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ABSTRACT Microarray image processing leads to the characterization of gene expression levels simulta-
neously, for all cellular transcripts (mRNAs) in a single experiment. The calculation of expression levels
for each microarray spot/gene is a crucial step to extract valuable information. By measuring the mRNA
levels for the whole genome, the microarray experiments are capable to study functionality, pathological
phenotype, and response of cells to a pharmaceutical treatment. The processing of the extensive number
of non-homogeneous data contained in microarray images is still a challenge. We propose a density based
spatial clustering procedure driven by a level-set approach for microarray spot segmentation together with a
complete set of quality measures used to evaluate the proposed method compared with existing approaches
for gene expression levels estimation. The set of quality measures used for evaluation include: regression
ratios, intensity ratios, mean absolute error, coefficient of variation and fold change factor. We applied the
proposed image processing pipeline to a set of microarray images and compared our results with the ones
delivered by Genepix, using the aforementioned quality measures. The advantage of our proposed method is
highlighted by a selection of up-regulated genes that had been identified exclusively by our approach. These
genes prove to add valuable information regarding the biological mechanism activated as a response of
Arabidopsis T to pathogen infection.

INDEX TERMS Gene expression, level-set segmentation, clustering, haustorium formation.

I. INTRODUCTION
Deciphering the whole human genome following the com-
pletion of the Human Genome Project in April 2003, has
led to a fundamental transformation of molecular biology
assessments, including a change in the concepts of research
and the requirement of high fidelity and increased capabilities
of the supporting technologies. The new concept of func-
tional genomics attempts to describe the dynamic aspects
of cellular functionality from a holistic perspective. Nowa-
days, the interrogation of genomic functionality relies on
microarray technology to assess the gene expression lev-
els simultaneously for all cellular transcripts (mRNAs) in a
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single experiment. By measuring the mRNA levels for the
whole genome, the microarray experiments are capable to
study functionality, pathological phenotype, and response of
cells to a pharmaceutical treatment [1]. The workflow of
a microarray experiment includes, besides the procedure of
measurement, a step of extensive data analysis. Standardized
protocols and design methods exist for measurements, but the
processing of the extensive number of non-homogeneous data
is often still a challenge. Further on, both the classical flow of
microarray image processing and the quality measures used
for evaluation are described.

In microarray experiments, RNA extracted from biological
sample is synthesized to microarray targets. The targets are
either single-stranded DNAs or RNAs, representing specific
genes, labeled with fluorescent markers. One or two labels
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(e.g. the dyes Cy3, and Cy5) can be utilized in the same
hybridization measurement. The microarray targets hybridize
on a microarray slide with sub-sequences (probes) of the
genes within the whole genome, each gene being associated
with a fluorescent spot. A laser scanning with appropri-
ate wavelengths produces a TIFF images for each fluores-
cent label. Typically, in a two color microarray experiment,
a microarray image called probe, associated with one fluores-
cent label, is compared with a reference image, recorded with
the other fluorescent label. The expression levels of genes
are calculated based on intensities of the fluorescent light,
using specific microarray image processing techniques [2].
The image processing techniques are classified as: (1) pre-
processing, to correct image rotation and to enhance weakly
expressed spots; (2) grid alignment, to determine the location
for each microarray spot; (3) segmentation, to perform pixel
classification (i.e. the determination of the pixels belonging
either to the microarry spot or to its local background) and
spot intensity features extraction (4) data normalization for
gene expression levels estimation.

A great deal of research has been conducted for developing
image processing techniques for microarray spot inten-
sity extraction. Contrast enhancement techniques were pro-
posed for enhancing the visibility of microarray spots [3].
As reported in [4], [5], automatic grid alignment is performed
using a SVM based approach, whereas based on a spot selec-
tion step, a set of grid lines are placed over the image in
order to separate each pair of consecutive rows and columns.
Unsupervised grid alignment methods for microarray images
have been also proposed [6], [7] based on the use of optimal
multilevel thresholding followed by a refinement procedure
to find the positions of the sub-grids in the image and the
positions of the spots in each detected sub-grid. For the
segmentation of microarray spots, adaptive pixel clustering
techniques were used in [8]–[10]. Alternate spatial methods,
such as the snake fisher model or 3D spot modeling were
used for spot segmentation in [11] and [12], respectively.
Combining observed intensity and spatial information, spot
segmentation is performed in [13] and [14] using Markov
random field modeling. Background and foreground pixel
classification is also achieved by using the growing concen-
tric hexagon algorithm [15]. Considering the increased size of
microarray images together with the large variety of image
processing technique for spot intensity features extraction,
state of the art research proposes also microarray image
compression approaches [16] and parallel implementations
for spots segmentation [17].

Image processing achievements within the state of the art
approaches lack the interpretation of the results accuracy
improvements from the point of view of biological signifi-
cance. In a quantitative comparison study, the biologists track
the relative changes in intensities for the same spot from
the sample and reference image. Significant relative changes
represent the differentially expressed genes. Consequently,
the paper proposes a density based spatial clustering proce-
dure driven by a level-set procedure for spot segmentation and

intensity extraction, together with a complete set of specific
quality measures (e.g. coefficient of determination, regres-
sion ratios, intensity ratios, mean absolute error, coefficient
of variation) for evaluating the proposed image processing
workflow. Once the intensity extraction is performed and
validated, a normalization procedure is applied to correct
for intensity-depended patterns in the spot intensities distri-
bution. Further on, the log odd ratios for each microarray
spot (i.e. the fold change factor Fc) are computed and the
differentially expressed genes are estimated and compared to
the ones detected by existing software platforms.

II. MICROARRAY IMAGE PROCESSING METHODS
Typically, the microarray images are stored in the Tagged
Image File Format (TIFF) as a two-dimensional array of
intensities. In a two colour microarray experiment, two
microarray images are available, each image being recorded
from a specific cyanine dye. The images are denoted by ICy3
and ICy5, corresponding to Cy3 and Cy5 dyes, respectively.
Figure 2 shows an example of a microarray image, corre-
sponding to the microarray experiment sample identified as
GSM333341 from the Gene Expression Omnibus data repos-
itory [18] (https://www.ncbi.nlm.nih.gov/geo). Microarray
images represent a collection of microarray spots arranged in
one or more sub-grids, each grid representing a two dimen-
sional array of spots. Image processing technique are used
further on in order to determine spot location within each sub-
grid, spot sizes, spot intensities and background intensities
values which are typically delivered as raw data parameters
for microarray image analysis and interpretation. Our pro-
posed image processing techniques for automatic microarray
image processing were implemented in Matlab and they are
presented further on.

A. PREPROCESSING
The microarray image preprocessing techniques were used
for image enhancement, rotation correction and sub-grid
detection. Let the bi-dimensional array of intensities I =
(pi,j) represent the input microarray image, stored as a 16 x
bits gray-scale TIFF image. A novel approach to enhance the
weakly expressed spot is proposed, based on a point-wise
hyperbolic tangent transformation ri,j = tanh(pi,j). Accord-
ing to tangent hyperbolic function representation, the lumi-
nance information pi,j is mapped into ri,j values, with respect
to a threshold kthr . The threshold is estimated based on the
microarray background image B = (bi,j), constructed using
morphological opening on the input microarray image I .

Consequently, the intensity values pi,j bellow the kthr
threshold are mapped according to the tanh function
representation on its negative domain values, whereas the
intensity values pi,j over kthr are mapped according to the
representation on its positive domain values. The resulted ri,j
values are normalized in such manner that their histogram
fits the n - bits dynamic range of the original microarray
image. In Figure 1 the effect of the enhancement procedure
for weekly expressed spots is shown in case of the microarray
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FIGURE 1. a) Group of spot from the original ExpID GSM333341 microarray image, b) the resulted image after applying the logarithm based
enhancement, c) the resulted image after applying the proposed tangent hyperbolic based enhancement.

image sample GSM 333341 recorded using Cy3 fluorescent
label. The microarray spots enhanced by classic logarithmic
transformation are presented in Fig. 1a, whereas Fig. 1b
shows the resulted image after tangent hyperbolic transform
is applied. It can be seen that the background information,
which may contain artifacts, is selectively not enhanced
by our proposed point-wise approach for microarray spot
enhancement (see Figure 1.b). Accidental microarray image
rotation is detected and corrected using Radon transform,
as reported in [6]. As described in [7], spot group detec-
tion is performed using an approach based on mathematical
morphology, which identifies the groups of spots using an
image closing procedure. The aforementioned preprocessing
techniques transformed the original image I into several Ip
images, each containing one group of spots.

B. GRID ALIGNMENT
For automatic grid alignment, we applied independently the
support vector machine (SVM) based approach proposed by
Bariamis et al. [4] to each preprocessed Ip image. Themethod
consists of estimating the distance between consecutive rows
and columns followed by a spot detection step, which is used
to generate xi vectors and their respective class, with i from 1
to the total number of selected spots S. The xi vector of class
−1 and xi vector of class 1 are used to mark the area between
two consecutive rows or columns, (see Fig. 2). Further on,
SVM classifiers are used; the basic principle of an SVM
classifier is that it produces the normal vectors wi, which
maximize the margin between xi vectors of different classes.
In this manner, SVM classifiers determine two sets of hori-
zontal hi and vertical vj normal vectors, denoted byH = {hi :
i = 1 . . .M + 1} and V = {vj : j = 1 . . .N + 1} respectively,
withM andN representing the number of microarray spot per
rows and columns, respectively. The vectors magnitudes |hi|
and |vj| represent the positions of each horizontal and vertical
grid lines, on the abscissa or ordinate axes, respectively.

FIGURE 2. The determination of the normal vectors wi which maximize
the spatial separation between the vectors xi of two different classes; the
determined vectors correspond to the grid lines positions used for the
separation of consecutive lines and columns of the microarray spots.

Consequently, the two sets determine the overall grid within
the microarray image.

C. SEGMENTATION
The segmentation is performed in three steps: (1) selection
of the rectangular area for each spot, (2) initial pixels classi-
fication into foreground and background based on level-set
approach, and (3) a refinement of the initial classification
using density based spatial clustering.

In the first step, based on the grid alignment procedure,
a rectangular area Rspot is associated to each microarray
spot from both ICy3 and ICy5 images. For each rectangular
area Rspot , the foreground represents pixels corresponding
to the microarray spot, the background corresponds to the
local background, whereas the exclusion zone represents a
selection of pixels which correspond neither to foreground or
background.

The second step, inspired by Agilent ‘‘cookie cuter’’
approach, consists of the classification of pixels within each
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rectangular area Rspot into foreground and background. For
each rectangular area Rspot determined by grid alignment,
a level set method is used to represent the contour of the
microarray spot CS , as the zero level set of the level set func-
tion (LSF) denoted by φ(x, y, t), as expressed by equation:

CS = {(x, y) : φ(x, y, t) = 0}. (1)

The determination of the contour CS is converted into
finding solution of the partial differential equation (PDE)
from (2), which is referred to as the level set evolution
equation [19], were F is the speed function that controls the
motion of the curve:

∂φ

∂t
= F |∇φ|. (2)

In image segmentation applications, is required that the
LSF is smooth and accurate especially in the vicinity of its
zero level set, where it describes the contour of the object
to be determined. For maintaining this property of the LSF
without the need of re-initialization, Li et al. proposed an
energy formulation with distance regularization for the level
set evolution in [20]. The energy functional is defined by
ε(φ) = µR(φ)+ εext (φ), where µ > 0 is a constant, R(φ) =∫
Rspot

1
2 (|∇φ| − 1)2|∇φ|dxdy is the distance regularization

term and εext (φ) is an external energy. The minimization
of ε(φ) energy is achieved by solving the following PDE
equation:

∂φ

∂t
= µdiv

(
|∇φ| − 1
|∇φ|

∇φ

)
−
∂εext

∂φ
. (3)

In order for the level set to be applied for edge detection
in image processing, the εext energy was chosen to describe
edge-based information according to [20]. Let IS be an image
on a domain Rspot , corresponding to the rectangular area
which confines and let φ : Rspot × [0,∞) → R be a LSF
defined on the domain Rspot . The edge indicator function is
defined as g = 1

1+|∇Gσ ∗IS |2
, where Gσ is a Gaussian kernel

with standard deviation σ . Consequently, the external energy
is given by εext = λL(φ) + αA(φ). The L and A energy
functional are defined as L(φ) =

∫
Rspot

gδ(φ)|∇φ|dxdy and
A(φ) =

∫
Rspot

gH (−φ)dxdy, where δ and H are smooth
approximations of the Dirac delta function and the Heavi-
side function, respectively. Considering the definition of the
energy functional, the PDE equation (3) becomes:

∂φ

∂t
=µdiv

(
|∇φ| − 1
|∇φ|

∇φ

)
+λδ(φ)div

(
g
∇φ

|∇φ|

)
+αgδ(φ)

(4)

The initial condition for the LSF is set up so the φ(x, y, 0)
function represents the rectangular contour determined by the
grid alignment which confines each microarray spot. Solving
the equation (4), the resulted LSF function φ(x, y, t), where t
is the number of iterations, represents the edgewhich separate
the microarray spot from its local background. For each
microarray Rspot , two curves CCy3 and CCy5 are determined
by the zero level set of φCy3 and φCy5, which are recorded by

Cy3 and Cy5 respectively. The union of the two sets inside
the curves φCy3 and φCy5 is denoted by F and yields the
pixels positions considered as foreground in both Cy3 and
Cy5 images. For the entire group of spots within the ExpID
GSM333341, we present in Fig 3.b the zero level set of φCy3
determined by the resulted LSF function for each microarray
spot. A selection of microarray spots which contains spots
with irregular shape, spots with inner wholes and spots of
regular round shape is presented in Fig. 3.c. The resulted
LSF is also represented for each microarray spot, showing
its convergence towards the spot edge. In can be seen that the
proposed approach accounts for spots with various shapes and
sizes.

In the third step, a refinement procedure is introduced,
which aims to perform accurate segmentation in case of
microarray spots with inner wholes. The pixels included in
the rectangular area Rspot of the microarray images ICy3 and
ICy5, together with the set of foreground pixels F consti-
tute the premises of the current procedure. Considering the
closed curves determined by the zero levels of φCy3 and φCy5,
the exclusion zones ECy3 and ECy5 are determined by the
set of pixels which fall within the two-pixel exclusion zone
located around the curve in the outer side (see Fig 4). The
refinement is performed using density based spatial cluster-
ing [21] applied on the two sets of pixels intensity values
defined as F ∪ECy3 and F ∪ECy5, corresponding to ICy3 and
ICy5 images, respectively.

Note that, in case of weakly expressed spots or spots
with inner wholes, besides the foreground and background
intensity, a third category of pixel intensity values is observed.
While the higher values correspond to themicroarray spot and
the values close to 0 correspond to the background, the inner
wholes of the spot are characterized by pixel intensity values
significantly lower than the spot foreground, but higher than
the background. The proposed procedure assigns the intensity
of a pixel to one of the following groups: spot foreground
(high value), local background (low value) or exclusion zone
in case of spots with inner wholes. In this manner, two set of
pixels denoted by FCy3 and FCy5, corresponding to ICy3 and
ICy5 images, respectively, are obtained for the same microar-
ray spot. Each set is defined as the pairs of pixel indexes (i, j)
relative to the microarray image I , with pixel intensity value
p(i, j) assigned by the clustering procedure to the foreground
pixels group (high pixel intensity values). The intersection
of the two sets defined as S = FCy3 ∩ FCy5 contains pixels
that are called foreground of the spot (i, j) in both ICy3 and
ICy5 images. The set S represents the segmentation mask
of a given spot s, applied on both Cy3 and Cy5 images in
order to determine the pixels of spot s accounted for median
spot intensity computation. The local background estima-
tion in case of a microarray spot from Cy3 dye is denoted
by BCy3 and computed as the median intensity over pixels
located at position Rspot − F . In a similar manner, BCy5 =
median(Rspot − F) denotes the local background in case of
spots recorded from Cy5 dye. The median intensities of each
spot are computed over the set of pixels S from the Cy3 image
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FIGURE 3. a) Localization of each spot group using mathematical morphology in case of ExpID
GSM333341 microarray image, b) microarray spot segmentation using the level set approach in case of the
selected spot group from a), the results of the level set segmentation on a selection of spots with the
indexes 85, 25 and 118 from the spot group from figure b).

and the Cy5 image, and they are denoted by SCy3 and SCy5,
respectively.

D. NORMALIZATION
For the microarray spot from the ICy3 image, the background
corrected median intensity is given by the difference R =
SCy3 − BCy3. For a quantitative comparison study, the back-
ground corrected intensity R has to be compared with the
background corrected intensity, G = SCy5−BCy5, of the spot
at identical location in the reference image ICy5.We computed
the R and G values for each of the spots in our test data set.
To correct for intensity-depended patterns in the (R,G) data

of a microarray, we applied the standard scatter plot smoother
‘‘lowess’’ of Cleveland and Devlin [22] with linear fit and
window size of 20%, which yield the new normalized (R,Gn)
values.

III. EVALUATION
The proposed image processing techniques are evaluated by
means of reproducibility and biological significance. Aiming
to quantify the reproducibility of the proposed segmentation
techniques the following quality measures are computed: the
mean absolute error (MAE) and the coefficient of variation
(CV), which indicates the sameness of the spot intensities and
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FIGURE 4. a) Schematic localization of the spot considering its neighbors, b) level set segmentation of the same spot
for both the ICy3 and ICy5 images (upper and lower images), c) refinement of the level-set segmentation considering
the background, foreground and exclusion zone.

the variation of spots intensities, respectively. The MAE is
given by

MAEspot =
1
k

k∑
i=1

|Gni − G|, (5)

where k is the number of replicates, Gni is the normalized
mean spot intensity value and G is the spot overall mean
considering the means of the corresponding spots within the
n replicates. The CV is given by

CVspot =
σ

µ
, (6)

where σ represents the standard deviation of spot intensity
with subtracted background and µ denotes the mean spot
intensity.

In order to validate the proposed methodology for gene
expression estimation, the following comparisons are per-
formed. The median intensity values for each spot, R and
Gn, determined by our approach are compared with the ones
delivered by GenePix platform by means of Pearson cor-
relation. Conventionally, the ratio r = R

Gn measures the
relative change in gene expression expressed by a microar-
ray spot. Additionally, the change of gene expression can
be measured for a spot also by a regression ratio rR. The
regression ratio rR is the slope of the linear fit through a
scatter plot. The scatter plot has a point (r, g) for each pixel
inside the foreground area of a spot. The values r and g are
the raw intensities of the foreground pixels in the images ICy3
and ICy5, respectively. Both r and rR coefficients determined
by our proposed method for the whole population of spots
are correlated with the values delivered by GenePix for the
same parameters in case of microarray experiments under
analysis. The biological significance of the results delivered
by the proposed image processing workflow resides in the
differentially expressed genes resulted from the microarray
experiments under analysis. The selection of differentially
expressed genes is done using the fold change value Fc [23],

which is given by the log odd ratio off the spot intensity from
the two microarray images ICy3 and ICy5, sample and refer-
ence image (i.e., log( RGn )). The differentially expressed genes
are estimated using both our approach and GenePix, in order
to underline the advantages of our proposed techniques.

IV. RESULTS
The data set consists of 8 images corresponding to the
microarray samples having the following IDs: GSM333336,
GSM333353, GSM333337 and GSM333341. Each microar-
ray image has the size of 4000 × 1944 pixels and contains
32 spot groups with 380 spots per group. The set of images is
organized in 4 pairs of (ICy3, ICy5) and represents 4 different
microarray samples from the experiment presented in [24].
Features extraction is performed using our proposed approach
for the entire population of spots included in the selected
microarray image samples. The obtained results are com-
pared with the ones delivered by GenePix Software in terms
of reproducibility and reliability. The differences between
our results and the results delivered by GenePix may reveal
significant information from a biological point of view.

A. REPRODUCIBILITY AND RELIABILITY OF THE
PROPOSED SPOT SEGMENTATION APPROACH
Our proposed level-set segmentation approachwas applied on
the previously mentioned image samples. The spot intensities
R and Gn together with intensity ratios r , regression coef-
ficients rR and fold-change factor Fc are computed for the
whole population of spots included in each of the microar-
ray images under analysis. Values determined by GenePix
(e.g. in rRGP the lower indices denotes that the rR param-
eter values are computed by GenePix) for the same sets of
spots are compared with our results by means of Pearson
correlation. Table 1 lists the Pearson coefficients showing the
correlation betweenGenePix results and ours, considering the
aforementioned parameters.
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TABLE 1. The Table lists the Pearson coefficients resulted by comparing
our computed parameters values: spot intensities R, Gn, Fc ratio and the
regression ratio rR and the values delivered by GenePix for the whole
population of spots (12160 counts) within the microarray experiments
under analysis.

Considering the increased Pearson correlation coefficients
computed for Fc and rR values over the entire data set,
the proposed approach was proven to deliver similar results
as compared with GenePix. The two pairs of microarray
experiments E1 = (GSM333336,GSM333353) and E2 =
(GSM333337,GSM333341) represent each biological repli-
cates of the same experiment. The E1 and E2 sample pairs
represent gene expression profiles of infected and uninfected
Arabidopsis leaves, respectively. The reproducibility of our
proposed segmentation approach was evaluated by means of
spot sameness (MAE) and spot variation (CV) in case of both
E1 and E2 samples. The lower the MAE and CV values are
the better is the performance of the proposed method. The
MAE and CV values were computed both for our proposed
segmentation approach and GenePix approach. In case of our
level-set segmentation approach, two values were computed
for each MAE and CV parameter. One corresponds to the
segmentation procedure composed of steps 1 and 2 and is
denoted by lower indices 1-2 (e.g. MAE1−2), whereas the
other values corresponds to the segmentation procedure com-
posed of steps 1, 2 and 3 (e.g. MAE1−3). It was intended
to show the difference in accuracy in case the refinement
procedure (i.e. segmentation step 3) is included within the
segmentation or not. For the E1 experiment the following
parameter values were obtained: the average value of the
MAE1−2 coefficient was 563, the average value for MAE1−3
coefficient was 476, whereas the averageMAEGP obtained by
GenePix Pro software was 551. Moreover, for the experiment
E2, the average values for theMAE1−2,MAE1−3 andMAEGP
were 541, 408 and 472, respectively. The level-set segmen-
tation procedure shows similar results as compared with
GenePix approach, with respect to the MAE and CV coeffi-
cient. Nevertheless, the refinement procedure, introduced as
the third step of the segmentation process, showed improve-
ment compared to the GenePix segmentation approach. The
MAE1−3 and CV1−3 coefficients were, in average values, 70
and 0.242 units lower, respectively. The resulted MAE coef-
ficients are illustrated using box plots as shown in Figure 4,
whereas Table 2 shows the CV values. The CV represents a
standardizedmeasure of dispersion in case of spot pixel inten-
sity values, independent of the unit in which the measurement
has been taken. A small CV corresponds to a small variation
among the pixel intensity values for a given microarray spot.
Thus CV can be used as a quality measure for the spot
segmentation process.

TABLE 2. Coefficient of variation obtained using both the proposed
image processing workflow (CV1−2 and CV1−3) and GenePix tools (CVGP ).

FIGURE 5. MAE plots for the whole population of spots from E1 and
E2 experiments, in case of three segmentation approaches: our level-set
approach steps (1) and (2), our level-set approach steps (1), (2) and (3)
and the GenePix approach.

The increased correlation coefficients between our results
and the ones delivered by GenePix (Table 1) together the
improvement with respect the MAE and CV (Figure 5 and
Table 2, respectively) of the level set segmentation showed
the reliability and the reproducibility of our proposed method
for expression level estimation.

B. BIOLOGICAL SIGNIFICANCE OF THE RESULTS
Once the intensity values for each microarray spot are esti-
mated, the genes differentially expressed within a microarray
experiment are determined and they are known as up/down
regulated genes. The biologists and medical doctors are inter-
ested in the interpretation of the relative changes in intensities
for the same spot from the sample and reference image,
ICy3 and ICy5, respectively. The selection of differentially
expressed genes is done using the fold change value Fc =
log2 R

Gn , which is given by the log odd ratio off the spot inten-
sity from the twomicroarray images. In order to underline the
contributions of the proposedmethod from biological point of
view, we first describe themicroarray image samples and then
we estimate the differentially expressed genes using both our
proposed method and using GenePix approach.

This experiment describes the changes in the global gene
expression profiles of susceptible Arabidopsis leaves for
supporting biotrophic parasitic plants. The developmental
process associated with the plant parasitism is known as
haustorium formation [25]. Haustoria represent multicellular
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invasive organs of parasitic plants which are able to attach
and to penetrate the host tissue in order to acquire water
and nutrients. During this interaction, the host accumu-
late defense genes transcripts. The major pathogen-inducible
defense pathways are regulated by salicylic acid (SA) and
jasmonic acid (JA), or by complex networks interconnect-
ing these defense pathways [24]. The experiment under
analysis tries to elucidates weather these defense pathways
are either not-activated or inactivated by pathogen effec-
tors. Markers such as JAR1, involved in the JA adeny-
lation required for the JA function, are used in order to
characterize the JA defense pathway. The arabidopsis jar1-1
mutant reduces the impact of the JA-dependent pathway.
This pathway becomes activated only upon interactions with
pathogen effectors such as G. cichoracearum. These premises
make the jar1-1 mutant useful to reveal responses associated
with JA-dependent pathway. According to the experiment
conducted by [24], the GSM333336 and GSM333353 sam-
ples represent biological replicates of the uninfected Ara-
bidopsis leaves compared to a common reference, whereas
GSM333337 and GSM333341 samples represent biological
replicates of infected leaves compared to the same reference.
The findings of the aforementioned analysis conducted by
Fabro et al. [24] show that the JA pathway leads to enhanced
resistance to G. cichoracearum and also signals effective
defenses against the fungi.

Further on, we aim to determine supplementary differen-
tially expressed genes related to the plant defense response
to pathogen infection as compared to differentially expressed
genes determined by Fabro et al. [24]. For this purpose,
a visual representation of the differences in intensities
between the normalized median intensity values R and Gn is
given trough the MA plot in figure 6. The log odd ratio of the
fold change factor Fc is represented on the ordinate, whereas
the abscissa illustrates the average log intensity denoted
by log10(RGn). Considering our proposed feature extraction
approach for microarray spots, differentially expressed genes
are determined using the fold change factor Fc > 1.75 for
estimation. Using the same Fc factor, MA plots are shown
for both our proposedmethod and GenePix approach in upper
and lower images of figure 6, respectively.

A number of 119 genes were found as up-regulted by
both the proposed spot segmentation approach and GenePix
software. As referred to our approach, a set of 22 supple-
mentary genes are found to be up-regulated as compare with
the GenePix analysis. A sub-set of interest from the genes
determined to be up-regulated exclusively by our proposed
approach is presented in Table 3. The spots corresponding to
each gene from Table 3 are illustrated in Fig. 7. These genes
have different roles: the At4g11320 and gene At5g43060
(index 1379 and 10565 respectively) are involved in degen-
erative events that decrease metabolic activities and cause
the death of cells [26], [27], the At1g08650 gene (index
2151) is involved in plant stress signaling, the At5g38430
(index 2583) involved in the process of converting the carbon
dioxide into energy-rich molecules, whereas the AT3G09440

FIGURE 6. MA plots illustrating the differences in intensities between R
and Gn in case of GenePix approach (upper) and our proposed
approach (lower) for gene expression levels estimation.

gene (index 9458) are part of family of heat-shock proteins
produced by plant cells in response to stressful condition [28].

The importance of these up-regulated genes in the con-
text of the JA defense pathway is discussed next. JA sig-
naling pathway has been extensively studied, having a key
role in signaling effective resistance of Arabidopsis T to
haustorium formation. A common defense feature, trig-
gered by the JA pathway is the hypersensitive response
HR, known as a form of programmed cell death occurring
at the primary infection site. This local immune response
limits the spread of the pathogen by reducing their access
to nutrients [29]–[31]. As shown in [29], the up-regulated
At4g11320 and At5g43060 genes mark the activity of the
vacuolar protease RD21 which contributes to the vacuole
rupture during plant hypersensitive response [29]. This rup-
ture dramatically alters the cytoplasm by acidification and
the release of enzymes acting as cell death mediators [32],
[33]. Regarding the up-regulation of the AT3G09440, it is
a well known plant response to various forms of stress,
besides heat, leading also to the plant hypersensitive stress
response and consequently to the induction of programmable
cell death. According to [34], in spite of the intensive study
of the JA signaling pathway, our knowledge regarding the JA
signaling in plant–environment interaction is still not clear.
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TABLE 3. The table list a selection of 5 supplementary expressed genes determined using our proposed approach as compared with the GenePix
software, in case of Arabisopsis jar1-1 mutant supporting biotrophic parasitic plants, i.e., G. cichoracearum.

FIGURE 7. Spots taken from both ICy3 (first column) and ICy5 (second
column) images corresponding to the up-regulated genes listed
in Table 3, together with the contours marking the foreground pixels and
the clustering masks (third column) used for the determination of median
pixel intensity values for each spot.

Thus, the supplementary up-regulated genes underline the
activation of different enzymes, showing new mechanism of
action for the JA signaling.

V. CONCLUSION
We presented a complete image processing pipeline for the
extraction of microarray spot intensity features. Based on a
level set approach, a predefined contour is evolved leading
to the separation of the foreground from background pix-
els for each spot. Considering spots with non-homogeneous
intensity distribution and inner wholes, this initial classifi-
cation of pixels yielded only a rough approximation that
was insufficient to extract reliable values for all intensity
features. To overcome this drawback, we introduce a density
based spatial clustering procedure which determines segmen-
tation masks for spots with non-homogeneous intensity dis-
tribution and inner wholes, underlining spot intensity values
corresponding the spot on both Cy3 and Cy5 images.

The proposed approach was tested on a set of microarray
images. Furthermore, the results were compared with the
ones delivered by GenePix for the same set of images. Sim-
ilar spot intensity features were yielded for the majority of
spots, as shown by the Pearson coefficients exceeding values
of 0.94 and indicating strong correlation of our data (intensi-
ties) and GenePix reference data. Nevertheless, lower quality
measures for spot sameness and spot variation showed an
improvement of our segmentation approach as comparedwith
GenePix solution. Moreover, based on the determined spot
intensity features, up-regulated genes were determined for
our data set. A supplementary number of genes were found
as up-regulated by our approach that has not been reported
in the reference data set. A visual inspection of the spots
corresponding to the genes found as up-regulated by our
proposed approach showed that our segmentation procedure
fits much better to the true shape of the spot. As referred
to the biological significance of the results, we identified
supplementary important genes that complete the description
of the plant–environment interaction mechanism activated in
a defense response of Arabidopsis to pathogen infection.
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