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ABSTRACT Knowledge base completion (KBC) aims to predict missing information in a knowledge base.
Most existing embedding-based KBCmodels assume that all test entities are available at training time. Thus,
a question arises-that is, how to answer queries concerning test entities not observed at training time, which
is called the out-of-knowledge-base (OOKB) entity problem. In this article, we propose a parameter-efficient
embedding model that combines the benefits of a graph neural network (GNN) and a convolutional neural
network (CNN) to solve the KBC task with OOKB entities. First, we apply the GNN architecture to learn
the information between nodes in the graph. Second, convolution layers are used as a transition matrix
in GNN to learn more expressive embeddings with fewer parameters. Finally, we use a transition-based
knowledge graph embedding model to solve the KBC task. The model has learnable weights that adapt based
on information from neighbors and can exploit auxiliary knowledge for OOKB entities to compute their
embedding while remaining parameter efficient. We demonstrate the effectiveness of the proposed model on
OOKB datasets, and the code is available at https://github.com/Tianchen627/Knowledge-Transfer-for-Out-
of-Knowledge-Base-Entities.

INDEX TERMS Convolutional neural network, graph neural network, knowledge base completion, out-of-
knowledge-base entities.

I. INTRODUCTION
Knowledge bases, such as WordNet [1] and Freebase [2],
which store complex structured and unstructured informa-
tion, have important applications in semantic search [3], dia-
log generation [4], [5] and question answering [6]. These
knowledge bases can be viewed as a set of relation triplets,
i.e., triplets of the form (h, r, t) with an entity h called
the head entity, a relation r , and an entity t called the tail
entity [7]. Some examples of these triplets are (Forrest −
Gump, has − director,Robert − Zemeckis) and (Forrest −
Gump, is − a,film). However, these knowledge bases suffer
from incompleteness [8], which means some facts are miss-
ing. This problem gives rise to the task of knowledge base
completion (KBC), which entails predictingmissing facts and
whether a given triplet is valid.

Starting with TransE [7], embedding-based KBC mod-
els have been successfully applied to large-scale knowledge
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bases. Since then, some works [9]–[12] have focused on
the extension of TransE, whereas others consider seman-
tic matching methods, such as RESCAL [13], [14] and its
extensions [15]–[18]. Some works also make use of addi-
tional information to improve task performance, e.g., entity
types [19], relation paths [20], textual descriptions [21],
as well as logical rules [22]. All these models build dis-
tributed representations of entities and relations observed
in the training data and use various vector operations over
the embeddings to predict triplets. Although there are some
different solutions, such as the collaborative filtering frame-
work [23], embedding-based models have received the most
attention because this method stands out in various KBC
tasks. Moreover,increasingly more new technology in deep
learning and representation learning can be applied to the
KBC embedding-based model.

The state-of-the-art KBC methods are primarily
embedding-based models. These popular methods can
be broadly classified as graph neural network (GNN)-
based models [24]–[26] and convolutional neural network
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FIGURE 1. The knowledge base completion (KBC) models can be divided into 2 stages:
training stage (1) and testing stage (2). Case (3) is the KBC task with
out-of-knowledge-base (OOKB) entities. (1): During training, triplets that represent facts
in the knowledge base are fed to the model, for example,
(Forrest − Gump, has− director , Robert − Zemeckis), which contains the head entity
‘‘Forrest-Gump’’, the relation ‘‘has-director’’ and the tail entity ‘‘Robert-Zemeckis’’. In this
stage, the model performs knowledge base embedding by building distributed
representations of entities and relations observed in the training data. (2): During
testing, the model applies various vector operations over the embeddings to predict
missing relation triplets. Suppose the fact ‘‘Forrest-Gump is a film’’, which can be
depicted as the triplet (Forrest − Gump, is− a, film), is missing from the current
knowledge base. The model can find this missing fact through vector operations. For
example, if we want to answer the question ‘‘What is Forrest Gump?’’. We can obtain the
answer ‘‘film’’ by following the green dashed arrow in the figure. (3): OOKB entity
problem. The difference between the traditional KBC task and the OOKB KBC task is
that the OOKB test triplet contains an entity that is not observed in the training step,
which means the model does not have access to its vector embedding and vector
operations cannot work. In the traditional KBC task, all the entities are observed in the
knowledge base (shown as the shaded box). In this case, we use the new triplet
(To−Walk − the− clouds, has− director , Robert − Zemeckis), which is called auxiliary
knowledge in the OOKB situation, to obtain the embedding of the new entity. Thus,
we can answer the question ‘‘What is to walk the clouds?’’ by predicting the triplet
(To−Walk − the− clouds, is− a, film).

(CNN)-basedmodels [27], [28]. The former are known for the
ability to incorporate the connectivity structure in the graph
since the knowledge base can be seen as a graph, and the latter
are known for their highly parameter efficiency.

The out-of-knowledge-base (OOKB) entity problem in the
KBC task was first introduced in [29]. Before that, there were
many studies focusing on OOKB in different knowledge base
applications and tasks [30]–[33]. The OOKB entity problem
arises when new entities (OOKB entities) occur in the triplets
that are given to the system after training. Although we
can retrain the model with the new triplets containing the
OOKB entities, a method to avoid costly retraining is desir-
able. Fig.(1) illustrates the KBC task with OOKB entities
schematically, and a more detailed definition can be found
in Section III.

As these entities were unknown to the system at training
time, the system does not have their embeddings and, hence,
does not have a means to predict relations for these enti-
ties. Therefore, traditional KBC methods cannot be applied
directly to the OOKB KBC task. A GNN method was used
to solve the OOKB entity problem in [29]. The method
embodies knowledge transfer,which is a process included
in knowledge management domain. However, GNN models
suffer from potentially prohibitive memory requirements [24]
and generally do not outperform CNN-based models [28].

The OOKB problem is of practical importance because
OOKB entities can occur whenever new entities, such as
events and products, are produced, which happens everyday,
and in domain-specific knowledge base where the range of
entities is limited. Moreover, we often want to infer more
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facts (triplets) from the knowledge (triplets) we already
have.

In this article, we propose a parameter-efficient embedding
model that combines the benefits of GNN and CNN by
replacing the transition weight matrix in GNN, which repre-
sents the relations, with a multilayer convolutional network.
The model has learnable weights that adapt to the amount of
information from neighbors and can exploit auxiliary knowl-
edge for OOKB entities to compute their embeddings while
remaining parameter efficient.

Our contributions are summarized as follows:
1. We propose an end-to-end model for the KBC task with

OOKB entities. The model combines the advantages of the
GNN structure and the CNN structure.

2. We develop a new method to transfer knowledge for
OOKB entities. In contrast to using a vector or weight matrix
to represent relation embeddings in the KBC model, we use
a convolution kernel to learn expressive features from the
auxiliary knowledge of OOKB entities.

3. We verify the effectiveness of our model in OOKB
datasets. The model has good accuracy and parameter effi-
ciency. Since the OOKB problem often occurs in realistic
cases, our work is a successful attempt to combine the KBC
task with practical scenarios.

The remainder of this article is organized as follows.
We discuss related work in Section II and introduce the
background of KBC and OOKB in Section III. We describe
our approach in detail in Section IV. Then, we elaborate our
experimental study in Section V and compared the results
with the original GNN-for-KBC. The conclusion is presented
in Section VI.

II. RELATED WORK
The knowledge graph embedding model has been an active
research topic for KBC since TransE [7] addressed the task
by projecting both entities and relations into the same embed-
ding vector space with a translational constraint of h+ r ≈ t .
Later works introduced new representations of relational
translations and thus improved the performance and increased
the model complexity. Recent research incorporates GNN
[24]–[26] and CNN structures [27], [28] into the model.

GNN-based models are famous for taking the graph struc-
ture into consideration. Since previous works consider each
triplet independently without taking into account the relation-
ships between triplets, GNN-based models aggregate local
information in the graph neighborhood for each node. Graph
convolutional networks (GCNs) have been an effective tool
to create node embeddings and were first applied to the
KBC task in [24]. Relational GCN (R-GCN) [25] is an
extension that performs well for highly multirelational data.
Furthermore, in [26], graph attentionwas applied to the GNN.
However, these models have been criticized for their huge
memory requirements and failure to outperform CNN-based
models [27].

GCN approaches define convolutions directly on a graph
and sum node features over all spatial neighbors using an

adjacency matrix, whereas our method replaces the transition
weight matrix in the GNN with a multilayer convolutional
network. GCN suffers from prohibitive memory require-
ments, while our work maintains the parameter efficiency of
CNN-based models.

CNN-based models use convolutional layers to learn
embeddings because the performance in previous work was
limited by feature interactions. ConvE [27] was the first
model to use 2D convolutions over embeddings of different
embedding dimensions to extract more feature interactions.
InteractE [28] later extended ConvE through more feature
interactions via feature permutation, checkered reshaping
and circular convolution. These models have good parameter
efficiency: ConvE achieves better scores than R-GCNs on
FB15k-237 with 17× fewer parameters. The reason why
CNN-based models have high parameter efficiency is that
the convolutional layer has more feature interactions that
can make the model learn more expressive features in low
embedding size with fewer parameters. More details about
CNN-based models and parameter efficiency can be found
in Section IV-C. However, CNN-based models do not use
the relationships between triplets: every triplet is treated
independently.

The traditional KBC supposes that all the test entities are
observed in the training data, so every entity’s embedding is
available. The situation changes when a new entity occurs in
the test triplets, and the traditional KBC models cannot be
applied in this scenario because they do not have the embed-
dings of these entities. This situation is called the OOKB
entity problem. We focus on handling the KBC task with the
OOKB entity problem in this article.

The most closely related work to ours is GNN-for-OOKB
[29], which proposed a GNN model for the KBC task with
OOKB entities. We improve the model by replacing the tran-
sition weight matrix in the GNN with a multilayer convolu-
tional network to take advantage of the high computational
efficiency of the convolutional network and adapt to infor-
mation from neighbors with the GNN structure.

Another similar work [34] proposed an end-to-end graph
structure-aware convolutional network (SACN) that com-
bines the benefits of GCN and ConvE. However, their work
is not designed for the OOKB entity problem, and the SACN
cannot handle OOKB entities. Moreover, they focus on link
prediction, while we focus on triplet classification, which are
both typical KBC tasks [35].

There are also some recent works focusing on the OOKB
problem in the KBC task recently. Some researchers focus
on different type of tasks like link prediction [36], [37] in
few-shot learning and entity detection [38] while we focus
on triplet classification. Some researchers used the jointly
embedding method [39] and multimodal data enhanced rep-
resentation [40] to achieve OOKB entity embedding while
in our work these external data are not considered. Refer-
ence [41] used attention-based aggregation to solve the new
OOKB relation problem. Their idea and method are excit-
ing and we want to extend our work to the OOKB relation
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problem in the future. Many studies assumed a specific sce-
nario while our work considers only the standard scenario of
theOOKB entity problem inwhich all the knowledgewe have
is from the current knowledge base.

III. BACKGROUND
A. KNOWLEDGE GRAPH
A knowledge base G contains many facts that can be repre-
sented as a triplet (h, r, t) with head entity h, relation r , and
tail entity t . A knowledge base can also be called a knowledge
graph because each triplet in G can be regarded as a labeled
edge in a graph. The entities in a triplet correspond to nodes,
and the relations are the edges. Therefore, some algorithms
that are applied to graphs can also be applied to the knowledge
base as a graph-structured knowledge graph.

Now, we define E as a set of entities and R as a set of
relations. The fact, or triplet (h, r, t), has h, t ∈ E and r ∈ R.
Let Ggold ⊂ E×R×E be the set of gold facts, that is, ground
truth facts in knowledge baseG. If a triplet is inGgold, we say it
is a positive triplet; otherwise, it is a negative triplet. Suppose
we have an incomplete knowledge base G ⊂ Ggold; the goal
of KBC is to identify Ggold by finding all the missing facts in
knowledge base G.

B. OOKB ENTITY PROBLEM
In the OOKB situation,we have OOKB entities that are not
observed in the training step.

With knowledge base G observed at training time, new
triplets Gaux are provided at test time, with E(Gaux) 6⊂ E(G)
and R(Gaux) ⊆ R(G). The aux contains new entities, but
no new relations are involved. We call these new entities
OOKB entities, as EOOKB = E(Gaux)\E(G). Then, we have
E = E(G) ∪ EOOKB 6= E(G). In this situation, the KBC task
is to correctly identify missing relation triplets that involve
the OOKB entities EOOKB.,The difference from the traditional
KBC task is that the embeddings for these entities are miss-
ing: theymust be computed with the help of Gaux, every triplet
of which contains exactly one OOKB entity in EOOKB and one
entity in E(G).

C. KBC: TRIPLET CLASSIFICATION
Triplet classification, a typical KBC task first introduced in
[7] and regarded as a standard benchmark for KBC methods,
aims to verify whether an unseen triplet (h, r, t) is true, e.g.,
(Forrest−Gump, has−director,Robert−Zemeckis) should
be classified as a true fact while (Forrest − Gump, has −
director, James−Cameron) should be classified as false [35].

Viewed as a machine learning problem, triplet classifi-
cation is a classifier induction task in which E and R are
given, and knowledge base G forms the training set (with
only positive examples), with Gtest being the test set. The
set Gtest can be divided into the set of positive test examples
H∩ (Ggold) = (Ggold)\G and the set of negative test examples
Gtest\Ggold.

For the KBC task, the existing knowledge base G is
assumed to be incomplete, which means that some triplets
that must be present in G are missing; i.e., G 6= Ggold.
Here, we defineH = (E×R×E)\G as the set of triplets not

presented inG. The set does not appear during training or inG.
We assume that G is incomplete, so two cases are possible for
each triplet x ∈ H; that is, x ∈ Ggold: positive triplet and x /∈
Ggold: negative triplet. For the former case, the triplet x is not
contained in knowledge base G because of incompleteness.
Thus, we encounter the problem of determining which of the
above two possible cases holds for each triplet not present in
G. This is the approach used for triplet classification in the
KBC task.

IV. OUR APPROACH
A. OVERVIEW
In this article, we use an embedding-based model to solve
the KBC task. We propose a parameter-efficient embedding
model that combines the benefits of GNN and CNN by
replacing the transition weight matrix in GNN, which rep-
resents the relation, with a multilayer convolutional network.
The overall structure is based on a GNN.

A GNN structure consists of two models, the propagation
model and the output model [42]. In some papers [26], [34],
these two components are called the encoder and decoder.
The propagation model determines how to propagate infor-
mation between nodes in a graph while learning information
from the graph structure and the neighbor nodes. The out-
put model defines an objective function according to given
tasks using vector-represented nodes and edges. In this arti-
cle, we focus on the propagation component, modifying the
structure to improve its parameter efficiency. For the output
model, we retain the settings in [29]. A simple illustration
of our model is given in Fig.2, and the detailed procedure is
described in Algorithm 1.

B. GNN FOR KBC
GNN is a popular embedding-based model for KBC tasks.
In contrast to some existing GNN structures that encode the
entire graph into a vector, GNNs for KBC models encode
nodes and edges into vectors. Let G be a knowledge graph
and e ∈ E(G) be an entity. The head neighborhoodNhead and
tail neighborhood Ntail of the entity e are:

Nhead (e) = {(h, r, e)|(h, r, e) ∈ G} (1)

Ntail(e) = {(e, r, t)|(e, r, t) ∈ G} (2)

ve ∈ Rd is a d-dimensional representation vector of e. Our
goal is to obtain ve through the propagation model by means
of the following equation:

ve = P(Shead (e) ∪ Stail(e)) (3)

Here, Shead (e) and Stail(e) are sets of vectors. Shead (e) con-
tains the representation vectors of neighborhood Nhead (e),
and Stail(e) contains the representation vectors of neighbor-
hood Ntail(e). P is a pooling function that maps a set of
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FIGURE 2. An illustration of OOKB knowledge base completion. Here, the different colors of the nodes and edges represent different entities and
relations, and the blocks are their embeddings. Notably, a relation in a different direction has a different embedding, such as the purple relation in the
figure, which has a different embedding when it goes in or goes out blue entity. These embedding are used as convolution kernels in the model. The
figure is only a sketch; more details can be found in Algorithm 1.

vectors into a vector, i.e., P : 2R
d
→ Rd . The objective

is to extract shared aspects from a set of vectors. For S ={
xi ∈ Rd

}N
i=1, some common pooling function are as follows:

P(S) =
N∑
n=1

xi (4)

P(S) =
1
N

N∑
n=1

xi (5)

P(S) = max({xi}Ni=1) (6)

Equation (4)(5)(6) are sum pooling, average pooling, andmax
pooling, respectively. In [42], sum pooling was used in the
propagation model, while in [29], average pooling was used
and proved to be the best choice for KBC. In this article,
we use average pooling based on previous experience.

The sets Shead (e) and Stail(e) can be represented as follows:

Shead (e) = {Thead (vh; h, r, e)|(h, r, e) ∈ Nhead (e)} (7)

Stail(e) = {Ttail(vt; e, r, t)|(e, r, t) ∈ Ntail(e)} (8)

Thead ,Ttail : Rd
× E(G) × R(G) × E(G) → Rd are

called transition functions, and they are used to transform
the vector of the head neighborhood entity and tail neigh-
borhood entity of e to the vector ve, depending on the edge
between them. Various transition functions have been pro-
posed, and many neural network techniques can be used,
such as batch-normalization, residual connection, and long
short-term memory. Here, we introduce the transition func-
tion that is most closely related to our work, which was

proposed in GNN for OOKB [29]:

Thead (vh; h, r, e) = ReLu(BN(Aheadr vh) (9)

Ttail(vt; e, r, t) = ReLu(BN(Atailr vt) (10)

where BN indicates batch normalization. The above equa-
tion makes the transition function dependent on the relation
between the current node (entity) and the neighbor. Note that
the parameter matrices are defined individually for the rela-
tion r. The reverse relationship is considered as in different
situations ve is either a head entity or tail entity. Therefore,
every relation in the knowledge base has two parameter matri-
ces, one for transforming the head entity and the other for
transforming the tail entity.

Overall, the transition function can be written as:

ve = T (x) =
{
ReLu(BN(Aheadr vh), if x = (h, r, e),
ReLu(BN(Atailr vt), if x = (e, r, t),

(11)

Here, ve is the candidate embedding vector of entity e,
which is obtained by a single triplet, while Shead (e) and
Stail(e) always contain multiple of triplets. By means of (3),
we can obtain the final embedding ve of e.

C. PARAMETER EFFICIENCY AND CONVOLUTIONAL LAYER
The efficiency of an algorithm can be measured based on the
usage of different resources. In deep learning, a deeper archi-
tecture and higher embedding dimension always lead to better
performance. However, the cost of such a model is enormous,
with higher capacity of calculation and memory usage, and
the number of parameters in the model will be astronomical.
Therefore, many works focus on the parameter efficiency of
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Algorithm 1 Test Stage of Our Model
Input: Test triplets Gtest, auxiliary triplets Gaux, transition

function T , pooling function P, threshold γ , entity
embedding dictionary E , relation embedding dictionary
R

Output: result dictionary Result
1: Nhead (e) = {(h, r, e)|(h, r, e) ∈ Gaux} //head neighbor-

hood entity set
2: Ntail(e) = {(e, r, t)|(e, r, t) ∈ Gaux} //tail neighborhood

entity set
3: for each (h, r, t) ∈ Gtest do
4: if h /∈ E then //head entity is the OOKB entity
5: Shead (h) = {T (h1, r, h)|(h1, r, h) ∈ Nhead (h)}
6: Stail(h) = {T (h, r, t1)|(h, r, t1) ∈ Ntail(h)}
7: vh = P(Shead (e) ∪ Stail(e))
8: vr, vt = R(r), E(t)
9: else if t /∈ E(G) then //tail entity is the OOKB entity

10: Shead (t) = {T (h1, r, t)|(h1, r, t) ∈ Nhead (t)}
11: Stail(t) = {T (t, r, t1)|(t, r, t1) ∈ Ntail(t)}
12: vt = P(Shead (e) ∪ Stail(e))
13: vr, vh = E(r), E(h)
14: else//no OOKB entity
15: vh, vr, vt = E(h),R(r), E(h)
16: end if
17: score=‖vh + vr − vt‖
18: if score < γ then
19: Result((h, r, t)) = True
20: else
21: Result((h, r, t)) = False
22: end if
23: end for

the model and design the model to have acceptable perfor-
mance with fewer parameters. Various model compression
techniques, such as distillation, pruning and quantization,
can be used to reduce the number of network parameters by
removing redundant parameters with minimal loss in perfor-
mance.

In the KBC task, ConvE [27] is known for its high
parameter efficiency and robust performance on different
datasets, achieving better scores than DistMult and R-GCNs
on FB15k-237 with 8× and 17× fewer parameters. When
the embedding size is 200, the ConvE model contains nearly
5M parameters. The embedding layer, convolutional layer,
and projection layer account for 2.96M, 320, and 1.96M
parameters, respectively. The convolutional layer needs few
parameters for the filter, and the embedding layer accounts
for a large proportion of the total number of parameters. The
number 2.96M is obtained from (14541 + 237) ∗ 200 =
2, 955, 600, where 14541 is the entity number in FB15k-
237 and 237 stands for the relation number. A larger knowl-
edge base would result in more parameters, especially in the
embedding layer, so controlling the embedding layer size
is very important. Moreover, a model that achieves robust

performance with a small embedding size, such as ConvE,
is highly desirable. In the GNN framework, the design of
the transition function is key to improving the parameter
efficiency because when the embedding size is fixed, the tran-
sition function determines the performance of the model and
the number of of parameters.

The scoring function of ConvE is defined as follows:

ψr (es, eo) = f (vec(f ([es; rr] ∗ w))W)eo (12)

es represents the subject entity and eo is the object entity.
A higher score represents a higher likelihood the triplet is
true. We believe ConvE can be used as the transition function
in the propagation model, so we reorganize the equation
as (13).

ve = T (x)

=

{
ReLu(BN(vec([vh; vr] ∗ w)W)), if x = (h, r, e),
ReLu(BN(vec([vt; vr] ∗ w)W)), if x = (e, r, t),

(13)

where vec() is the flatten operation, w is the convolution
operation and W is the parameter matrix for projection. [e; r]
denotes 2D reshaping of vectors e and r.

The main difference between (11) and (13) is the treatment
of the relation embedding. In GNN (11), the embedding of
relations is achieve via weight matrix A used for projection,
and every relation has two corresponding matrices for the
sake of the alternative relation direction, which means the
reverse relationship has a separate embedding. For ConvE
(13), every relation is embedded as a unique vector vr. Con-
volutional filterw and projection matrixW are applied for the
transition, and all these components share parameters.

Here, we represent the relation as a convolution kernel,
which can learn expressive features from the auxiliary knowl-
edge of OOKB entities. In contrast to ConvE, we discard the
vector representation in our propagation model. The alterna-
tive is to directly convolve vh or vt with the specific convo-
lution kernel wheadr or wtailr representing the corresponding
relation. The convolution kernels no longer share parameters,
and every relation has two corresponding convolution kernels
for whether the direction is head to tail or tail to head. The
convolution operation can either be 1D convolution, which is
always used inNLPwork, or 2D convolution, commonly used
in CV work (ConvE is the first KBC model to use 2D con-
volutional layers). In addition, if 2D convolutions is applied,
the embedding vector of a given entity vh or vt should be
reshaped to a matrix for the 2D convolutional layer. In a later
experiment, we found the performance of 2D convolution to
be slightly better. For our new transition function, see (14).

ve= T (x)

=

{
ReLu(BN(vec[vh] ∗ wheadr )Whead

r )), if x = (h, r, e),
ReLu(BN(vec[vr] ∗ wtailr )Wtail

r )), if x = (e, r, t),
(14)

The formula retains a different projectionweight matrix for
each relation. The number of parameters appears to increase,
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TABLE 1. Given a triplet x , whether x = (h, r , e) or x = (e, r , t), transition
function T (x) is used to obtain the embedding ve of entity e. We modify
the score function from ConvE(12) into a transition function suitable for
the propagation model.

but we can achieve better performance with lower embedding
size, which means the number decrease overall. The final
performance is shown in Table 6, and Table 1 summarizes
all the transition functions mentioned above.

D. OBJECTIVE FUNCTION
The objective function is designed to guide the training for the
task. We use TransE [7] as the output model because TransE
is the most representative translational distance model and
the translational property of TransE is highly regarded [34].
What is different is that we use an absolute-margin objective
function instead of the pairwise-margin objective function in
original TransE.

The objective function is as follows:

L =
N∑
i=1

f (hi, ri, ti)+ [γ − f (h′i, r
′
i , t
′
i )]+ (15)

Here, [x]+ is the hinge function max(0,x). (hi, ri, ti)
denotes a positive triplet in the training set, and (h′i, r

′
i , t
′
i )

denotes a negative triplet generated by negative sampling.
γ ∈ R is a threshold, also called the margin. The objective
function requires the score f (hi, ri, ti) to be greater than the
score (h′i, r

′
i , t
′
i ) by at least γ . The score function f evaluates

the implausibility of a triplet (h, r, t): smaller scores indicate
that the triplet is more likely to be positive. In TransE [7],
the score function is defined by f (h, r, t) = ‖vh + vr − vt‖.
The objective function is used to optimize the scores for
the positive triplets towards zero, whereas the scores of the
negative triplets are going to be at least γ .

Some recent research used CNN-based models as the out-
put model for GNN [26], [34]. However, these works studied
link prediction, another KBC task. We attempted to adapt the
CNN structure to triplet classification, but the results were
not satisfactory. Therefore, we chose TransE, a parameter-
efficient model whose parameters consist of only embedding
parameters, as the output model.

V. EXPERIMENT
A. DATASETS
The OOKB datasets were generated through
WordNet11 [1], [29]. The data files can be down-
loaded from https://github.com/takuo-h/GNN-for-OOKB.

TABLE 2. Specifications of the WordNet11. All the training triplets are
positive. Half of the validation and test sets are negative triplets, and
these are included in the numbers of validation triplets and test triplets.

The specifications of these datasets are shown in Table 2
and Table 3. The datasets include nine independent datasets
obtained by different filtering and splitting methods that
can be denoted by Head,Tail,Both-1,000,3,000,5,000, respec-
tively, where the first part represents the position of the
OOKB entities and the second part represents the number of
triplets used for generating the OOKB entities. More details
about the datasets can be found in the original paper [29].
All entities and relations come from WordNet11, and every
dataset contains training, validation, and test sets. In addition,
the validation and test sets include positive and negative
triplets, whereas the training set does not contain negative
triplets.

Here, we use Both-1000 and Both-5000 for our experi-
ment, as the OOKB entities can be either head or tail entities,
which is a more general situation in practice. Both-1000 con-
tains 93,364 training triplets and 1,238 OOKB entities, while
Both-5000 contains 57,601 training triplets and 4,963 OOKB
entities. Thus, the difficulty of Both-1000 is relatively low,
and Both-5000 is more difficult: we want to evaluate our
model in both easy and difficult scenarios. Details of the
datasets are shown in Table 4.

B. IMPLEMENTATION AND HYPERPARAMETERS
Recently, many state-of-the-art empirical results have been
challenged for whether they were achieved due to a better
model/algorithm or simply by means of a more extensive
hyperparameter search [43]. Since we want to compare our
work with GNN-for-OOKB [29], we use the same hyperpa-
rameters including training epoch,batch size,and learning rate
provided in the previous work for the sake of fairness.

All networks were trained by stochastic gradient descent
with the Adam optimizer [44]. The step size of Adam was
α1/(α2 · k + 1.0), where k indicates the current epoch in
training, α1 = 0.01, and α2 = 0.0001. The batch size was
5000, and the threshold γ = 300. The embedding size was
200 in GNN-for-OOKB, and the number of training epochs
was 500 in every experiment. We trained our model from the
beginning and we did not use pretraining.

To generate corrupted triplets, we used the ‘‘Bernoulli’’
trick, a technique also used in [9]. When corrupting triplets,
the Bernoulli trick set different probabilities for replacing the
head or tail entity to reduce the chance of generating false
negative labels.

For the hyperparameters in the transition function, we set
the kernel size to 3 × 3 and the number of channels to 10.
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TABLE 3. The OOKB datasets. The numbers of triplets in the validation and test sets include negative triplets. All relations and entities come from
WordNet11.

TABLE 4. ‘‘Both’’ means both head and tail entities can be OOKB entities.
‘‘1000’’ and ‘‘5000’’ denote the number of OOKB entities.

TABLE 5. Triplet number of a given relation in training set of both-1000.

These settings are from the original ConvE paper. The dimen-
sion of the embedding space was 36 in the proposed model;
thus, in the feed-forward pass, the input vector is reshaped
as R6×6 and then the convolution operation is applied to the
R10×3×3 filter.

C. RESULTS AND ANALYSIS
The performance of the model is shown in Table 6. From
Section II, we know that most popular KBC models cannot
handle OOKB entities because they are not designed for
such entities. Here, we choose GNN-for-OOKB [29] as the
baseline and run bothmodels with the settings in Section V-B.
The proposed model performs better with fewer parameters,
which means the model has higher parameter efficiency.

As discussed in Section IV-C, the embedding results in
more parameters, and ConvE [27] is highly parameter effi-
cient because it performswell with a low embedding size. The
proposed model is similar, and its high parameter efficiency
is a result of the robust performance at low embedding size.
Table 7 shows the results from our ablation study where

TABLE 6. Results. The accuracy of triplet classification in different
datasets.

TABLE 7. Performance with different embedding size in
Both-1000 dataset.

we evaluate the performance of both models on the Both-
1000 dataset with different embedding sizes. The proposed
model always outperforms the previous model for a given
parameter scale. The proposed model can learn more expres-
sive features in low embedding size with fewer parameters.

We investigate the training process in the Fig.3. The image
has 12 subcharts: the former 11 contain the triplet scores
of 11 different relations in the both-1000 dataset, showing
how the scores change with learning, and the last is the overall
performance, that is, the triplet classification accuracy on
the test set. The x label means epoch. In the first 11 charts,
we sampled the triplet score during training, and every red and
blue line indicates an individual negative or positive triplet’s
score, the black line is the threshold, which is 300 in this
article, and the green line is the accuracy using this threshold.
The ‘‘simalar-to’’ relation only has two triplets in the test set,
so there is only a single red line and single green line in the
chart. The information about triplet number in the training set
can be found in Fig.4 and Table 5.

Our model classified triplets with a score less than 300 as
positive, so in Fig.3, the score of positive triplets (blue line)
decreases as training proceeds, while the score of negative
triplets (red line) is increasing. The accuracy (green line)
increases as more red lines go above the threshold and blue
lines descend under the threshold, whichmeans themodel can
distinguish the triplets accurately. The red dots in the charts
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FIGURE 3. Changes in the scores of triplets in the both-1000 dataset during training.

FIGURE 4. Triplet number of a given relation in training set of both-1000.

indicate the highest accuracy achieved during training. The
GNN structure successfully obtains the embeddings of the
OOKB entities, and the convolution layer guarantees robust
training. Furthermore, in the overall performance subchart,
the black line continues rising and the red dot always appears
in the latter part of training.

Fig.3 shows that most triplets can be optimized towards
the correct score, but some triplets are difficult to optimized,
that is, the red lines and blue lines are too close to be divided
by the black line. This situation is substantial, especially

for the ‘‘type-of’’ and ‘‘has-instance’’ relations. Fig.4 shows
that these two relations have the largest number of triplets,
which is interesting because more data always means better
performance in representation learning. Combining Fig.3 and
Fig.4, we can also see that the accuracy of these two relations
rises steadily, which may indicate that relations with a large
number of triplets need more training time. This phenomenon
may also be related to the knowledge base dataset. There are
some discussions [27], [45] of the available KBC datasets,
in which the researchers believe the existing dataset and
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the evaluation protocol are deficient. In the future, we will
attempt to generalize the OOKBproblem by applying a newly
proposed dataset and evaluation method.

On the basis of the evidence and analysis above, we con-
clude that the proposed model has advantages in OOKB
entity problem. We believe the model’s steady convergence
in training and high parameter efficiency make it worthy to
extend to more KBC scenarios.

VI. CONCLUSION
In this article, we focus on the KBC task in the OOKB entity
problem. The OOKB entity problem means that entities are
unobserved at training time.We propose a parameter-efficient
embedding model that benefits from both a GNN and a
CNN to handle the OOKB KBC task. The effectiveness of
our model in terms of improved accuracy and parameter
efficiency is verified in OOKB datasets. Our model achieved
better accuracy with approximately one-fifth of the parameter
count in the previous work.

Recently increasing studies have focused on the KBC task
in specific scenario. These studies have made KBC task
more practical because in real-world cases there are always
complicated situations. The OOKB entity problem is one of
the common scenarios in real-world cases. Our work is a
successful attempt to combine the KBC task with practical
scenarios. In the future we would like to extend our model to
be scalable to larger datasets and make the model adaptable
to different scenarios.
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