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ABSTRACT Residential electricity loads highly fluctuate which makes it challenging to predict and estimate
changes and anomalies. This article studies the statistical distribution of the maximum load of residential
settlements and proposes a new model that is more reliable than conventional methods to predict extreme
events in residential electricity consumption. Specially, a multimodal Tracy-Widom distribution is proposed
to characterize themaximum residential electricity consumption data.We also propose a numericalmethod to
approximate the density function of themultimodal Tracy-Widom distribution as opposed to the conventional
approach in the literature, where a multimodal normal distribution is utilized. A simulated electricity
consumption data set is used to test and validate the proposed methods. The results demonstrate that the
multimodal Tracy-Widom distribution is more accurate than conventional methods in modeling residential
electricity consumption data. In addition, the numerical results show that residential electricity consumption
behavior is determined by certain socioeconomic factors for which correlations with household electricity
consumption exist.

INDEX TERMS Power system, residential electricity load, electricity consumption factor, peak load density,
extreme value distribution, Tracy-Widom distribution, multimodal distribution.

I. INTRODUCTION
A power system is an electrical energy production and con-
sumption system consisting of power plants, transmission
and transformation lines, distribution stations, and loads. Its
function is to convert the primary energy found in nature into
electrical energy through a power generation device and then
supply electrical energy to users through power transmission,
transformation, and distribution. From the perspectives of
safety and economy, power generation needs to maintain a
stable operation status. Even under a very low load demand,
power generation still needs to maintain a minimum level
of operation. One of the main challenges in power systems
is how to properly allocate power generation to deal with
diverse and unstable load demands. Based on data reported by
the U.S. Energy Information Administration (EIA), domes-
tic customers consumed about 11,000 kilowatt-hours (kWh)
on average in 2015. Moreover, electricity demand contin-
ues to increase rapidly, putting tremendous pressure on
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already overloaded power grid infrastructure in the U.S. [1].
However, household electricity consumption differs across
different regions and housing types, and the distribution net-
work provides power to a variety of loads, such as residential,
industrial, and commercial ones. In particular, the residential
load is highly variable compared to other load demands in
a power system due to the variety of people’s lifestyles [2]
and household appliances [3]. Therefore, the capability to
handle the impact of load fluctuations on the power grid is an
important criterion for evaluating the performance of present
and future power systems [1]. In fact, although residential
loads are not planned loads, they do change in a cyclic pat-
tern. By studying electricity consumption data, researchers
have developed some methods to estimate users’ electricity
consumption habits, which can help to predict load demands.
For example, H. Fell et al. developed an empirical approach to
estimate residential electricity demand [3]. Lifestyle factors
could be one of the key features to predict electricity usage.
Income and occupation are also important factors affecting
electricity consumption [2]. The ever increasing diversity
in the types of generation (new energy sources) and loads
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FIGURE 1. Future residential grid. Renewable generations and plug-in
devices introduce various uncertainties into power systems.

(plug-in devices, distributed storage) make load demand esti-
mation more challenging than before. In addition, the pres-
ence of renewable energy sources and plug-in devices has
been transforming the topology of existing power systems
significantly as well as changing the power flow direction
[4]. As illustrated in Figure 1, the complexity of the new
power system topology is increasing due to the many kinds
of renewable generations and plug-in electric vehicles, and
the fact that the power flow direction is no longer one way.
In addition, the uncertainties associate with the resources
used to produce renewable energy have an increasing impact
on the operation of power systems [5]. For example, in the
photovoltaic generation, uncertainty arises from the instabil-
ity of solar irradiance due to climate changes [3]. In order
to preserve the stability and efficiency of a power system,
new approaches that can deal with these uncertainties are
urgently needed. Most of the engineering problems in a
distribution network are subject to uncertainties, especially
due to the presence of renewable sources and plug-and-play
devices. Uncertainties may also come from daily load varia-
tions, generation outages, faults, and failures in power system
networks.

Since it is impossible to fully characterize power systems
with deterministic methods, stochastic approaches have been
attracting more attention. A series of anomaly indicators
and fault detection filters have been developed based on
the Tracy-Widom distribution [6], [7]. In probabilistic load
flow, each input is considered as a random variable in order
to incorporate the effects of uncertainties. Common uncer-
tainty factors in conventional generation and new energy
generation ignore the uncertainty from load demand, as load
demand highly depends on individuals’ living patterns [8].
For instance, electric vehicle holding quantity has risen
rapidly in recent years, and these vehicles can be considered
as storage systems, which will presumably stress the load
limits of the network [9]. Consequently, for the effective
design and operation of power systems, uncertainty modeling
tools are important [31]. Because most loads follow a specific
range of variations over time, the load profile of the feeder
is a cyclic phenomenon. To better understand the output of
these uncertainties, probabilistic approaches are called for.
However, most existing load analysis methods are based on

TABLE 1. Approaches of probabilistic load study.

FIGURE 2. Average loads and peak loads of fifty-two weeks. The X-axis is
the number of the week, and the Y-axis represents electricity loads. Blue
circles are average electricity loads over a week, red diamonds are peak
loads in a week. The blue curve and the red curve are fitted curves for
weekly average loads and weekly peak loads, respectively.

an assumption that electricity loads are independent random
variables and Gaussian distributed [10]. Table 1 summa-
rizes some existing load analysis methods based on different
probabilistic model.

Conventional studies of residential electricity loads have
focused on the average statistical behavior, which helps a dis-
tribution system to allocate the proper amount of electricity
to residential loads. On the other hand, the blackout or outage
of the grid is often caused by irregular usage behavior or
instant demand peak overshoot [11]. As shown in Figure 2,
the weekly average loads are concentrated around the blue
curve, deterministic approaches are suitable for this case
to model and predict the average loads. However, the peak
loads (red diamonds) are much more fluctuating than the
average loads (blue circles), the conventional methods for
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FIGURE 3. Probability density distribution of peak loads of different
houses over fifty-two weeks. The X-axis represents the weekly peak loads,
and the Y-axis represents the probability density of weekly peak loads.

average loads study are unable to predict future peak loads.
Moreover, the histograms in Figure 3 shows the weekly peak
loads of two randomly picked houses, which demonstrates
that the variation or differences between houses can be still
large. In this figure, house 1’s weekly peak loads are much
larger than house 2’s. Since this distribution is about a data
set of an entire year (fifty-two weeks), we can infer that
there are some factors that have led consumers to develop
different electricity consumption habits. In the ExtremeValue
Theorem (EVT), the maximum or minimum value will con-
verge to a function if it satisfies certain conditions. Extreme
value statistics focuses on the study of the maximum or the
minimum of a set of random variables, e.g., residential elec-
tricity consumption data or daily water demand. The study
of extreme values is very important for time-series prob-
lems, and EVT has applications in biology, finance, physics,
climate science. However, the extreme value statistics of
‘uncorrelated’ variables are well studied, strongly correlated
random variables have not been well explored [7]. And the
residential electricity loads and peak loads are such kind of
correlated data which is treated as ’uncorrelated’ in previous
studies. For example, researchers can use a Gaussian mixture
to estimate the probability distribution of a non-Gaussian bus
power, the resulting distributions may be unable to reflect
asymmetry and tail behavior accurately. However, customers
in a residential grid correlated due to some socioeconomic
factors.

In real-world scenarios, random variables are more likely
to follow a multimodal distribution rather than a unimodal
distribution, as is commonly seen in economics, biology,
physics, etc. For instance, the absolute magnitude of novae
and the size of worker weaver ants are bimodal distributions.
Another interesting case is the distribution of daily water
demand, which is bimodal, as human activities related to
water consumption (e.g. showers, cooking, toilet use) usually
peak in the morning and evening periods [12]. Figure 4 shows
a density plot of the daily water demand of a settlement,
which illustrates the recessive multimodality of the data.
Therefore, residential electricity demand can be associated
with a bimodal distribution or even a multimodal distribution.

FIGURE 4. Example of multimodal approximation. The X-axis represents
the normalized sample values, and the Y-axis represents the probability
density. The red solid curve is the estimated multimodal density, the black
dashed curves are the Gaussian components of two modes.

In this article, a new paradigm is proposed to
describe extreme values statistics in residential electricity
consumption. The major contributions of this article are
• Modeling the maximum residential electricity load as
a multimodal distribution of Tracy-Widom distribution
components;

• Developing a numerical solver to find the location and
scale parameters of a Tracy-Widom distribution.

Unlike the conventional describer (e.g., Gaussian
distribution), the proposed Tracy-Widom distribution-based
approach reveals that there exists correlation in electricity
consumption data. Socioeconomic factors, such as income
and occupation play important roles in determining consump-
tion habits, as well as the dependency of random variables.
The rest of this article is organized as follows. Section II gives
a concise introduction to the Tracy-Widom distribution and
multimodal distribution. We then provide a detailed descrip-
tion of the proposed method in Section III. In Section IV,
synthesized residential electricity consumption data is used to
validate the proposed method. Finally, conclusions and future
research plans are outlined in Section V.

II. MATHEMATICAL BACKGROUND
A. MULTIMODAL DISTRIBUTION
A multimodal distribution can be defined as in (1) below,
which is commonly expressed in the form of a mixture of
possibly different unimodal distributions

F(x) =
n∑
i=1

pifi(x), (1)

where fi(x) is a probability distribution and pi is the mixing
parameter. The mixing parameters satisfies:

pi ≥ 0,
n∑
i=1

pi = 1. (2)

The number of modes of the resulting density may not be the
same as the number of components. Figure 4 shows an exam-
ple of using a Gaussian mixture to estimate the distribution of
daily electricity loads. The density function of the Gaussian
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mixture is stated as in (3) below, where it has five parameters
to be determined: µ1, µ2 (means), σ1, σ2 (variances), and p
(mixing parameter).

F(x) = p
1

σ1
√
2π

e
−

1
2

(
x−µ1
σ1

)2
+ (1− p)

1

σ2
√
2π

e
−

1
2

(
x−µ2
σ2

)2
(3)

There are some important features worth mentioning when
applying a multimodal distribution:

1) A mixture of two Gaussian distributions with the same
standard deviation is not bimodal if the difference
between the means of the Gaussian components is less
than twice the common standard deviation [13].

2) A mixture of two Gaussian distributions with
approximately equal mass has a negative kurtosis. The
tailness of the mixture is lessened since the two modes
on either side of the center of mass offset each other.

3) A mixture of two Gaussian distributions with highly
unequal mass has a positive kurtosis. The tailness
of the mixture is magnified, as the smaller distribu-
tion enhances the tail of the more dominant Gaussian
distribution.

Multimodal distributions are very common in both
mathematics [14], [15] and natural sciences [13], [16], [17].
Examples of variables with multimodal distributions include
the age of a sample of college students and disease pat-
terns. In addition, numerous statistics involving human activ-
ities are bimodal distributions, e.g., peak restaurant hours
(lunch and dinner), road usage (morning and afternoon rush
hours), and residential water/electricity usage (before and
after work). According to [18], multimodality can be quan-
tified using a concentration parameter. Most of the previous
studies involving multimodal distributions use a Gaussian
distribution as the fundamental component. This is because
Gaussian distributions play an important role in statistics and
can be applied to many different fields. In both natural and
social sciences, real-valued random variables with unknown
distributions are often assumed as Gaussian distributions.
Moreover, the central limit theorem extends Gaussian distri-
butions to another degree. In probability theory, the central
limit theorem states that if you have a population and take
sufficiently large random samples from the population, then
the distribution of the sample means trends toward a Gaussian
one, even if the population is not normally distributed.

However, in power systems, energy consumption behavior
is affected by a variety of socioeconomic factors [3], which
often leads to clustering of the distribution in a population.
In addition, the electricity consumption distribution appears
asymmetrical due to the limited number of samples [13].

B. TRACY-WIDOM DISTRIBUTION
In 1993, C. Tracy and H. Widom introduced the
Tracy-Widom distribution [19], which is the limiting law
of the normalized largest eigenvalue of a random Gaussian
ensemble. There are three classic random matrix models
called the Gaussian ensembles.

• Gaussian Orthogonal Ensemble (GOE, β = 1): real
symmetric matrices;

• Gaussian Unitary Ensemble (GUE, β = 2): Hermitian
matrices;

• Gaussian Symplectic Ensemble (GSE, β = 4): quar-
ternion matrices.

The Tracy-Widom distribution is an important topic in a
wide range of subjects, e.g., mathematical physics [19], [20],
economic statistical analysis, ecology, and engineering [7],
because it characterizes the inherent randomness of cor-
related systems, which is universal in real world scenes.
A Tracy-Widom distribution is stated in terms of the solu-
tion to the Painleve II differential equation. For example, a
Tracy-Widom distribution of order 1 is defined as

F2(s) = exp
(
−
1
2

∫
∞

s
q (x)+ (x − s) q2 (x) dx

)
, (4)

where s ∈ R and q is the unique solution of the Painleve II
differential equation

d2q(x)
dx2

(x) = xq (x)+ 2q3 (x) (5)

satisfying the boundary condition
q (x) ∼ Ai (x) as x →+∞ (6)

where Ai (x) is the Airy function [19].
The distribution F2 is associated to a GUE, while

Tracy-WidomdistributionsF1 andF4 are associated to aGOE
(β = 1) and a GSE (β = 4) which are stated in terms of the
same Painleve transcendent q:

F1(s) = exp
(
−
1
2

∫
∞

s
q(x)dx

)√
(F2(s)) (7)

and

F4

(
s
√
2

)
= cosh

(
1
2

∫
∞

s
q(x)dx

)√
(F2(s)). (8)

Furthermore, Ramírez et al. [21] extended the scope of the
Tracy-Widom distributions Fβ to all β > 0.

Theoretically, covariance matrices represent the hidden
statistical interdependence structure of the data. In practice,
however, sample covariancematrices depend on experimental
measurements and cannot reveal the entire interdependence
structure [22].

Through Random Matrix Theory (RMT), Johansson [23]
and Johnstone [24] introduced a convenient way to study the
distribution of the largest eigenvalue of a random matrix.
Suppose a random matrix A ∈ Rm×n has independent
and identically distributed entries. Additionally, the location
parameter (µ) and scale parameter (σ ) of the correspond-
ing Tracy-Widom distribution are functions of the random
matrix’s dimensions, and they can be computed using equa-
tion (9) and equation (10), respectively.

µ(m, n) =
(√

m− 1+
√
n
)2

(9)

σ (m, n) =
(√

m− 1+
√
n
)( 1
√
m− 1

+
1
√
n

)1/3

(10)
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TABLE 2. Statistics of different types of Tracy-Widom distributions (Fβ ).
The mean (µβ ), variance (σ2

β
), skewness (Sβ ), and kurtosis (Kβ ).

Then, the distribution of the largest eigenvalue λ1 of a real
Wishart matrix AA′ in the limit m, n → ∞ with m/n > 1,
approaches to

λ1 − µ(m, n)
σ (m, n)

→ W1 ∼ F1 (11)

where F1 is a Tracy–Widom law of order 1 distribution
function.

The numerical evaluations of the Tracy-Widomdistributions
Fβ are very useful in data analysis and other applications.
Edelman and Persson [25] were the first to compute numer-
ical solutions to Painleve equations of the types II and V,
and their method was able to evaluate eigenvalue distribu-
tions of random matrices numerically in MATLAB [25].
Furthermore, these approximation techniques were analyt-
ically verified by Bejan [22] and extended as a numerical
evaluation method for Painleve II and Tracy-Widom dis-
tributions (for β = 1, 2, and 4) in S-PLUS [22]. After
that, a fast algorithm was proposed by Bornemann [26]
to numerically evaluate the Tracy-Widom distribution and
the density functions fβ (s) = dFβ/ds for all three Gaussian
ensembles (β = 1, 2, 4). These algorithms are useful for
calculating statistics, such as the mean, variance, skewness,
and excess kurtosis, of Fβ numerically. The results are shown
in Table 2. Although these numerical statistics provide an
overall profile of the density functions of a Tracy-Widom
distribution, Chiani (2014) has also provided a simpler and
faster way to approximate Fβ based on a shifted gamma
distribution [27].

III. MIXTURE OF THE TRACY-WIDOM DISTRIBUTION
A. PERFORMANCE METRICS
A statistical distance is a quantified measurement that
describes the distance or difference between two statisti-
cal objects (e.g., random variables, probability distributions,
samples). There are many different statistical distances in
statistics, probability theory, and information theory; how-
ever, not all statistical distances are metrics, as some of
them lack one or more axioms belonging to proper metrics.
A statistical distance can be considered a metric only if it
satisfies the following conditions:

1) non-negativity: D(f1, f2) ≥ 0
2) identity of indiscernibles: D(f1, f2) = 0 if and only if

x = y
3) symmetry: D(f1, f2) = D(f2, f1)
4) subadditivity: D(f1, f3) ≤ D(f1, f2)+ D(f2, f3),

where D is a statistical distance function, and fi, i = 1, 2, 3
are probability distributions. That said, some commonly
used statistical distances, e.g. f-divergence and energy dis-
tance, are not suitable to measure the performance difference
between two probability densities in this study. Since we

FIGURE 5. Tracy-widom distribution and numerical approximation.
β = 1,2 and 3 associated with density functions (4),(7), and (8),
respectively. The red solid line is a numerical approximation of type I.

are measuring the performance of a density approximation
method, the disparity between the original density and esti-
mated density is a proper performance metric. The disparity
between two densities d is defined as

d = 1−
∫
+∞

−∞

min(f (x), f̂ (x))dx. (12)

where f (x) is the original PDF, and f̂ (x) is the estimated PDF.
In this way, the density approximation can be transformed as
an optimization problem to minimize d .

B. ESTIMATING PARAMETERS OF THE TRACY-WIDOM
DISTRIBUTION
Although we mentioned in III-A that some optimization
methods are available to approximate probability density,
the analytical form of a Tracy-Widom distribution is quite
complicated. Solving equations (4-6) inside of an optimiza-
tion problem is not efficient and is not even applicable in
practice. Moreover, existing numerical methods [23], [24]
are not applicable to our case, though it is worth noting
that our investigation, we found A. Bejan’s [22] numerical
approximation method of the Tracy-Widom distribution can
achieve high accuracy. Figure 5 shows the numerical approx-
imation of type I Tracy-Widom distribution, the red solid line
coincides with the blue dash line, which means this numerical
approximation is a reliable benchmark for our application.

Fortunately, there exist in the literature some numerical
evaluations of Tracy-Widom distributions [22], [25], [26] that
one can use. Inspired by the works of Johansson [23] and
Jacob et al. [28], by finding a proper pair of location param-
eter µ and scale parameter σ , we can apply a certain type of
Tracy-Widom distribution, e.g., F1, to arbitrary data, not just
eigenvalues of a random matrix. Here, we have formulated a
quadratic programming (QP) problem to solve for µ and σ
of type-I Tracy-Widom distribution F1. The QP problem is
defined as follows:

min
µ,σ

d = 1−
∫
+∞

−∞

min
(
f̂TW (x, µ, σ ), f (x)

)
dx

s.t.
∫
+∞

−∞

f̂TW (x, µ, σ )dx = 1. (13)
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FIGURE 6. Unimodal distribution approximation. This histogram is the
probability density of the maximum daily load of a settlement. The red
solid line and the black dash line represent the estimated densities of
maximum daily load by Tracy-Widom distribution and Gaussian
distribution, respectively.

where f̂TW (x) is the estimated density of the type-I Tracy-
Widomdistribution, and f (x) is the original density of the data
set. We use the numerical result from Bejan [22] as a bench-
mark; then the QP problem will search for a pair of µ and σ ,
where f̂TW (x) fits the shape of the original density of the data.
Figure 6 shows the result of Tracy-Widom density approxi-
mation to an electricity load data set and the approximation
performances are shown in Table 2. From Figure 6 we can
see that Tracy-Widom approximation is better than Gaussian
approximation at preserving the tailedness and asymmetry of
the original density with a very high approximation accuracy.

This Tracy-Widom approximation method is fast and easy
to apply. The result is also promising in general, since the ran-
domness of power system data is not independent in practice.
That is, behind the data, there are a lot of human interactions
that could be highly correlated due to various undiscovered
factors. Thus, a Tracy-Widom distribution is much better at
characterizing correlated data than a Gaussian distribution.
Therefore, the algorithm searches for the appropriate param-
eters that maximize the overlapping area between the original
data density and the approximated Tracy-Widom density does
not a require specific data format. The algorithm is described
in greater detail below.

C. TRACY-WIDOM MIXTURE
Asmentioned in section II, the statistics of power system data
are often bimodal or multimodal. In addition, it is impos-
sible to apply unimodal distribution to a multimodal case.
Traditional multimodal distributions employ a Gaussian dis-
tribution as their component. However, the density of power
data often appears highly skewed and heavy-tailed, especially
given extreme values like peak load demands. Thus naturally
we fused a Tracy-Widom distribution into a multimodal dis-
tribution, as a Tracy-Widom distribution is more suitable in
describing correlated data.

Instead of using a Gaussian distribution as the component
in themultimodal distribution, we used a Tracy-Widomdistri-
bution, such that fi(x) = Fβ in equation (1). Then,multimodal

Algorithm 1: Approximation to Tracy-Widom Distribu-
tion
Result: Scale (σ ) and location (µ) Parameters of

Tracy-Widom distribution
compute and plot the reference PDF and CDF of TW,
make initial guess of σ0 and µ0;
while d in equation (13) is greater than threshold ε do

step 1: making a guess of σi and µi, and plug them
into equation(11);
step 2: using a conventional interpolation method
to obtain a smooth and continuous representation
of Tracy-Widom distribution f̂i(x, µi, σi);
step 3: plugging the data x into f̂i(x, µi, σi),
compute the density approximation f̂i(x, µi, σi);
step 4: computing disparity di between f̂i(x, µi, σi)
and density of data f (x) ;
if di > ε then

Update (make a new guess) σi and µi;
go to step 1;

else
terminate algorithm and output σ = σi and
µ = µi;

end
end

distribution (1) can be rewritten as equation (14):

FTW (x) = pfTW1(x)+ (1− p)fTW2(x), (14)

where FTW (x) is a bimodal Tracy-Widom distribution,
fTW1(x), fTW2(x) are Tracy-Widom distributions with dif-
ferent location and scale parameters, and p is the mixing
parameter.

Therefore, we formulated a QP problem to approximate the
Tracy-Widom mixture (14) as follows:

min
µi,σi,p

1−
∫
+∞

−∞

min
(
F̂TW (x, µi, σi, p),F(x)

)
dx

s.t.
∫
+∞

−∞

f̂TWi(x)dx = 1, σi ≥ 0,∀i, (15)

where F̂TW (x, µi, σi, p) is the estimation density of the
Tracy-Widom mixture, F(x) is the original density of the
data, f̂TWi(x), i = 1, 2 are unimodal Tracy-Widom distri-
butions, σi are scale parameters of the Tracy-Widom compo-
nents. Similar to the former QP problem of the Tracy-Widom
approximation in III-B, the multimodal Tracy-Widom
approximation will find the scale and location parameters
and the mixing parameters numerically. This is a data driven
method, applicable to any other data sets beyond power data.

IV. CASE STUDY
In this section, electricity consumption data of a settlement
that contains 1000 households is used as a case study to
demonstrate the performance of the proposed algorithm.
The electricity profile was generated using the load pro-
file generator (LPG) proposed in [29], which is available
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FIGURE 7. Population age distribution. A young settlement, more than
90% of residents are less than 60.

TABLE 3. Accuracy of unimodal distribution approximation.

TABLE 4. Income status. The number of employees of a house will affect
the regularity of work and rest and consumption habits.

in [30]. The LPG is a modeling tool for residential energy
consumptions of individual households and large settlements.
The profile generator simulates a full behavior of people
in a household and is based on the desired model, which
includes typical operation patterns for more than 100 electri-
cal devices. All traits of a household model, including house
size, family size, ages, occupations, living pattern, and appli-
ance activities, can be customized by the user. The dataset
investigated in this article was generated based on the climate
and geographic profile in Germany. The household model
factors, such as age, family size, house size, occupations,
and living pattern, are based on the average distribution of
the German population. The age and income statistics of
the dataset are shown in Figure 7 and Table 4, respectively.
Obviously, this is a young settlement, most of them are young
or middle-aged couples with children. Also, more than 50%
of families have more than one earner. The climate profile
and location of all households are set identically in order to
present consistent results.

Electricity consumption patterns widely differ among
customers and are highly stochastic. Figure 8 shows two

FIGURE 8. Example of household daily electricity loads. The X-axis
represents the daily electricity consumption of customers, the Y-axis
represents the probability density of customers’ consumption data.

individual customers’ electricity load profiles, over a year.
Customer 1’s data is concentrated in a small range and it
shows customer 1 has an energy-saving lifestyle. On the
contrary, customer 2’s daily electricity consumption behav-
ior varies substantially and is hard to predict, as the prob-
abilities are evenly distributed on a wide sample range. In
addition to characterizing a data set, skewness and kurtosis
give deeper insight into the behavior. In statistical analyses,
skewness is a measurement that quantifies the asymmetry
of a probability distribution about its mean. The skewness
of a real-valued random variable X is defined as the third
standardized moment µ̃3:

µ̃3=E

[(
X − µ
σ

)3
]
=
µ3

σ 3 =
E
[
(X − µ)3

]
(E
[
(X−µ)2

]
)3/2

, (16)

where µ is the mean, σ is the standard deviation, E is the
expectation operator, and µ3 is the third central moment.
Similar to skewness, kurtosis describes the shape of a prob-
ability distribution and its tail behavior. The kurtosis is the
fourth standardized moment is defined as

Kurt[X ]=E

[(
X − µ
σ

)4
]
=

E[(X − µ)4]
(E[(X − µ)2])2

=
µ4

σ 4 , (17)

where µ4 is the fourth central moment.
The skewness and kurtosis of the data distribution,

the Tracy-Widom distribution and the Gaussian distribution
are listed in Table 5. From the skewness column, it is obvious
that the Tracy-Widom distribution is more appropriate for
depicting the asymmetry of the data distribution than the
Gaussian distribution. The kurtosis shows that the data distri-
bution is heavy-tailed a trend the Tracy-Widom distribution
manages to capture. In summary, the residential electricity
distribution and the Tracy-Widom distribution are asymmet-
ric and right-tailed. In contrast, the Gaussian distribution is
symmetric, making the Tracy-Widom distribution better than
the Gaussian distribution. Furthermore, as shown in Figure 9,
the density of the max daily load (blue histogram) has two
modes and is slightly skewed to the right in each mode. Thus,
the result corresponding to the hypothesis is that a finite data
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TABLE 5. Skewness and excess kurtosis of the electricity consumption
data, Tracy-Widom distribution, and Gaussian distribution.

FIGURE 9. Multimodal distribution approximation. The red solid line and
the black dash line represents the estimated densities of maximum daily
load by Tracy-Widom mixture and Gaussian mixture, respectively.

FIGURE 10. Correlation matrix of daily loads. H 1-4 represent four
random houses in a settlement. The histograms in the main diagonal are
the probability densities of their daily electricity consumption. The plots
in off-diagonal show the correlation between each pair of houses. The
correlation coefficients highlighted in red indicate which pairs of houses
have correlation coefficients significantly different from zero.

sample trends toward a Tracy-Widom distribution rather than
a Gaussian distribution.

A. ANALYSIS
Most existing research on load demands are concentrated on
average values; however, extreme value analysis (e.g., peak
load demands) is critical to power system operational safety,
since an unexpected load demand impulse may a cause grid
blackout. Classical EVT is committed to statistical analysis
of the maximum (or minimum) of a set of uncorrelated ran-
dom variables [28]. Furthermore, the conventional study of
load demand always considers a customer as an indepen-
dent individual, when in fact, in most real-world systems,
e.g., power systems, the underlying random variables are typ-
ically correlated. In Figure 9, the multimodal Tracy-Widom

FIGURE 11. Correlation matrix of weekly loads. H 1-4 represent four
random houses in a settlement. The correlation coefficients highlighted in
red indicate which pairs of houses have correlation coefficients
significantly different from zero.

TABLE 6. Accuracy of density estimation by Tracy-Widom mixture and
Gaussian mixture.

TABLE 7. Accuracy of major mode approximation by multimodal
Tracy-Widom distribution and GEVD.

approximation is more accurate than multimodal Gaussian
approximation. On the left part of the data density, it is asym-
metric and skewed to its left, the multimodal Tracy-Widom
approximation captures the skewness. In terms of overall
performance, also demonstrated in Table 4, Tracy-Widom
mixture has 99.27% accuracy in estimating the density of
this data set. Compare to 93.31% accuracy by the Gaussian
mixture approximation, there are some undetermined fac-
tors affecting electricity consumption behavior, which could
be socioeconomic factors like income, education, etc. Even
though human activities are random, the daily life patterns of
individuals are clustered in a population by age, educational
background, etc. Figure 10 and 11 are daily and weekly elec-
tricity correlation maps of four random houses respectively.
The correlation coefficients highlighted in red, e.g., 0.28,
0.55, show there are correlations between power consump-
tion patterns of houses. Additionally, the correlations in the
electricity consumption data indicate that the independent
random variable assumption inherited in conventional elec-
tricity load research works [5], [8], [9] is inappropriate for
the modern electricity consumption model. Currently, we do
not have enough dataset that includes people’s socioeconomic
information to allow us to explore the impact of these fac-
tors on electricity consumption. What one can tell that the
Tracy-Widom mixture is better than the Gaussian mixture
as seen from Figure 9. This implies that residential elec-
tricity consumption data is correlated, as are the maximum
demands.

Moreover, we intercepted the left part or major mode of
the data density, and applied proposed Tracy-Widom den-
sity approximation and the generalized EVD to estimate
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FIGURE 12. Compare Tracy-Widom distribution with generalized extreme
value distribution (GEVD). The red solid line is a Tracy-Widom density
approximation, the black dash line is a density approximation by
generalized extreme value distribution.

the density of the major mode. As shown in Table 6, both
approximations achieved very promising results: 99.80%
and 99.73% accuracy for Tracy-Widom approximation and
generalized EVD approximation respectively. And from
Figure 11, the only difference is regarding the skewness:
generalized EVD approximation is over skewed to the left,
but Tracy-Widom approximation is more consistent with the
data density. The reason behind this result is that EVD is
used to describe the Poisson point process, of which samples
are independent. Quite the contrary, the Tracy-Widom distri-
bution is used to describe a strongly coupled point process,
of which samples are dependent or correlated. Therefore,
given that there are some correlations between variables,
the traditional extreme value distribution may not be appro-
priate in describing the statistics of this residential electricity
data. As such, a Tracy-Widom distribution that represents
the underlying correlation factors well, is used here as a
better solution. Figure 12 shows the approximations of the
major mode using the Tracy-Widom distribution and extreme
value distribution. As can be seen, the Tracy-Widom distri-
bution is more proper in representing the peak location and
skewness of data without much loss of accuracy. From this
perspective, the proposed Tracy-Widom mixture approach is
more appropriate than the Gaussian mixture to estimate the
probability density of residential electricity load and peak
load. In addition, this approach can be easily applied to other
data set when correlation exists.

V. CONCLUSION AND FUTURE WORK
In this article, we investigated residential electricity con-
sumption data to predict the potential excess load summit
as it is crucial for a network to allocate appropriate loads in
advance to prevent a large area blackout. We demonstrated
the new framework’s performance considering a residen-
tial settlement with 1000 households. We found that certain
socioeconomic factors, such as living patterns, have a sig-
nificant impact on electricity usage behavior. Furthermore,
the multimodality of the maximum electricity consumption is
also determined by some socioeconomic factors. Our results
show that a Tracy-Widom distribution is more reliable than a

Gaussian distribution in modeling maximum electricity con-
sumption data in a multimodal fashion. A potential limitation
of this study is the proposed method is only compared with
the most commonly used methods, like the Gaussian approx-
imation and GEVD approximation, but there are a lot other
distribution functions potentially better than Tracy-Widom
distribution.We cannot cover all the comparison in this article
due to the limitation of time and energy.

The proposed work is tested and validated with a simulated
load profile, and it has a promising performance on the sim-
ulated data. Currently, we do not have real load data avail-
able that associate with customer’s socioeconomic factors,
e.g., income, age, daily working hours. In the future, real
load data will be used to evaluate the proposed method to
further justify its performance. Additionally, we also like to
identify the list of socioeconomic factors that affects elec-
tricity usage behavior in our future research. Most statistical
studies on residential loads are based on the assumption that
households (entries) in the residential network are statistically
independent and identically distributed. However, our results
show that entries in a residential network are correlated and
clustered. These underlying factors are essential and crucial
to power supply decisions. Moreover, quantitative metrics
could arise to describe and measure these factors, which
would precise tools for cost reductions for both the generation
side and customers. Furthermore, some large scale anomaly
events can change the weights of socioeconomic factors asso-
ciated with electricity consumption. For example, during the
recent pandemic, the residential electricity load is increased
significantly since people find a new way to live and work to
adjust to the national wide lockdown. Identifying the impact
of major anomaly events on electricity consumption and pro-
viding a new power supply strategy to mitigate economic loss
will also be our future tasks.

From the results shown in section IV, the proposed method
has a better performance inmodeling the dailymax electricity
consumption per house than conventional methods. With a
more precise model, the peak load-interval can be further
narrow down. This will help a network to allocate appropriate
loads in advance to prevent a large area blackout. On the other
hand, by discovering the correlations in electricity consump-
tion data, underlying factors, e.g., income, will be further
characterized in future research. Eventually, a comprehensive
model of electricity consumption behavior will benefit both
customers and suppliers.
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