from the perspective of cognitive radar, these
new adaptive filtering algorithms are still ‘‘passive’’, even
though they have the robust ability to handle uncertainties.
In general, the conventional adaptive filters just solved the
tracking problem in the receiver and used the feedforward
methods to complete the optimization of the algorithm. They
did not utilize the feedback mechanism from the receiver to
the transmitter, and the interaction with the environment was
not considered.

Cognitive radar can make full use of environmental infor-
mation. It is usually assumed that the feedback of the envi-
ronment can be reflected by the waveform selection [26], but
the model selection indicates that environmental information
is also considered as a priori known. However, it is difficult
to grasp the environmental information in the measurement.
The key factor that depends on the environment, especially
the signal-to-noise ratio (SNR) estimated by pre-scanning in
actual operation is unknown [9]. Also, only the measurement
noise is known for the assumption, but not the process noise.
In practice, the noise contained in the radar echoes changes
along with the environment, so it is usually uncertain, while

few works focus on unknown or uncertain noise in or out of
cognitive radar systems.

Therefore, how to track the target in an uncertain envi-
ronment is a huge challenge for cognitive radar when the
noise is unknown or dynamic. In this article, a novel robust
cognitive tracking algorithm based on AUKF is proposed to
overcome the degradation of tracking performance, caused
by environmental uncertainty. It adds a robust mechanism to
the radar scene analyzer and Bayesian tracker to dynamically
correct the covariance matrix of the noise and expected error.
Meanwhile, it has a cognitive structure to keep the cost func-
tion of estimation minimum. The cognitive structure intelli-
gently guarantees that the robust mechanism works with the
smallest tracking error and optimal waveform parameters.
On the other side, the robust mechanism ensures the cog-
nitive optimal filter run in an accurate internal and external
environment.

The contributions of this article lie in:
1) The framework of a cognitive tracking algorithm based

on UKF is designed aiming at the scenario of state estima-
tion in a nonlinear system. Target tracking can be carried
out intelligently by using dynamic updates of environmental
information and feedback of receiver to transmitter.

2) A robust method is developed in cognitive structure to
filter the uncertain noise faced by the traditional UKF. The
possible uncertain situations include the unknown, abruptly
changed and time-varying noise, etc.

3) Feedback in the cognitive closed-loop requires the
receiver to collect and extract environmental information
accurately, but the parameter estimation may have low accu-
racy because of the uncertain noise. The cognitive radar
system supplemented by the design of the robust mechanism
is to be applied to practical applications.

The rest of this article is organized as follows. The math-
ematical model of the cognitive radar tracking framework
is introduced in Section II, which includes the dynamic
model and UKF based cognitive tracking method. Section III
is devoted to the structure of the robust cognitive track-
ing algorithm based on AUKF, which optimizes the fault-
detection mechanism and cognitive architecture respectively.
The design of processing architecture characteristics by adap-
tive and robust is completed. The mathematical model of the
proposed algorithm is also deduced in this section. Section IV
shows the simulation implementation, taking the tracking
of maneuvering cooperative turning model as an example.
The state estimation scenario of the nonlinear system is con-
structed for simulation experiments. The last section presents
the conclusion. The notations used in the remainder of this
article are listed in Table 1.

II. COGNITIVE RADAR TRACKING FRAMEWORK
The cognitive cycle begins with the transmitter’s scanning of
the environment, and the echoes reflected from the environ-
ment are received into two modules, that is the scene analyzer
and tracker. The former provides environmental information,
and continuously updates the receiver with environmental
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TABLE 1. Summary of notation.

information. The latter performs tracking and decisions mak-
ing for a potential target, and adjusts the waveform parame-
ters based on the tracking results and decisions. The sensor
continues to detect the environment, and this cycle repeats
over and over to adapt to environmental changes through
continuous interaction with the environment. The progress is
called the perception-action cycle (PAC).

A. SYSTEM MODEL
The PAC comes from the cognitive mechanism of human
beings. Taking this as a key part, a block diagram of the
cognitive radar system is proposed in [1]. In the context
of target tracking in cognitive radar, we adaptively design
parameters of waveform according to the uncertain environ-
ments and the continuous correcting estimation of the noise to
pursue robust performance and more accurate tracking. The
framework of cognitive radar system based on AUKF and
a mathematical model of the cognitive tracking method in
uncertain environments are demonstrated in Fig. 1.

The system consists of three main components:
Waveform selection. The module in the left dotted frame is

to adjust the waveform parameters, more details can be found
in the scene actuator in the rest of this section.

Signal processor. It is worth noting that in the right dotted
box we fuse the Bayesian-based tracking structure with the

FIGURE 1. Block diagram of the cognitive radar system based on AUKF.

robust mechanism to form a robust and intelligent system,
countering the uncertainty of the system and environment
adaptively, which is the difference from the existing cognitive
tracking systems.More details of the Bayesian framework are
presented in this section, more details of the robust module
can be found in section III.

Controller. It determines the actions taken by the other two
components, more details of the proposed cost function in it
can be found in section III.

The objective of the framework is to focus attention on the
nonlinear filtering in the uncertain environments, in which
the unknown or dynamic process noise or measurement noise
are taken into account. The dynamic model of a target with a
nonlinear state can be given by

xk+1 = f k (xk , vk) (1)

where xk is a nx- dimensional state vector, k denotes the
index of discrete-time, the expected covariance of process
noise E

{
vkvTk

}
= Qk .

Radar scans the scene and achieves the observable
vector zk . The measurement vector up to time tk is denoted
as Zk ≡ {zk , zk · · · zk}. The model of sensor measurement is
denoted by the nonlinear mapping of the xk

zk = h (xk ,wk) (2)

where the expected covariance of measurement noise
E
{
wkwT

k

}
= Rk .

wk and Rk are related to the parameter θ selected from the
waveform library2 in the transmitter. We add the waveform
parameter to the model of the sensor measurement, so Eq. (2)
is replaced by zk = h (xk ,wk (θ)), the expected covariance
E
{
wk (θ)wk (θ)

T }
= Rk (θ).
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In the actual scene of radar tracking, the measurement
noise is usually complicated and varying with the change of
the scene or time, and the parameters may be not constant.
Obviously, the conventional tracking methodology with fixed
parameters is susceptible to limitation, meanwhile, it is diffi-
cult to achieve the best tracking accuracy only by parameter
adaptation inside the sensor without interacting with the envi-
ronment.

B. COGNITIVE STRUCTURE
The cognitive structure includes the environment scene actu-
ator, the radar scene analyzer, and the controller. They con-
stitute the basic PAC. It needs to analyze the environment
scene, select the waveform parameter, and control the next
action taken by the receiver and transmitter. Since it involves
interaction with the environment, we can consider it as an
external adjustment.

1) COGNITIVE TRACKING METHOD BASED ON UKF
The radar scene analyzer in the cognitive radar system is com-
posed of a sequential state estimator, as an input of the radar
tracker, in which the Bayesian optimal filter is considered as
the best choice for state tracking. The process is initialized in

f + (x0) = q (x0) (3)

The predicted density is computed from the Bayes-Markov
recursion, denoted as

f − (xk) ≡ f (xk |Zk−1;2k )

=

∫
q (xk |xk−1; θk ) f + (xk−1) dxk−1 (4)

and the posterior density is computed using Bayes rule

f + (xk) ≡ f (xk |Zk ;2k )

=
f (zk |h (xk) ; θk ) f − (xk)∫
f (zk |h (xk) ; θk ) f − (xk) dxk

(5)

Kalman filter is equivalent to the optimal filter under
the linear and Gaussian assumptions. In our proposal,
UKF is chosen as the approximation of the optimal filter
under the nonlinear and Gaussian assumptions. The tracking
algorithm based on UKF in cognitive radar is introduced for
the following simulations, wherein, the standard UKF and
its interface with basic cognitive tracking scheme are given
in Appendix A.

2) COGNITIVE CONTROLLER AND SCENE ACTUATOR
We choose the duration of Gaussian pulse and the chirp rate
to form the waveform parameter vector θ = [λ, φ]. N0 is
selected to denote the spectral density of the complex noise
envelope ñ (t), SNR is known as η = 2ER/N0. The Fisher
information matrix (FIM) can be found as

J (θk−1) = ηU (θk−1) (6)

where U (θk−1) is a scaled version of the FIM. A symmetric
matrix is defined as the form

0 , diag
[
c
2
,

c
4π fc

]
(7)

where c is the speed of waveform propagation, fc is the carrier
frequency. The inverse of FIM is denoted by J−1, which
is the unbiased estimator of the Cramér-Rao lower bound
(CRLB) of the state estimation error covariance [27]. The
measurement noise covariance can be denoted by [28]

R (θk−1) = 0J−1 (θk−1)0

=
1
η
0U−1 (θk−1)0 (8)

When the linear frequency modulation (LFM) signal with
Gaussian amplitude modulation is selected as the transmit
waveform, [26] derived the covariance matrix further based
on Eq. (8). In the modern radar tracking system, the stan-
dard deviation of bearing measurement is approximately
expressed as [29]

σb =
2bw

km
√
2η

(9)

where 2bw is the 3dB beamwidth of the radar antenna, km is
the monopulse error slope. We introduce the augmented state
vector, given as

Rk (θk−1)

=

[
R (θk−1) 0

0 σ 2
b

]

=



c2λ2

2η
−
c2φλ2

2π fcη
0

−
c2φλ2

2π fcη
c2

(2π fc)2 η

(
1
2λ2
+ 2φ2λ2

)
0

0 0
22
bw

2ηk2m


(10)

The transmitting waveform scans the environment with
the parameter θk−1. The receiver estimates the state with
the previous value and current measurement and obtains the
predicted value

{
xk|k ,Pk|k

}
. By a one-step prediction of{

xk|k ,Pk|k
}
,
{
x̂k+1|k ,Pk+1|k

}
can be achieved and fed back

to the transmitter. The error covariance matrix Pk+1|k+1 of
the predicted state with θk can be calculated by Pk|k .
The cost function is defined according to the mean-square

error (MSE) of the expectation of tracking state

g (xk , θk) = Ek
[(
xk+1 − x̂k+1|k+1

)T (xk+1 − x̂k+1|k+1
)]
(11)

where x̂k+1|k+1 is the posterior predictive value of the state
estimation given waveform parameter. x̂k+1|k+1 is related to
zk+1 which is a nonlinear mapping of xk+1, so it is difficult
to solve this expectation by integration, and the cost function
is approximated as

g (xk , θk) ≈ Tr
(
Pk+1|k+1

)
(12)
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The objective function is employed in the controller and
sent to the scene actuator by the scene analyzer. The opti-
mization problem of the controller can be denoted as

θ∗k = arg min
θk∈2

[
Tr
(
Pk+1|k+1

)]
(13)

The upper and lower limits of the waveform parameters are
determined according to the transmitter specifications, and
the waveform library can be obtained as

2 = {λ ∈ [λmin : 1λ : λmax] , φ ∈ [φmin : 1φ : φmax]}

(14)

Finally, the scene actuator is to design or select the optimal
waveform in the receiver for the next transmission.

III. ROBUST COGNITIVE RADAR TRACKING ALGORITHM
BASED ON AUKF
The optimal waveform is selected according to Eq. (13),
namely, the action taken by the transmitter is considered to
be the best response to the environment perceived by the
receiver.

The cognitive tracking algorithm based on UKF estab-
lished above can solve most of the state estimation in
high-dimensional nonlinear systems, and the feedback of
the environment can be expressed by the character of the
measurement noise. However, the SNR η in Eq. (6) which
represents the environment characteristic in the algorithm is
from prior information, or it may be mismatched with the
actual situation. Besides, only Rk can be estimated by the
waveform parameters but not Qk , and the Qk may also be
configured properly in an ideal practice but improperly in
reality. In these cases, the general cognitive radar tracking
method may fail to obtain accurate estimation results.

To address the challenge, the adjustment from the outside
only by waveform adaptation is also not enough. It makes
sense to couple the internal and external mechanisms for
environment confrontation. Therefore, we propose a robust
cognitive radar tracking algorithm based on AUKF and the
structure of which is illustrated in Fig. 2. The algorithm
adjusts the estimation of the noise parameter by a robust
algorithm, which ensures that the cognitive estimator is per-
formed based on accurate information of the sensor inside.
Meanwhile, the algorithm guarantees the cost function of
estimation keep minimum by a cognitive structure, which
intelligently guarantees that the tracking error is smallest and
the waveform parameters are optimal under corresponding
noise parameters so that the robust mechanism can adjust the
system parameters based on accurate external environmental
information.

A. ADAPTIVE ADJUSTMENT OF NOISE STATISTIC
Inspired by the work in [13], a fault-detection mechanism
is introduced to determine whether it is necessary to adjust
the noise covariance matricesQk andRk . The fault-detection

FIGURE 2. Schematic diagram of the proposed algorithm.

mechanism can be denoted by the statistical function

ϕk = µ
T
k

[
P̄zzk|k−1

]−1
µk (15)

where the innovation vectorµk = zk (θk−1)−z̄k|k−1 contains
the newest information for the filter in the incoming measure-
ment. The ϕk has a chi-square distribution with v degree of
freedom where v is the dimension of µk . If the mechanism
can detect the fault in the reliability of 1 − p, and the p is
selected as

P
(
ϕk > χ2

p,v

)
= p (16)

then the corresponding threshold χ2
p,v can be determined.

1) PROCESS NOISE ADJUSTMENT
The process noise can be derived from Eq. (1) using two
approximations by linearization

ŵk−1 = x̂k − f
(
x̂k−1|k−1

)
≈ x̂k − x̄k|k−1

= Kk
(
zk − z̄k|k−1

)
≈ Kkµk (17)

Then the process noise covariance is estimated with µk ,
similar work can be seen in [21], [23]

Qk−1 = cov
(
ŵk−1

)
= KkE

[
µkµ

T
k

]
KT
k (18)
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Considering the calculation of E
[
µkµ

T
k

]
need to average

µkµ
T
k over time and use the windowing method which will

bring about the increasing computational burden, a one-step
update method is adopted in this article to reduce the burden.
The innovation covariance can be adjusted adaptively and
updated as

Qk−1 = (1− ζ )Qk−1 + ζ
(
Kkµkµ

T
k K

T
k

)
(19)

ζ = max
{
ζ0,
(
ϕk − a× χ2

p,v

)
/ϕk

}
(20)

where the weighting factor ζ is used to balance the last value
and current estimation of Qk−1. ζ0 ∈ (0, 1), a > 0. We can
put a known target in the unknown environment, and perform
Monte Carlo in the training phase to obtain the value of a. So,
a is a tuning parameter based on the environment. A small
value of a means the update of Qk−1 is more sensitive to
the new innovation, and vice versa, a large a means it is
more likely to choose ζ0, which is the lower limit of ζ . The
new Qk−1 will be positive by using the update equation but
without proof here.

2) MEASUREMENT NOISE ADJUSTMENT
Similar to the derivation of Eq. (18), the one-step update
method instead of the windowing method is used to derive
the measurement noise covariance, denoted as

R̂k (θk−1) = cov
(
v̂k
)
= E

(
εkε

T
k

)
+ Ŝzzk|k (21)

where vk = zk − h (xk) is from Equation (2), and a
residual-based approach is used here to guarantee the matrix
R̂k (θk−1) to be positive definite. The residual vector εk and
the estimation item Ŝzzk|k can be denoted respectively as

εk = zk − h
(
x̂−k
)

(22)

Ŝzzk|k =
2nx∑
j=0

W (c)
j

[
z(j)k|k − z̄k|k

]
×
[
z(j)k|k − z̄k|k

]T (23)

The weighting factor δ is used here to balance the last value
and current estimation of Rk (θk−1), which can be adjusted
adaptively and updated as

Rk (θk−1) = (1− δ)Rk (θk−1)+δ
[
εk (εk)

T
+Ŝzzk|k

]
(24)

δ = max
{
δ0,
(
ϕk − b× χ2

p,v

)
/ϕk

}
(25)

where δ0 ∈ (0, 1), b is a tuning parameter similar to a,
b > 0. A small value of b means the R is more sensitive
to the innovation, and vice versa, δ is closer to δ0.

B. CORRECT ERROR COVARIANCE AND SNR ESTIMATION
More accurate error covariance can be derived after theQk−1
and Rk have been updated, and the derivation is described by
the following equations.

P̄xxk|k−1 =
2nx∑
j=0

W (c)
j

[
χ(j)k|k−1 − x̂−k

]

×
[
χ(j)k|k−1 − x̂−k

]T
+Qk−1 (26)

P̄xzk|k−1 =
2nx∑
j=0

W (c)
j

[
χ(j)k|k−1 − x̂−k

]
×
[
z(j)k|k−1 − z̄k|k−1

]T (27)

P̂zzk|k−1 (θk−1) = Ŝzzk|k + Rk (θk−1) (28)

K̂k = P̄xzk|k−1
(
P̂zzk|k−1 (θk−1)

)−1
(29)

P̄xxk|k (θk−1) = P̄xxk|k−1 + K̂k P̄zzk|k−1 (θk−1)
(
K̂k

)T
(30)

By correcting the measurement noise covariance, the
correct SNR η∗k representing the current environmental infor-
mation can be obtained by

Rk (θk−1) =
1
η∗k
0U−1 (θk−1)0 (31)

C. UPDATE COST FUNCTION
The update equation for the tracking error covariance matrix
at time k + 1 is

P̄xxk+1|k+1 (θk) = P̄xxk+1|k + K̂k+1P̄zzk+1|k (θk)
(
K̂k+1

)T
(32)

where P̄zzk+1|k (θk) and K̂k+1 are related to the measure-
ment noise covariance matrix Rk+1 (θk). We may replace
them after the noise parameters are corrected by the robust
mechanism

P̄zzk+1|k (θk)=
2nx∑
j=0

W (c)
j

[
z(j)k+1|k − z̄k+1|k

]
×
[
z(j)k+1|k − z̄k+1|k

]T
+ Rk+1 (θk) (33)

K̂k+1= P̄xzk+1|k
(
P̄zzk+1|k (θk)

)−1
(34)

We use Eq. (13) to define the optimal waveform parame-
ter vector. Through the fine-tuning of external noise R, the
acquisition of internal process noise Q, and the correction of
the error covariance P−k , we may replace Eq. (13) by

θ∗k = arg min
θk∈P

[
Tr
(
P̄xxk+1|k+1 (θk)

)]
(35)

The next transmitted waveform is selected, and the cur-
rent state estimation and its prediction covariance matrix is
updated by

x̂k+1= x̄k+1|k+Kk+1
(
zk+1

(
θ∗k
)
−z̄k+1|k

)
(36)

P̄xxk+1|k+1
(
θ∗k
)
= P̄xxk+1|k + K̂k+1P̄zzk+1|k

(
θ∗k
) (

K̂k+1

)T
(37)

where zk+1
(
θ∗k
)
is the measurement corresponding to the

parameter θ∗k , given in Eq. (2) and (10).
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Algorithm 1 Implementation of Robust Cognitive Radar
Tracking Based on AUKF
Initialization
1 Select the waveform parameter θ0 = [λ0, φ0]
2 State x̂0 = µ0, P̂0 = 60
Sigma point and weight value compute
3 Implement the steps in Appendix B to obtain x(j)k−1,
W (m)

j ,W (c)
j

4 for each θk−1 = [λ, φ] compute one-step prediction of
5 x(j)k|k−1 = f

(
x(j)k−1, vk−1 |θ

)
6 x̄k|k−1 =

2nx∑
j=0

W (m)
j x(j)k|k−1

7 P̄xxk|k−1 =
2nx∑
j=0

W (c)
j

[
f
(
x(j)k|k−1 |θ

)
− x̄k|k−1

]
×
[
f
(
x(j)k|k−1 |θ

)
− x̄k|k−1

]T
+Qk−1

Measurement update
8 z(j)k|k−1 = h

(
x(j)k|k−1 ,wk−1 |θ

)
9 z̄k|k−1 =

2nx∑
j=0

W (m)
j z(j)k|k−1

10 P̄zzk|k−1 (θ) =
2nx∑
j=0

W (c)
j

[
z(j)k|k−1 − z̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T
+ Rk (θ)

11 P̄xzk|k−1 =
2nx∑
j=0

W (c)
j

[
x(j)k|k−1 − x̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T
Information update and state estimate

12 Kk , P̄xzk|k−1
(
P̄zzk|k−1 (θ)

)−1
13 P̂xxk|k (θ) = P̄xxk|k−1 −Kk P̄zzk|k−1 (θ) (Kk)

T

14 Implement the robust algorithm as in Appendix B to
obtain the corrected Qk−1, Rk (θ), x̂k|k and P̂xxk|k (θ)

15 Compute the cost function
θ∗k = argmin

θ

LC,2 (θk |Zk−1;2k−1 )

16 Select the optimal waveform parameter θk = θ∗k
Motion update
17 x̄k|k−1 = x̄k|k−1 (θk)
18 P̄xxk|k−1 = P̄xxk|k−1 (θk)
Measurement update

19 P̄zzk|k−1 =
2nx∑
j=0

W (c)
j

[
z(j)k|k−1 − z̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T
+ Rk (θk)

20 P̄xzk|k−1 =
2nx∑
j=0

W (c)
j

[
x(j)k|k−1 − x̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T
Information update and state estimate

21 Kk , P̄xzk|k−1
(
P̄zzk|k−1 (θk)

)−1
22 x̂k|k = x̄k|k−1+Kk

(
zk − z̄k|k−1

)
23 P̂xxk|k (θk) = P̄xxk|k−1 −Kk P̄zzk|k−1 (θk) (Kk)

T

24 Save the x̂k|k and P̂xxk|k (θk)

The parameter R is actively perceived by the cognitive
structure to obtain the coarse adjustment and passively cor-
rected by the internal robust mechanism to obtain the fine-
tuning. The parameter Q is only corrected by the robust
mechanism because it is just from the internal.

The robust module is added to the cognitive structure con-
sidering couple the internal and external mechanisms to form
the proposed algorithm, which is summarized in Algorithm 1.
If we use a fixed waveform, this can be reduced to the
current robust AUKF, the interface of which with cognitive
architecture is analyzed in detail in Appendix B.

IV. SIMULATION RESULTS
A. TARGET MODEL
A coordinated turn (CT) model with maneuvering properties
is selected as the dynamic model of the target. As we know,
the CT model is necessarily nonlinear if the turn rate is not a
constant [30]. The system model is given by

xk+1 = Fkxk + vk (38)[
x1,k , x2,k , x3,k , x4,k

]T is selected to be the state vector
xk of the target, where

(
x1,k , x3,k

)
and

(
x2,k , x4,k

)
denotes

the position and velocity respectively. vk is the white Gaus-
sian system noise, and the covariance matrix is given by Q,
the initial value of which is set as Q0 = diag ([Q11,Q22]),

Q11 = Q22 = σ
2
v

[
T 4/4 T 3/2
T 3/2 T 2

]
, where σ 2

v is the variance of

system noise. The state transition matrix is defined as

Fk =
[
F11 F12
F21 F22

]
(39)

F11 = F22 =

[
1

sinωT
ω

0 cos ωT

]
(40)

F12 = −F21 =

[
1 −

1− cosωT
ω

0 − sinωT

]
(41)

zk = [rk , ṙk , θk ]T is selected as the observable vector, and
the observation matrix denoted as

h (xk+1) =


(
x21,k + x

2
3,k

)1/2(
x22,k + x

2
4,k

)1/2
arctan

(
x3,k/x1,k

)
+ wk (42)

Select Eq. (10) to be the model of R. The fixed wave-
form parameter is set as λ0 = 50 × 10−6s, φ0 = 60 ×
109Hz/s, and the initial SNR is set as η0 = 16, so R0 =

R (λ0, φ0, η0). The initial position and velocity of the tar-
get are set as

(
3.0× 103, 4.0× 103

)
m and (100, 100)m/s

respectively. The target takes 20s as a set of continuous
turning times, and makes turning movements with the angu-
lar velocity of ω = 0.09o/s, −0.04o/s, −0.06o/s, 0.08o/s
successively. P0 = 104 × diag ([80, 2, 80, 2]). The sampling
period T = 1s. γ0 = δ0 = 0.2. For the fault detection,
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when the degree of freedom is 3 and the reliability level
is 90% in chi-square distribution, the value of χ2

p,v is taken
as 6.25.

B. SIMULATION RESULTS
We explain and verify the proposed algorithm via the fol-
lowing examples of different scenarios. The measure for the
assessed performance of different algorithms is the average
root mean square error (ARMSE) which is generally used to
estimate the tracking accuracy, given as

ARMSE=

√√√√ 1
NmK

Nm∑
i=1

K∑
k=1

[(
x̂ i1,k−x1,k

)2
+

(
x̂ i3,k−x3,k

)2]
(43)

where K denotes the number of time steps, Nm denotes the
simulation index,

(
x̂ i1,k , x̂

i
3,k

)
denotes the estimated position

of the target at the k − th step in the i − th simulation, and(
x1,k , x3,k

)
denotes the true path of the target.

The adjustment of parameters a and b in the introduced
fault-detection mechanism will affect the robustness of the
current AUKF and the proposed algorithm. Therefore, it is
also necessary to discuss the selection of the parameter value
and the influence.

We use three sets of noise covariance matrices to
denote three different sorts of unknown environments, that
is, (Q◦,R (η0)) , (100Q◦,R (100η0)) , (0.01Q◦,R (0.2η0)).
Then let a and b alter from 1 to 10 respectively to run
multiple times simulation experiments. Finally, we search
for a smaller error to determine the corresponding param-
eter value. Unlike existing researches, we obtain a three-
dimensional ARMSE plot by varying the value of both a
and b. In this way, suitable parameters can be found in a wider
scope.

The case of Fig. 3a has the minimum uncertainty because
the initial noise is closest to the actual value. The overall trend
of the error is that it decreases first and then increases, along
with the increase of values of a and b, indicating that too large
or too small value is not suitable for parameters. Observe from
Fig. 3b that the promotion of the tracking performance is not
significant after a, b > 2. Fig. 3c shows when a, b > 3 the
performance curve of the proposed algorithm floats in a low
range, as for the fix waveform, a large value may result in
a worse improvement. Based on the above three situations,
it is reasonable to select a = 6, b = 5 for the rest of the
simulations.

Notice that this is not the final result, but just to illus-
trate the rationality of parameter selection. Considering
choosing the same parameter value for comparing different
approaches, we do not give an optimal solution but only
a relatively better one. Besides, this parameter selection is
only an offline method, except for that, we have the cog-
nitive structure to be the on-line mechanism, which can
guarantee the tracking recursion update according to the
environment.

FIGURE 3. ARMSE in a range of different tuning parameters in different
situations.

1) STATE ESTIMATION IN UNKNOWN NOISE
This article firstly considers the scenario that the noise
is an unknown constant. It is necessary to design a
variety of sets of process and measurement noise to
represent uncertain features. m = 0.5, 0.1, 1, 10, 50,
n = 5, 2, 1, 0.5, 0.2 are selected to construct the set
(Q0,R1 |Q0 = m×Q◦,R1 = R (n× η0) ). The scenario is
performed to compare the UKF with fixed waveform (FWF),
AUKF with FWF, UKF for CR, and the proposed AUKF
for CR. With 100 times Monte Carlo simulations, Table 2 – 5
gives the ARMSE of range estimation of different
algorithms.

As expected, UKF with FWF has lower tracking accuracy
than the other methods. At the right of Table 2, that is, when
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TABLE 2. Errors of UKF with FWF.

TABLE 3. Errors of AUKF with FWF.

TABLE 4. Errors of UKF for CR.

the value ofR is much higher than the actual value, the perfor-
mance degrades rapidly. That means the environment noise
has a huge influence on tracking. The AUKF with FWF takes
advantage of the robust mechanism and has better tracking
accuracy than UKF, so the left of Table 3 is less affected by
the value of Q but the performance also degrades with the
influence of the environment. UKF for CR is less affected
by the value of R since it has a detection mechanism for the
environment. The varying of Q is the main cause result in
the performance degradation, even if the estimated SNR is
different from the actuality. The ARMSE given by AUKF for
CR is the lowest one. Observe from the left of Table 5, it can
be seen that when the process noise is significantly different
from the actual value, the algorithm has more obvious perfor-
mance improvement compared with UKF for CR because of
the robust module working cooperatively with the cognitive
structure. This also indicates that the proposed algorithm is a
good supplement to the cognitive radar tracking method.

The RMSE of the estimated states at each time step can be
expressed as [31]

RMSE (k) =

√√√√ 1
Nm

Nm∑
i=1

[(
x̂ i1,k − x1,k

)2
+

(
x̂ i3,k − x3,k

)2]
(44)

TABLE 5. Errors of AUKF for CR.

The RMSEs in Fig. 4. can be more intuitive to show the
developing trend of errors over time, and the similar conclu-
sions as in the table 2 - V can be obtained. UKF with FWF
has a relatively large error as a whole, and the advantage of
cognitive structure in UKF for CR is offset by the robustness
in AUKF. However, when the time is long enough, the differ-
ence that whether the actual noise can be approached asymp-
totically or not will emerge gradually. Obviously, AUKF for
CR has a significant performance improvement compared
with the other algorithms in this scenario.

FIGURE 4. RMSE of estimated position, Q = 100Q◦, R = R
(
100η0

)
.

2) STATE ESTIMATION IN DYNAMIC NOISE
In this case, the abrupt change of noise in an uncertain
environment is considered. Other parameters required by the
algorithms are the same as case 1). It is necessary to point
out that in general simulation experiments, only one noise
parameter would be discussed, i.e. Q. However, we evaluate
the robustness and intelligence degree of the algorithms under
the circumstance that both Q and R vary, that is, ζ and δ
will not be set as 0. We configure Q and R to represent
different stages of uncertain environment, in the first case,
Q is supposed to be a constant and R vary, denoted as

Q0 = Q◦,R1 = R◦, k = 1, · · ·, 10
Q0 = Q◦,R1 = 0.2R◦, k = 11, · · ·, 50
Q0 = Q◦,R1 = 5R◦, k = 51, · · ·, 80

(45)
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Fig. 5 shows the RMSE curves corresponding to the four
filters designed for themaneuvering case.When k = 1, ···, 20
with a priori known noise, all algorithms can track the target
successfully. In the subsequent phase when R is reduced
abruptly, the robust mechanism in AUKFwith FWF shows its
error correction performance, while the cognitive algorithm
inUKF for CR has not yet shown an advantage of the adaption
to the environment.

FIGURE 5. RMSE of estimated position, Q0 fixed.

In the stage when R increases suddenly, the AUKF with
FWF can still converge the error, but the overall perfor-
mance degrades rapidly. UKF for CR is not high because of
the cognitive structure, which can reduce the effect of the
measurement noise from the environment. The mastery of
environmental information in time by both the UKF for CR
and the AUKF for CR is the main reason why the proposed
scheme outperforms the others. The real-time perception of
the environment in the cognitive algorithm results in the per-
formance degrades lightly, meanwhile, the robust mechanism
makes the proposed scheme achieve fast convergence.

Another case of parameters is designed and denoted as
follows

Q0 = Q◦,R1 = R◦, k = 1, · · ·, 10
Q0 = 0.5Q◦,R1 = R◦, k = 11, · · ·, 50
Q0 = 10Q◦,R1 = R◦, k = 51, · · ·, 80

(46)

It can be seen from Fig. 6 that all algorithms can accurately
track the target when the noise is a priori known. When Q is
reduced suddenly, the influence of the measurement noise
plays a major role since the process noise is too small. There-
fore, UKF for CR and AUKF for CR with cognitive struc-
ture can adapt to the environment noise and present better
performance, whereas the adjustment of a robust mechanism
for Q is not obvious. When the noise increases suddenly,
the uncertainty of Q is to be the main factor affecting the
tracking, while the cognitive structure has no superiority,
and the disadvantage of UKF for CR lack of fault-detection
mechanism is so evident. The error is high, especially when

FIGURE 6. RMSE of estimated position, R1 fixed.

Q increases rapidly. Although the cognitive algorithm cannot
take advantage of perceiving the environment, the robust
mechanism makes the AUKF for CR no worse than AUKF
with FWF, only the overall performance declines.

For more complicated scenarios, as shown in Table 6,
Q and R change at the same time when k = 10 and k = 50.
When the configured value is smaller than the actual one,
the performance of UKF for CR is better than AUKF
with FWF, but when the configured value is bigger than
the actual one, the performance difference between them
is reversed. Comparing the performance of AUKF for CR
with other algorithms listed before, the results show the
effectiveness and superiority of the proposed algorithm in
nonlinear state estimation under uncertain system noise and
environment noise.

TABLE 6. ARMSE at Different Time Step, m.

3) STATE ESTIMATION IN TIME-VARYING NOISE
In the most complicated uncertain scenario, measurement
noise changes in real-time with the transform of the environ-
ment, and Q value is fixed at this time. The energy of the
received signal is inversely proportional to the fourth power
of the target range [32], in light of the radar equation, the
SNR model of the echoes can be defined by

ηr = (r0/r)4 (47)

where r0 represents the range between the radar and the
target position where the SNR is 0dB, set as 100km in this
article.
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The tracking results are shown in Fig. 7, and the state esti-
mation of the range rate is shown in Fig. 8, which shows the
maneuvering of the target and the corresponding nonlinear
dynamic characteristic of the state.

FIGURE 7. Comparison of tracking results of different algorithms.

FIGURE 8. Variation of the velocity in the tracking scenario.

It can be seen from Eq. (47) that in the cognitive radar
system the statistical characteristics of measurement changed
with the adaptative of waveform parameters and the transfor-
mation of the environment. The SNR model is introduced,
and the measurement noise will dynamically change with the
target position. Fig. 9 shows the comparison of the accuracy
in terms of RMSEs for range estimation. Similarly, con-
ventional radar based on UKF cannot track the target accu-
rately. In this scenario, the overall performance of cognitive
radar based on UKF degrades since it has no fault-detection
mechanism. For most of the time steps, it has a similar
performance with the conventional radar based on AUKF.
Especially when the noise uncertainty is weak, UKF for CR
outperforms AUKF with FWF slightly, but when a strong
uncertainty appears as shown in Fig. 8, the cognitive per-
formance degrades. Our proposed scheme limits the overall

FIGURE 9. RMSE of estimated position.

magnitude of the error and always shows a superior real-time
capability and robustness.

We compared the calculation time of various algorithms.
Table 7 shows that UKF with FWF requires less calcula-
tion time than the others but has lowest tracking accuracy,
UKF for CR has the similar accuracy with AUKF using FWF
but spend more time, which shows a limitation of cognitive
radar without the robustness, and AUKF for CR gives the
lowest error while do not add much more calculation time,
obviously as the most reasonable choice.

TABLE 7. Comparisons of performance metrics.

This implies that the addition of robust modules does not
generate too much extra calculation, and the main increase in
calculation comes from the cognitive cycle. The AUKF adds
the calculation time compared to UKF because the robust
method needs to update the noise covariance recursively,
but the one-step updating method saves a lot of calculation
compared to general methods such us the windowingmethod,
scale factor, etc., so, the addition of computational burden
is slight. A similar situation can be seen in the compari-
son between UKF for CR and AUKF for CR. While the
global dynamic optimization in the current cognitive archi-
tecture will inevitably lead to an increase in the calcula-
tion time. Therefore, we can get the conclusion that the
robust module as a supplement to the cognitive system is
competent.

The real-time variation of waveform parameters is shown
in Fig. 10-11, including λ and φ.
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FIGURE 10. Waveform selection across time, on chirp rate.

FIGURE 11. Waveform selection across time, on length of pulse envelope.

V. CONCLUSION
The problem of maneuvering target tracking with cognitive
radar in uncertain environments is concentrated in this work.
By the fact that the tracking accuracy of cognitive radar
degrade when the environment noise is not estimated cor-
rectly, or the process noise is improperly configured. A novel
cognitive tracking algorithm based on AUKF is proposed in
this article. Specifically, a cognitive radar framework based
on UKF has been presented which is allowed to deal with the
general nonlinear problems. Furthermore, a robust algorithm
was introduced to adaptively adjust the estimation of the pro-
cess and measurement noise covariance. It could also help to
perceive the environment in the cognitive structure with accu-
rate parameter even in the uncertain scenarios. Simulation
results illustrate that the presented cognitive radar tracking
method based on AUKF outperformed the existing methods
not only in estimation accuracy but also in robustness to resist
the uncertain environment, including unknown, dynamic, and
time-varying noise. The proposed method is expected to be

used as a supplement to the existing tracking methods in
cognitive radar.

The contribution of this article goes to: A framework
design of cognitive tracking algorithm based onUKF, a robust
method in cognitive structure developed to filter the uncertain
noise faced by the traditional UKF, and more practical design
with the supplemented robust mechanism for the cognitive
radar system using for practical applications.

It is known that the noise covariance is related to the envi-
ronment but the parameters are preset empirically [25], [33].
In the future work, a mathematical model of cognitive radar
along with a new cost function is deserved to be built jointly
by combining more variables, wherein the tuning parameters
in the noise covariance update equation can be adaptive to the
changing environment in real-time. Besides, the closed-form
of the optimal solution of the biased cognitive estimation
should be focused on, and using other new methods as the
cognitive framework may have better prospects in dealing
with the uncertain statistics.

APPENDIX A
The algorithm of UKF is well known and can be found else-
where (e.g. [34]). In this appendix we restate the fundamental
UKF equations to show the dependence of the UKF for CR
on the cognitive waveform parameter θk , The equations are
expressed as

1. Select an initial value of the filter

x̂0 = E (x0) (48)

P̂0 = E
[(
x0 − x̂0

) (
x0 − x̂0

)T ] (49)

2. Calculate the sigma sample points

χ(0)k−1= x̂k−1 (50)

χ(j)k−1= x̂k−1 +
√
(nx + κ) P̂k−1 j = 1, 2, · · ·, nx (51)

χ(j)k−1= x̂k−1 −
√
(nx + κ) P̂k−1 j=n+1, n+2, · · ·, 2nx

(52)

where κ = α2 (nx + γ )− nx , 10−4 ≤ α ≤ 1, γ = 3− nx .
3. Calculate the one-step prediction of the state and the

covariance matrix

χ(j)k|k−1 = f
(
χ(j)k−1

)
(53)

x̄k|k−1 =
2nx∑
j=0

W (m)
j χ(j)k|k−1 (54)

P̄k|k−1 =
2nx∑
j=0

W (c)
j

[
χ(j)k|k−1 − x̄k|k−1

]
×
[
χ(j)k|k−1 − x̄k|k−1

]T
+Qk−1 (55)

In cognitive radar, the state transition f
(
χ(j)k−1; θ

)
is used

and P̄k|k−1 (θ) is obtained.

W (m)
0 =

κ

nx + κ
(56)
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W (c)
0 =

κ

nx + κ
+ 1− α2 + β (57)

W (m)
j = W (c)

j =
1

2 (nx + κ)
, j = 1, . . . , 2nx (58)

where β = 2 for Gaussian distribution.
4. Define the update of measurement

z(j)k|k−1 = h
(
χ(j)k|k−1

)
(59)

z̄k|k−1 =
2nx∑
j=0

W (m)
j z(j)k|k−1 (60)

P̄zzk|k−1 (θ) =
2nx∑
j=0

W (c)
j

[
z(j)k|k−1 − z̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T
+ Rk (θ) (61)

P̄xzk|k−1 =
2nx∑
j=0

W (c)
j

[
χ(j)k|k−1 − x̄k|k−1

]
×
[
z(j)k|k−1 − z̄k|k−1

]T (62)

5. Calculate the gain and update the state and
covariance

K̂k = P̄xzk|k−1
(
P̄zzk|k−1 (θ)

)−1
(63)

P−k (θ) = P̄k|k−1 −Kk P̄zzk|k−1 (θ) (Kk)
T (64)

x̂−k = x̄k|k−1+Kk
(
zk − z̄k|k−1

)
(65)

In cognitive radar, here we find the minimum covari-
ance to select the waveform parameter θ∗k and confirm the
state.

APPENDIX B
In this appendix, we restate the fault-detection mechanism
and the one-step update method to show their work in the
robust adaptive unscented Kalman filter and the cognitive
cycle. The equations are expressed as

Input: f (·), h (·), x̂0, Q0, R1, P̂0, ζ0, δ0,W0, χ2
p,v

Initialization:

χ(j)k−1= x̂k−1 +
√

nx
1−W j

P̂k−1 j = 1, 2, · · ·, nx (66)

χ(j)k−1= x̂k−1 −
√

nx
1−W j

P̂k−1 j = n+1, n+2, · · ·, 2nx

(67)

W (m)
j =W

(c)
j = W j =

1−W0

2nx
(68)

Implement UKF as in Appendix A to obtain P̄zzk|k−1 (θ),
Kk , P̂xxk|k . Perform the fault-detection mechanism

ϕk = µ
T
k

[
P̄zzk|k−1 (θ)− Rk (θ)

]−1
µk (69)

If ϕk > χ2
p,v, then update the Qk−1 and Rk

µk = zk − h
(
x̄k|k−1

)
, εk = zk − h

(
x̂k|k

)
(70)

Ŝzzk|k =
2nx∑
j=0

W j
[
h
(
χ(j)k|k

)
−z̄k|k

]
×
[
h
(
χ(j)k|k

)
−z̄k|k

]T
(71)

Qk−1 = (1− ζ )Qk−1 + ζ
(
Kkµkµ

T
k K

T
k

)
(72)

Rk (θ) = (1− δ)Rk (θ)+ δ
[
εk (εk)

T
+ Ŝzzk|k

]
(73)

Correct the expected error covariance matrix

Kk , P̄xzk|k−1
(
P̄zzk|k−1 (θ)

)−1
(74)

P̂xxk|k (θ) = P̂xxk|k + K̂k P̄zzk|k (θ)
(
K̂k

)T
(75)

Qk = Qk−1,Rk+1 (θ) = Rk (θ)

Save P̂xxk|k
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