
Received August 2, 2020, accepted August 23, 2020, date of publication August 26, 2020, date of current version September 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019692

Reliable Optical Performance Monitor: The
Combination of Parallel Framework and Skip
Connected Generative Adversarial Network
XIAOJIE FAN 1, FANG REN 1,2, JINGYU ZHANG1, YIYING ZHANG 1,
JINGJING NIU1, AND JIANPING WANG 1
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2State Key Laboratory of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and
Technology Beijing, Beijing 100083, China

Corresponding author: Fang Ren (renfang@ustb.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant FRF-TP-19-016A2, and in
part by the National Natural Science Foundation of China (NSFC) under Grant 61605004.

ABSTRACT Future optical network is developing towards highly heterogeneity and flexibility, which means
that the various signals will be transmitted in the network and the optical performance monitor is more likely
to encounter the signal beyond its monitoring range. When the signal beyond monitoring range (abnormal
data) is input, the conventional optical performance monitoring (OPM) framework without the ability of data
filtering will produce completely wrong results. Although the serial OPM framework has the ability of data
filtering, it increases the processing time cost. We propose a novel parallel OPM framework, in which the
judgement and analysis modules process the input data simultaneously to reduce the time cost. Moreover, the
light-weight and high-performance skip connected generative adversarial network (GAN) trained only on the
normal data (within the monitoring range) is proposed in the judgement module to filter the abnormal data
in a fast-speed way (∼9 ms). In the simulation, eight common signals are used to test the performance of the
skip connected GAN in the judgement module. The optimal area under the curve (AUC) value of 0.952 is
obtained when the abnormal data is defined as 60 Gbps 64QAM signal. Besides, the impact of the latent
vector length, the task weights, the weight of abnormal score, shifted K values and training data size on the
model performance are studied.

INDEX TERMS Generative adversarial network (GAN), optical performance monitoring (OPM).

I. INTRODUCTION
With the expansion of the Internet users and the emer-
gence of various services like cloud computing, artificial
intelligence (AI) and internet of things (IoT), the optical
network is becoming heterogeneous, dynamic and complex
so as to ensure that massive data can be effectively transmit-
ted [1]. Moreover, in order to maintain good operation and
management of optical network, it is of great significance
to use optical performance monitoring (OPM) along with
bit-rate and modulation format identification (BR-MFI) in
the network’s intermediate nodes to accurately monitor
the performance parameters of the transmitted signal (e.g.
bit-rate, optical signal-to-noise ratio (OSNR), modulation
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format, etc.) [2]. These accurately monitored parameters,
which are sent to the optical control layer, directly reflect the
signal status and can provide as important decision basis for
the management of optical network.

In the network’s intermediate nodes, the traditional frame-
work of the optical performance monitor consists of the data
generation module and the data analysis module in sequence,
which means that the monitor first collects signals to generate
suitable data, and then analyzes the generated data to obtain
the monitoring results. In order to obtain more accurate
monitoring results, a large number of deep learning (DL)
technologies such as deep neural networks (DNN) [3]–[7],
the convolutional neural networks (CNN) [8]–[11], the long
short-term memory (LSTM) [12], [13] and so on, which
belong to the category of supervised learning are applied to
the data analysis module for OPM and BR-FMI. Thanks to
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the capability of extracting and sharing the features, the DL
technology is more powerful than machine learning (ML)
technology.

The usage of these DL technologies which belong to the
supervised learning class, can be separated into training stage
and testing stage. It is noted that in the supervised learning,
the training and testing sets are derived from the same
monitoring range (the same data distribution). Otherwise,
the DL model would produce completely wrong results.
For instance, a DL model trained with multiple phase shift
keying (MPSK) signals with the aim of identifying the signal
type cannot get the correct results when the input data is
quadrature amplitude modulation (QAM) signals. However,
with the development of the optical network, the optical
performance monitor would inevitably encounter the data
which beyond its monitoring range (named as abnormal data).
Worse still, the traditional monitoring framework does not
have the ability of data filtering, and the input abnormal data
would lead to the DL models in the data analysis module get
wrong results.

In order to enhance the reliability of the optical
performance monitor, a serial OPM framework and a
generative adversarial network (GAN) with the encoder-
decoder-encoder (EDE) structure were introduced with the
purpose of filtering the abnormal data [14]. The judgement
module is placed after the data generation module so as to
filter the abnormal data before the data analysis module.
The training set of the data analysis module is used to train
the EDE based GAN in the judgement module to learn the
distribution of the normal data which lie the monitoring
range, which means that no additional data is required. The
judgement module is loosely coupled with the data analysis
module, which means that the DL models in the analysis
module can continue to work without any modification.
Compared with the idea of using the supervised learning
method to identify the abundant abnormal data, our previous
work [14] is low-cost and scalable, which greatly improve
the reliability of monitoring. However, our previous work
still has the following drawbacks: (1) The serial OPM
framework increases the processing time of the input data.
It is because the input data needs to be processed by each
module successively. The more serial modules, the longer
it takes. (2) The EDE based GAN model in the judgement
module is complex and its performance is not good enough.
Hence, a more advanced OPM framework as well as a
more light-weight and high-performance algorithm in the
judgement module are needed to obtain more reliable and fast
optical performance monitoring.

In this article, we address the drawbacks in our previous
work and propose a novel parallel OPM framework as
well as the skip connected GAN model to realize reliable
and fast optical performance monitoring. In the parallel
OPM framework, the generated data is processed by the
judgement module and the data analysis module in parallel,
which shorten the processing time compared with the serial
OPM framework. Moreover, the skip connected GAN is

trained to learn the distribution of the input image data
and the latent vector space. The skip connections in the
generator of the GAN facilitate the multi-scale capture of
the image space [15]. The discriminator not only helps
the generator to learn the data distribution but also learns
the distribution of the latent vectors by itself. In the data
generation module, the data is generated by the asynchronous
single channel sampling (ASCS) method. The performance
of the skip connected GAN in the judgement module is
verified by eight signals with diverse optical impairments
(OSNR, differential group delay (DGD) and chromatic
dispersion(CD)): 60/100 Gbps 4 quadrature amplitude mod-
ulation (QAM), 60/100 Gbps quadrature phase-shift keying
(QPSK), 60/100 Gbps 64QAM, 60/100 Gbps 16QAM.

The remainder of this article is organized as fol-
lows. In Section II, the principles of the parallel OPM
framework, asynchronous single channel sampling and the
skip connected GAN model are illustrated and discussed.
In Section III, the simulation set-up is presented and
described. Moreover, the simulation results of the skip
connected model is also presented and discussed. The
conclusion of this article is summarized in Section IV.

II. METHODS
A. THE PARALLEL OPM FRAMEWORK
In order to maintain good control and management of
the optical network, it is important to deploy optical
performance monitors in the intermediate nodes. However,
due to the expensive hardware cost and high sampling
rate, the digital signal processing (DSP)-based coherent
detection methods are not suitable to be deployed at the
intermediate nodes [16]. Instead, with the advantage of
cost-effective and low-speed sampling, the direct detection
and asynchronous sampling (DDAS) method is used in
this work. The performance parameters monitored by the
optical performance monitors are sent to the control and
management layer to formulate the management strategy for
the network. However, there is a contradiction between the
new signal generated with the upgrade of the optical network
and the optical performance monitor with fixed monitoring
range. Specifically, completely wrong monitoring results will
be got when the new signal beyond the monitoring range
of the optical performance monitor is input, which is a
hidden danger for the management of the network. Therefore,
to enhance the reliability of the monitor, a judgement module
which can filter the abnormal data is needed.

The structure comparisons among the traditional OPM
framework, the serial OPM framework and the new proposed
parallel OPM framework are shown in Fig. 1. As far as
we know, the parallel framework is first proposed in the
OPM field by us. The data generation and analysis modules
are the two modules existing in all three OPM frameworks.
The judgement module only exists in the serial and parallel
OPM frameworks. Therefore, the traditional OPM framework
is unreliable. Moreover, the data processing time of each
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FIGURE 1. The structure comparisons among the traditional OPM
framework, the serial OPM framework and the new proposed parallel
OPM framework. OXC: optical cross-connect.

OPM framework is investigated to highlight the low time-cost
advantage of the parallel OPM framework. The processing
times of the traditional, serial and parallel OPM frameworks
from the input data to the results are defined as tTall , t

S
all

and tPall , respectively. The processing times of the generation,
judgement and analysis modules are defined as tG, tJ and
tA, respectively. In the traditional OPM framework, the input
data will be processed by the data generation module and
the data analysis module in sequence, which means that the
processing time of the traditional OPM framework can be
expressed as:

tTall = tG + tA when the input is normal/abnormal (1)

In the serial OPM framework, the input data will be processed
by the data generation module and the judgement module.
If the judgement module classifies the input data as normal
data, then the input data needs to be processed by the
data analysis module. Otherwise, the judgement module
will produce a warning message and deny the service.
The processing time of the serial OPM framework can be
expressed as:

tSall =

{
tG + tJ + tA, when the input is normal
tG + tJ , when the input is abnormal

(2)

In the parallel OPM framework, the input data will be
processed by the data generation module firstly, and then
processed by the judgement and analysis modules in parallel.
If the judgement module classifies the input data as normal,
the analysis results from the data analysis module is regarded
as the monitoring results. Otherwise, the judgement module

will produce the warning message and deny the service.
The processing time of the parallel OPM framework can be
expressed as:

tPall =

{
tG +max(tJ , tA), when the input is normal
tG + tJ , when the input is abnormal

(3)

Moreover, according to equations (1)-(3) and the size
relationship between tJ and tA, we can conclude as follows:

if tJ = tA,

then

{
tSall > tTall = tPall, when the input is normal
tSall = tTall = tPall, when the input is abnormal

if tJ > tA,

then

{
tSall > tPall > tTall, when the input is normal
tSall = tPall > tTall, when the input is abnormal

if tJ < tA,

then

{
tSall > tTall = tPall, when the input is normal
tTall > tSall = tPall, when the input is abnormal

(4)

According to our previous work [10], we take processing
time of tJ = 9ms and tA = 51ms from this work (shown
in Section C, part III) and our previous OPM work [10]
(which perform OPM based on ASCS images), respectively,
as examples to analyze equation (4) concretely. According to
equations (1)-(3), when the input is normal, the tTall , t

S
all and

tPall equals to (tG + 51) ms, (tG + 60)ms and (tG + 51) ms,
respectively, and when the input is abnormal, the the tTall , t

S
all

and tPall equals to (tG + 51) ms, (tG + 9)ms and (tG + 9) ms,
respectively. The result of the specific example is consistent
with equation (4) when tJ < tA. It is noted that in our parallel
framework, the judgement module and analysis module are
decoupled, which means the existing OPM works proposed
by researchers can be applied in the analysis module without
any modification. With the development of the research,
the tJ and tA are likely to be shorter and shorter. However,
no matter what relationship between tJ and tA is, equation (4)
summarizes all the results. It is clear that the tPall is definitely
not larger than the tSall , which demonstrates the superiority of
the parallel OPM framework. Moreover, the parallel structure
requires higher demand for the computing power of the
optical performance monitor, but with the development of
hardware equipments, the computing power is no longer an
obstacle.

B. ASYNCHRONOUS SINGLE CHANNEL SAMPLING
As a typical representative of the DDAS method, the ASCS
method is used in the data generation module to generate the
phase portrait images (‘‘.png’’ format), which are the data
format that the subsequent modules will need to process. Due
to the fact that no clock information is needed, the ASCS
method with the single-tap sampling way is economical
and uncomplicated [17], [18]. Fig. 2 shows the principle of
the ASCS method for generating the phase portrait image.
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FIGURE 2. The principle of the ASCS method for generating the phase
portrait image.

Firstly, the photodetector (PD) is used to directly convert
the optical signal into the electrical signal. The intensity
of the optical signal will be converted into the voltage
amplitude of the electric signal. Then, the original sample
sequence S1, S2 · · · SN is acquired by single-tap sampling the
electric signal at the frequency of 1/Tsampling. By shifting k
samples of the original sample sequence, the shifted sample
sequence is obtained. The sample pairs of (Si, Si+k) are
collected from the original and shifted sample sequences.
Finally, 20000 collected sample pairs are used to plot a
phase portrait image. Some typical phase portrait images
(k = 10) of the eight different signals and their respective
constellation diagrams are shown in Fig. 3. It is noted
that we use geometric shaping (GS) [19] technology to
redesign the regular 4QAM constellation into diamond shape
constellation to make distinction with QPSK constellation
diagram. It is clear that the phase portrait image can reflect
the influence of bit-rate, signal format and signal impairments
in visual information, which is the basis condition for the
judgement and analysis modules to work properly. It is noted
that this work is finished mainly from the perspective of
image processing, so the phase portrait images with specific
format (‘.png’) are transformed from raw data. However,
this transformation may lead to the loss of information and
further influence the model performance, which remains to
be studied in the future.

C. THE SKIP CONNECTED GAN IN JUDGEMENT MODULE
For the purpose of filtering the abnormal data, the unsu-
pervised GAN is used to design the DL model. The GAN
proposed by Goodfellow et al. [20] is a hot spot in the
research of DL [21]–[26]. The principle of the GAN is
founded on the rivalry of two networks within a zero-sum
game framework. The first network named as generator (G) is
used to capture the input data’s distribution, whilst, the second
network named as discriminator (D) is used to predict the
correct class (i.e., normal or abnormal). Each network is

FIGURE 3. The typical phase portrait images of the eight signals
influenced by impairments. For each signal type, the image with red
border is generated when CD = 0 ps/nm, DGD = 0 ps and OSNR = 16 dB.
the image with green border is generated when CD = 150 ps/nm, DGD =

3 ps and OSNR = 18 dB. The respective constellation diagrams of
different modulation types is shown at the end of each row.

constantly improving its ability in the competition until
they reach a balance. With the help of GAN, the designed
DL model has a stronger ability to learn the normal data
distribution so as to filter the abnormal data. Moreover,
in the EDE based GAN model which we proposed before,
the generator is the structure of the encoder-decoder-encoder
for the purpose of learning the distribution of the image
and latent spaces simultaneously. This kind of generator
is complex and its performance needs to be improved.
Here, we simplify the encoder-decoder-encoder structure of
the generator to the encoder-decoder structure, and skip
connections are added to enable the multi-scale capture of
the image space. The encoder-decoder structure with skip
connections is similar to the UNet style which is good at
capturing the image details [15]. Different from the EDE
based GAN which learns the distribution of image and latent
spaces simultaneously in the generator, the skip connected
GAN learns the distribution of image and latent spaces in the
generator and discriminator, respectively. With the simplified
structure of the generator and the added skip connections,
the new proposed skip connected GANmodel is light-weight
and high-performance.

The structure of the skip connected GAN is illustrated
in Fig. 4, which consists of the generator (G) and the
discriminator (D) networks. In the network G, the input
image I with the shape of 32 × 32 × 3 is down-sampled by
the encoder sub-network GE to the low-dimensional feature
with the shape of 1 × 1 × 512, then, the low-dimensional
feature is up-sampled to reconstruct the input image I as Î by
the decoder sub-network GD. The sub-network GE has four
layers, each of which consists of the Convolutional operation,
LeakeyReLu and BatchNorm. As the symmetrical structure
of GE , the GD also has four layers, each of which consists
of the Convolutional transpose operation, BatchNorm and
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FIGURE 4. The detailed structure of the skip connected GAN in the judgement module.

ReLu. Moreover, the GD uses the method of the skip
connection so that every down-sampling layer in the GE is
copied and concatenated to its homologous up-sampling layer
in the GD. The benefit of using the skip connections is that
they provide direct feature transfer between the layers so that
both the local and global information is probed and better
image reconstruction is obtained. The network D is used to
classify the real image I from the fake image Î generated by
G during training. Besides, the network D also extracts the
latent feature vector of the input image and the reconstructed
image from the Penultimate layer with shape of 1 × 1 × 64.
Other detail configurations such as the stride, padding, filter
size and so on are clearly illustrated in Fig. 4. The whole skip
connected GAN is trained on the normal data, and tested on
both the abnormal and normal data. In the training phase, the

skip connected GAN learns the distribution of the normal
data in the image and latent vector spaces. In the testing
phase, since the model is never trained on the abnormal data,
the reconstruction loss of the abnormal data is higher than
the reconstruction loss of the normal data, which can be used
as the standard to discriminate the normal from abnormal
data. In order to train and test the skip connected GAN,
a dataset {Ii}m+n is split into the training set {Ii}m and testing
set {Ii}n, where Ii ∈ R32×32×3 is the input image, m + n is
the total number of images. Moreover, the training set {Ii}m

only contains m normal images and the corresponding label
yi = 0 denotes normal data. The testing set {Ii}n contains
n normal and abnormal images and the corresponding
label yi ∈ {0, 1} denotes normal and abnormal data,
respectively.
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During the training phase, the adversarial loss, the
reconstruction loss and the latent vector loss are combined
to train the model. The adversarial loss is used to impose
G to reconstruct image authentically, and D to classify the
real image from the generated image. The adversarial loss is
denoted as:

lossadv = Ex∼px
[
logD (Ii)

]
+ Ex∼px

[
log

(
1− D

(
Îi
))]

(5)

The reconstruction loss is used to capture the distribution
of the input normal data and reconstruct the input image as
similarly as possible. The reconstruction loss defined by the
L1 distance is expressed as:

lossrec = Ex∼px
∣∣∣Ii − Îi∣∣∣

1
(6)

The latent vector loss is used to reconstruct the latent vector
from the input and the generated images as akin as possible.
The Penultimate layer of the D is used as the extracted latent
vector of the input image and the generated image. The latent
vector loss is expressed as:

losslat = Ex∼px
∣∣∣f (Ii)− f (Îi)∣∣∣

2
(7)

where the f (·) is the output of the D′s penultimate layer.
Finally, the combined total training loss can be defined as the
weighted sum of the three individual losses above:

losstotal = lossrec + λ1lossadv + λ2losslat (8)

where the weight parameters λ1 and λ2 are used to adjust the
influence of lossadv and losslat , respectively.
During the testing phase, the abnormal score is defined

to measure how likely a test image is to be an abnormal
data. The input test image will be regarded as abnormal data
when its abnormal score is higher than a certain threshold.
The abnormal score S

(
I ′
)
of the given test image I ′ can be

expressed as:

S
(
I ′
)
= λ3R

(
I ′
)
+ (1− λ3)L

(
I ′
)

(9)

where R
(
I ′
)
is the reconstruction loss between the generated

and input images as stated in equation (6). L
(
I ′
)
is the

latent vector loss between the extracted feature vectors of the
input and generated images as stated in equation (7). λ3 is
the weight parameter of the abnormal score balancing the
influence of the R

(
I ′
)
and L

(
I ′
)
. The entire testing set’s

abnormal scores are standardized to the range of 0 and 1.

III. SYSTEM SETUP AND RESULTS
The VPItransmissionMaker and the Pytorch library are used
to set up the simulation system as illustrated in Fig. 5.
Eight signals (60/100 Gbps 64QAM, 60/100 Gbps 16QAM,
60/100 Gbps QPSK, 60/100 Gbps 4QAM) are prepared
in the transmitter to be transmitted over a single-mode
fiber (SMF). During the transmission, the variable optical
attenuator (VOA), the erbium-doped fiber amplifier (EDFA)
and the CD/PMD emulator are applied to add OSNR and

FIGURE 5. The simulation platform is established to generate signal data
and check the judgement module’s performance.

CD/DGD, respectively. The OSNR is adjusted at intervals
of 2 dB between 10 dB and 28 dB. The CD is adjusted
at intervals of 50 ps/nm between 0 ps/nm and 450 ps/nm.
The DGD is adjusted at intervals of 1 ps between 0 ps and
10 ps. Then, the ASCS method (sampling rate: 1 GHz) in the
generation module is applied to generate the ASCS images
(‘‘.png’’ format). Finally, the generated image is used to check
the judgement module’s performance.

For each signal type, due to the combinations of the OSNR,
CD and DGD values, 1100 (10 × 10 × 11) images are
collected. Thus, a big dataset which contains 8800 (8 ×
1100) images is established for the eight signals (k = 10).
In order to conduct a comprehensive simulation of different
monitoring ranges, we select each signal type as the abnormal
(1100 images) while the rest as the normal (7700 images) to
obtain eight different monitoring ranges. Moreover, for each
monitoring range, we randomly pick 1100 images from the
normal data and merge them with the abnormal data as the
testing set (2200 images), and the remaining 6600 images
become the training set. It is noted that the training set size
of 6600 is selected according to the time cost of training,
readers can adjust the size of training set according to your
own situation. Totally, eight pairs of training sets and testing
sets with different monitoring ranges are prepared to train
and verify the performance of the skip connected GAN in the
judgement module.

Two models in the judgement module are used for the
performance comparison. when λ1 = 2, λ2 = 3 and
λ3 = 0.4, the first skip connected GAN model named as
‘‘GAN 1’’ is trained, and the second model named as ‘‘GAN
2’’ without the skip connections is also trained. The weight
parameter’s influence of the different losses and the abnormal
scores are discussed in the section 3.2 and 3.3, respectively.
These models are optimized via Adam [27] optimizer with
the momentums β1 = 0.52, β2 = 0.999 and learning rate
lr = 2e−3. Moreover, the area under the curve (AUC) of the
receiver operating characteristics (ROC) is used to evaluate
the model performance. The ROC is a curve plotted by the
true positive rates (TPR) and false positive rates (FPR) with
varying threshold values, and the AUC is defined as the area
bounded by the coordinate axis under the ROC curve. Each
point on the ROC curve corresponds to a specific threshold,
and a threshold determine the classification accuracy. The
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AUC represents the probability that the positive sample ranks
ahead of the negative sample, which is independent with the
threshold. However, the classification accuracy is related to
the threshold. TheAUC value (the higher the better) is usually
used to evaluate the performance of binary classifiers, so it is
suitable to use the AUC value to evaluate our model which
predicts two classes: normal or abnormal.

FIGURE 6. The model performance influenced by the task weights.

A. IMPACT OF THE TASK WEIGHTS, LATENT VECTOR
LENGTH AND SHIFTED K VALUE
The impact of the task weights λ1 and λ2 on the ‘‘GAN 1’’
(abnormal type: 60 Gbps 64QAM, λ3 = 0.4, latent vector
length equals 64 and k = 10) is considered. The results
are shown in Fig. 6. The value range of λ1 and λ2 are both
from 0 to 5 with step 1. Obviously, the model performance
dose not change regularly. Only by lots of simulation
experiments, the impact of the task weights can be analyzed.
The performance is relatively poor in the areas when λ1 > 4
or λ2 < 2. It is significant that when λ1 = 2 and λ2 = 3, the
model obtain the highest performance (AUC = 0.952).
Besides, when the λ1 = 2, λ2 = 3, λ3 = 0.4 and

k = 10, the AUC values influenced by the latent vector
length of the ‘‘GAN 1’’ under different monitoring range are
shown in Fig. 7. The latent vector is in the Penultimate layer
of the discriminator network, and the length of the latent
vector means the number of the feature map channels. The
latent vector lengths of 32, 64, 100, 256 and 512 are used
to verify the model performance. It can be seen that when the
latent vector length equals 64, the optimalmodel performance
is obtained. However, as long as the length is more than
or less than 64, the model performance would deteriorate.
It is because that the latent vector length directly affects the
model’s ability to probe the distribution of the data in the
latent space. Specifically, too short length would make the
model unable to probe the complete data distribution. Too
long length would lead to redundant information.

Moreover, the AUC performance of ‘‘GAN 1’’ under
different monitoring range influence by the shifted k values
when λ1 = 2, λ2 = 3, λ3 = 0.4, latent vector length equals

FIGURE 7. The model performance influenced by the latent vector length
when different signal are defined as abnormal.

FIGURE 8. The model performance influenced by the shifted K values.

64 is shown in Fig. 8. The value range of k is from 4 to 14 with
step 2. For k values of 4, 6, 8, 12 and 14, we use the ASCS
method to generate the training and testing sets the same way
as k = 10 for different monitoring ranges. It is clear from
Fig. 8 that when k = 10 most monitoring ranges obtain the
optimal AUC performance, except when 100 Gbps QPSK is
defined as abnormal whose optimal AUC is obtained when
k = 6. Moreover, some typical phase portrait images of eight
signal types under different K values are shown in Fig. 9.
For MQAM signals, it is clear that a K value smaller than
10 closes the phase portraits along the diagonal or edges,
while a K value bigger than 10 increases the expansibility
of the sample points, which lead to the underestimation of
performance. For QPSK signals, when K value is bigger than
8 or 10, the sample points shrink inward. Therefore, when K
equals 10, the phase portraits of most signal types can show
sufficient information for model to learn.
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FIGURE 9. The typical phase portrait images (CD = 0 ps/nm, DGD = 0 ps
and OSNR = 16 dB) of eight signal types under different K values.

The task weights, latent vector length and shifted k
values have a direct impact on the model performance,
so it is essential to pick the apt parameter values. Under
the simulation conditions in this article, the best model
performance is obtained when λ1 = 2, λ2 = 3, latent vector
length equals 64 and k = 10.

B. WEIGHT OF ABNORMAL SCORE AND FEATURE
VISUALIZATION
When the 60 Gbps 64QAM is defined as the abnormal signal,
we take the ‘‘GAN 1’’ (λ1 = 2, λ2 = 3, latent vector length
equals 64 and k = 10) as the research object. During the
testing phase, the histogram of the abnormal scores affected
by the abnormal score weight λ3 is illustrated in Fig. 10.
According to equation (9), the weight λ3 is used to balance
the influence of the R

(
I ′
)
and L

(
I ′
)
. The λ3 ranges from

0 to 1. The smaller the value of λ3 is, the greater the
effect of L

(
I ′
)
on the abnormal score is. On the contrary,

the larger the value of λ3 is, the greater the effect of R
(
I ′
)

on the abnormal score is. A typical histogram is plotted
when λ3 equals 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively.
It is clear that when λ3 equals 0.4, the abnormal score’s
distribution of the normal images and the abnormal images
are highly differentiated, and the optimal AUC (0.952) is
obtained. Furthermore, the t-SNE [28] plot of the latent
vector produced by the discriminator’s Penultimate layer
is shown in Fig. 11. The original high-dimension latent
vectors are reduced to low-dimension vectors for the purpose
of visualization. As shown in Fig. 11, there is a obvious
boundary between the abnormal and normal data, which
means that the discriminator has been able to discriminate the
normal data from the abnormal data.

C. PERFORMANCE OF THE JUDGEMENT MODULE
Based on the determined optimal parameters, the AUC values
of the ‘‘GAN 1’’, ‘‘GAN 2’’ and previously proposed ‘‘EDE

FIGURE 10. The histogram of the abnormal scores influenced by the λ3
for the testing set. The Lorentz distribution curves of the histogram are
plotted.

FIGURE 11. The t-SNE plot of the latent vector produced by the
discriminator’s penultimate layer.

GAN’’ when different signals are defined as the abnormal
ones is shown in Fig. 12. No matter which signal is defined as
abnormal, the ‘‘GAN 2’’ has the lowest AUC among the three
models. The AUC values of the ‘‘GAN 1’’ is higher than the
AUC values of the ‘‘EDE GAN’’ in almost all cases, except
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TABLE 1. Number of parameters and consuming time for ‘‘GAN 1’’ and
‘‘EDE GAN’’.

FIGURE 12. The AUC values of the ‘‘GAN 1’’, ‘‘GAN 2’’ and previously
proposed ‘‘EDE GAN’’ when different signal defined as the abnormal.

the case that 100 Gbps QPSK is defined as the abnormal.
The highest AUC value 0.952 of the ‘‘GAN 1’’ is obtained
when the abnormal signal is defined as 60 Gbps 64QAM.
Moreover, in order to compare the cost performance between
the ‘‘GAN 1’’ and ‘‘EDE GAN’’, the number of parameters,
the total and mean processing times are recorded in Table 1.
Based on an Intel Core i7-6700 CPU, we record the total and
mean times by using the ‘‘GAN 1’’ and ‘‘EDE GAN’’ models
to process the images in testing set (2200 images, abnormal
type: 60 Gbps 64QAM) one by one. It is found that with less
number of parameters, the ‘‘GAN 1’’ model takes about 9 ms
to process a single image, which is faster than the processing
time of the ‘‘EDE GAN’’ model (∼12 ms). Too many
parameters will slow down the processing speed. Thanks
to the simplified structure, the ‘‘GAN 1’’ is light-weighted
and fast. The above results show that the simplified model
structure and the added skip connections not only shorten the
processing time but also improve the model performance.

Chose the ‘‘GAN 1’’ and ‘‘GAN 2’’ as the research object
(abnormal signal: 60 Gbps 64QAM), the typical input and
reconstructed images are depicted in Fig. 13. The abnormal
images have red border. The input images are revealed in
Fig. 13(a). The reconstructed images by the ‘‘GAN 1’’ are
shown in Fig. 13(b), and the reconstructed images by the
‘‘GAN 2’’ are shown in Fig. 13(c). Moreover, the numbers
displayed on the top of the reconstructed images are the
correlation between the reconstructed and the input images.
The ‘‘GAN 1’’ is capable of reconstructing both normal
and abnormal images and achieves better reconstruction
performance than the ‘‘GAN 2’’, which means that the skip

FIGURE 13. (a) The typical images in the testing set. (b) The reconstructed
images by the ‘‘GAN 1’’. (c). The reconstructed images by the ‘‘GAN 2’’. The
red border of the image represents the abnormal data. The numbers
displayed on the top of the reconstructed images are the correlation
between the reconstructed and the input images.

connections is powerful and it can capture the distribution of
both domains in the image space. Since the ‘‘GAN 1’’ cannot
make a clear distinction between normal and abnormal data
in the image space, the obvious distinction is reflected in the
latent vector space, which is discussed in the above section B.

FIGURE 14. The AUC performance at different epochs for different sizes
of training set.

Then, in order to explore the limit of the ‘‘GAN 1’’
performance, we continue to reduce the training data size
from original 6600 to 5500, 4400 and 3300, and measure
the AUC values using the testing set at different epochs,
as shown in Fig. 14. When the training data size is 6600,
the AUC curve converges at epoch 19. When the training data
size is 5500, the AUC curve converges at epoch 22. When
the training data size is 4400, the AUC curve converges at
epoch 24. Nevertheless, when the training data size continue
to reduce to 3300, the AUC curve cannot converge anymore.
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We can conclude that with the reduction of the training data
size, the AUC curve is more unstable and takes more epochs
to get convergence, and finally, the AUC curve fails to get
convergence when the training data size is 3300, since it is
difficult for ‘‘GAN 1’’ model to learn the data distribution
from the insufficient data size.

IV. CONCLUSION
A novel parallel OPM framework with skip connected GAN
is proposed to filter abnormal signals, which improves
the reliability of the optical performance monitor. The
judgement and analysis modules are parallel organized in the
OPM framework to process the input data simultaneously,
which is faster than the serial OPM framework. Moreover,
the proposed skip connected GAN simplifies the EDE based
GAN by means of an encoder-decoder structure together
with skip connections, which is light-weight and high-
performance. When the 60 Gbps 64QAM signal is defined
as the abnormal one, the skip connected GAN obtains the
optimal AUC performance (0.952). When a single image is
input, the average processing time of the skip connected GAN
is around 9ms. The impact of the latent vector length, the task
weights, the weight of abnormal score, shifted K values and
training data size on the performance of themodel are studied.
The parallel OPM framework and the skip connected GAN
further improve the reliability and reduce the processing time,
which is meaningful to the upgrading of the network.
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