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ABSTRACT Swallowing difficulty is a major health concern of the elderly population. The gold standard
examination to assess swallowing function is videofluoroscopic swallowing study (VFSS). Hyoid kinematic
parameters extracted from VFSS images can be quantitative indicators of swallowing difficulty. In previous
studies, its tracking failures are still not resolved when passing through the mandible. Furthermore, it is
difficult to be applied in kinematic analysis because the hyoid trajectories can be susceptible to irrelevant
neck movements during swallowing. The aim of this study is to develop a robust algorithm for obtaining
high-accuracy trajectories of the hyoid bone during swallowing with adjustment of the neck movements.
We propose a CNN-based hyoid tracking algorithm which consists of single-domain networks for hyoid
tracking and an attention U-Net with conditional random fields for semantic segmentation of the hyoid bone
and the cervical vertebrae. The results show that the proposed method can track the hyoid bone robustly
compared to the previous methods as measured by a success plot of one-pass evaluation. In addition,
the proposed semantic segmentation method achieved the highest dice coefficient for the hyoid bone and
the cervical vertebrae. Finally, the obtained hyoid trajectories were evaluated by a root mean squared
error, relative error of range of motion, and Pearson’s correlation analysis. The proposed algorithm can
provide ability to automatically analyze the hyoid motions during swallowing in clinical practice and
will potentially enable physician’s decision making on diagnostic and therapeutic modalities based on
quantitative swallowing assessments.

INDEX TERMS Swallowing difficulty, hyoid bone, cervical vertebrae, online learning, semantic segmen-
tation, convolutional neural networks, videofluoroscopic swallowing study.

I. INTRODUCTION
Swallowing difficulty is a common and major health concern
with a 15% to 22% prevalence in the elderly population [1].
It can develop in patients with several neurologic disorders
such as dementia, stroke and Parkinson’s disease, but can also
occur as a normal age-related changes [1]–[3]. Swallowing
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difficulty in the elderly can result in serious complications
such as dehydration, malnutrition, and aspiration pneumonia
which may increase hospitalization and mortality rates [1].

The gold standard examination to assess swallowing
function is a videofluoroscopic swallowing study (VFSS).
In VFSS, swallowing-related anatomic structures and dynam-
ics can be visualized using X-rays during the entire swal-
lowing process including oral, pharyngeal, and esophageal
phases [4]. Quantitative kinematic analysis for swallowing
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difficulty is carried out based on the VFSS images contain-
ing information of the anatomic and dynamic properties of
swallowing [5], [6]. Unfortunately, the swallowing kinematic
analysis demands labor-intensive and time-consuming pro-
cesses for the manual marking of the swallowing structures,
hence limiting its clinical utility and applicability [7].

Previously, various methods have been proposed to auto-
matically track the swallowing structures such as the hyoid
bone for kinematic analysis through image processing and
machine learning algorithms. These algorithms include sobel
edge detection [7], [8] and active shape matching [9], Haar
classifier matching [10] and local binary patterns in the
image processing, and recently, convolutional neural net-
works (CNN) in machine learning [11]. However, in these
previously proposed methods, manual corrections of the
swallowing kinematic analyses was still required because
tracking the hyoid bone is frequently failed when the image
contrast is abruptly changed in the duration of passing
through the mandible.

In this study, we propose a robust algorithm to automati-
cally track the hyoid bone frame by frame based on a CNN
model. The proposed algorithm can update the location of
the hyoid bone through online learning during the inference
phase as well as the training phase, which enables tracking
of the hyoid bone even when it passes through the mandible.
Additionally, a segmentation method is applied to automat-
ically segment the cervical vertebral bones that allows us to
adjust for neck movements during swallowing by setting up
a local coordinate system for every time frame.

This paper is organized as follows. An overview of the
previous works on hyoid tracking algorithms is presented in
Sec. II. The details of the proposed methods including the
hyoid tracking algorithm and semantic segmentation algo-
rithm for the hyoid bone and cervical vertebral bones are
given in Sec. III including clinical information and swal-
lowing assessments. A performance comparison between the
proposed methods and those of previous studies are presented
in Sec. IV. Finally, the discussion and conclusion of this study
are presented in Sec. VI and Sec. VII, respectively.

II. RELATED WORK
The usual method to obtain hyoid trajectories in VFSS images
has been manual marking the coordinates of the hyoid bone
in each frame. However, manual process may accompany
with measurement errors as well as inter-and intra-rater varia-
tions [12]. It can also be time-consuming and labor-intensive
especially in cases with prolonged swallowing duration or
high frame rates [7]. These factors have led to limited appli-
cation of swallowing kinematic analysis in clinical practice.
Development of automatic tracking systems for the hyoid
bone is important to reduce human errors and workload.

There have been various vision-based approaches to track
the hyoid bone including image processing methods. Patrick
et al. proposed a method to identify the hyoid region of
interest manually with sobel edge detection, they applied
this to 9 subjects (some healthy and some with swallowing

difficulty) [8]. Kim et al. also applied the same method to 17
patients with swallowing difficulty [7]. Aung et al proposed
a 16-point active shape model to set anatomical boundaries
with minimal user input. [9]. However, these approaches have
limitations in that the number of experimental subjects was
not large enough to validate the methods, in addition, these
approaches require manual corrections. Hossain et al. pro-
posed Haar classifier matching with manual identification of
regions, this approach was applied to 350 randomly selected
frames from multiple videos [10]. Lee et al. developed a
software platform for acquiring the trajectory of the hyoid
bone using histogram of local binary patterns and of multi-
scale local binary patterns. It was applied to 10 healthy people
in 19 videos and to 8 patients with swallowing difficulty
in 50 videos [13]. However, these approaches have limitations
in that the number of subjects was again not enough to vali-
date the method, in addition, the recognition performance for
the hyoid bone was relatively low due to the diverse shapes of
the patients’ hyoid bone features obtained by the descriptor.

Recently, Zhang et al. proposed a CNN-based model to
detect coordinates of the hyoid bone in VFSS as an attempt to
overcome these low recognition issues. The architecture used
in this previous study was a Single Shot MultiBox Detector
(SSD) and it was applied to 256 patients with swallowing dif-
ficulty [11]. However, this detection method using a SSD still
has a limitation in that tracking failures can occur when the
hyoid bone is overlapped by the mandible during swallowing
in the fluoroscopic images. The contrast of the hyoid bone in
fluoroscopic images can be changed abruptly due to overlaps
with the mandible, at which there is no representation in the
fluoroscopy of the hyoid that matches the previously trained
features and tracking fails.

Acquisition of accurate positional information for the
hyoid bone is important in swallowing kinematic analysis.
Notably, the positions of the hyoid bone can be substantially
affected by neck movements that are irrelevant to the swal-
lowing process. Adjustment of the neck movements is there-
fore needed to obtain the hyoid trajectories during swallow-
ing, which has not been considered in previously developed
the hyoid tracking algorithms. Additionally, the previously
proposed methods have usually adopted object detection
algorithms that are limited in obtaining accurate the hyoid
trajectories because the estimated values are not specific
coordinates of the hyoid bone that are just its regions of
interest.

III. MATERIAL AND METHODS
A. CLINICAL INFORMATION
The VFSS data were retrospectively acquired from an
anonymized VFSS data repository used in previous clini-
cal studies [14]–[16]. The VFSS data were obtained from
77 individuals: healthy individuals (n=26), patients with
Parkinson’s disease (n=32), and patients with stroke (n=19).
The mean age was 64.8 ± 13.6, ranging from 19 to 94.
The research protocol for this study was approved by the
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FIGURE 1. Overview of the hyoid tracking system. (a) Original images in videofluoroscopic swallowing study (b) Single-domain networks for hyoid
tracking. (c) Attention U-Net with conditional random field (CRF) for automatic hyoid bone segmentation. (d) Shape matching between reference image
from initial frame and all frames of the hyoid bone image. (e) Localizing center point of the hyoid bone. (f) Attention U-Net with CRF for automatic
cervical vertebrae segmentation. (g) Localizing c2 and c4 in cervical vertebrae. (h) Axes transformation to calibrate a trajectory of the hyoid bone. (i) The
result of calibrated hyoid trajectory and ground truth.

Institutional Review Board (IRB No. 1707-178-875) and
informed consent was exempted from this retrospective study.
All experiments were performed in accordance with relevant
guidelines and regulations.

B. SWALLOWING ASSESSMENT
All VFSS were performed by physiatrists with the assis-
tance of radiologic technologists. The individuals were seated
in upright position and were viewed in the lateral pro-
jection. The volume of the administered liquid bolus was
2mL of a 35% w/v diluted barium solution (Solutop Sus-
pension, Tae Joon Pharm Corp., Ltd., Seoul, Korea) for
all subjects. To control the quality of the VFSS images,
only images acquired from the identical fluoroscopy equip-
ment (SONIALVISION G4R R©, Shimadzu Corporation,
Kyoto, Japan) were used in this study. VFSS image files
were obtained by a frame grabber board and image pro-
cessing software (Pinnacle System Inc., Mountain View,
CA, USA). The VFSS images were recorded at a rate
of 30 images per second at the set 1280×1024 resolution. The
length of the VFSS videos ranged from approximately 2 to
5 seconds. Swallowing motion analysis software, called the
spatio-temporal analyzer for motion and physiologic study
(STAMPS; https://github.com/cmookj/stamps), was used to
obtain positional data of the hyoid bone [17]. The posi-
tion of the hyoid bone was determined by two experienced
examiners who were blinded to the results of the developed
algorithm.

C. ONLINE LEARNING FOR TRACKING THE HYOID BONE
The overview of the hyoid tracking system is represented
in Fig. 1. The hyoid tracking algorithm used in this study
was from Multi-Domain Networks (MDNet), which is a
CNN-based online learning model [18]. In the training
phase, MDNet is pretrained with ImageNet datasets to learn

common representations [19], then it is trained for hyoid
datasets as a specific domain. It was originally designed to
fit multi-domains by dividing the fully connected layer ends
into k numbers of branches. In this study, MDNet was used
as a single-domain networks (SDNet), so k is 1, tracking
only the hyoid bone. In the inference phase, the weights
were updated in the fully connected layers using online learn-
ing. SDNet performed complementary functions tracking the
hyoid bone with robustness and adaptiveness through long-
term and short-term updates. Long-term updates use positive
samples collected at regular and long periods. On the other
hand, the short-term updates use positive samples collected
over a short period. This is carried out whenever potential
tracking failures occur. It is triggered when a positive score of
the estimated target which becomes less than 0.5, is detected.
Additionally, in both training and inference phases, negative
samples are collected and used during only the short-term
periods. Negative samples obtained over the short-term are
screened using hard negative mining [20], which means that
the high scores are collected from the obtained positive sam-
ples. Fig. 2 shows the architecture of single-domain networks
in training and inference phases.

D. SEMANTIC SEGMENTATION FOR THE HYOID BONE
AND CERVICAL VERTEBRAE
In this study, a U-Net based CNN architecture was imple-
mented for segmentation of both the cervical vertebrae and
the hyoid bone. It is a variant of an encoder-decoder architec-
ture, therefore coarse and fine feature maps can be obtained
via skip connections [21]. We added an attention gate to
the U-Net architecture that trains specific layers or nodes to
find the context of the local region that should be focused
on [22]. We also used batch normalization [23] and the
parametric ReLU (PReLU) activation function [24]. Finally,
noise reduction was achieved by applying a fully connected
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FIGURE 2. The architecture of single-domain networks. (a) Training phase: red and blue bounding boxes denote the positive and negative samples
in x-ray domain. (b) Inference phase: green and blue bounding boxes denote the positive and negative samples, and fine-tune the fully connected
layers.

Conditional Random Field (CRF) to the segmentation results
of the proposed network [25]. The architecture of U-Net
has some limitations in that feature maps are reduced in the
process of repeating max pooling, which leads to the loss
of detailed features. The loss of detailed information on the
cervical vertebrae affects the axes transform, therefore, a CRF
method is applied as a post-processing to prevent the loss of
fine features. The CRF equation consists of appearance and
smoothness kernels as follows.

k
(
fi, fj

)
= w(1)e

(
−

∣∣pi−pj∣∣2
2θ2α

−

∣∣Ii−Ij∣∣2
2θ2β

)

+w(2)e

(
−

∣∣pi−pj∣∣2
2θ2γ

)
(1)

In this equation, pi and pj are the positions of the pixel,
and Ii and Ij are the intensity. The first gaussian appearance
kernel that close-by pixels with similar color are likely to be
in the same class, which is controlled by the degrees of near-
ness θα , and the similarity. The second gaussian smoothness
kernel determines a smooth level based on the proximity of
the pixels controlled by the smoothness θγ . Supplementary
Fig. 1 shows the architecture of the proposed semantic seg-
mentation method.

E. SHAPE MATCHING FOR REMOVAL OF THE
DEFORMED HYOID BONE
Estimation of the hyoid trajectories needs semantic segmen-
tation of the hyoid bone since the positional data is obtained
from the anterosuperior apex of the hyoid bone (Fig. 1e).

However, abrupt changes of the image contrast when the
hyoid bone is overlapped by the mandible during swallowing
may lead to deformation of the object shape, resulting in high
prediction error (Supplementary Fig. 2). Tomitigate this error
effectively, we removed the coordinates of the hyoid bone
while passing the mandible and instead interpolation was
applied on the x- and y-axis to approximate the correct trajec-
tory. A shape matching method that uses the image moments,
including the area, centroid, and information about its orien-
tation was applied to identify the swallowing process during
which the hyoid bone passes through the mandible [26].
A reference frame was acquired in the first frame for each
patient, then the method was applied 15 frames after VFSS
starts, and it was determined as a deformed shape when
the result of the image moment was not exceeded less than
2 standard deviations of the average image moment during
the first 15 frames. In addition, it must be maintained that
the image moment does not exceed the preceding conditions
continuously for 5 frames.

IV. EXPERIMENTS AND RESULTS
We used NVIDIA Volta GPU and used PyTorch (v1.2) for
SDNet andKeras (v.2.2.4) for an attentionU-Net in this study.
The algorithms developed for this experiment are as uploaded
in https://github.com/dhlee-jubilee/dysphagia

A. PERFORMANCE COMPARISON OF THE HYOID
BONE TRACKING
The proposed tracking algorithm based on single-domain
networks was pretrained with the ImageNet dataset [19] and
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TABLE 1. Performance comparison of semantic segmentation applied on cervical vertebrae and hyoid bone.

trained with 845 images from 5 subjects including images
with the hyoid bone when passing the mandible. We resized
the images to 107 × 107 pixels to match the input size of
SDNet that is designed for a real time tracking.

For the online learning in the inference step, the user man-
ually selects a bounding box around the hyoid bone location
and the box size is fixed at 80 × 80 in the first frame.
It was confirmed through experiments that the periods of
long-term and short-term periods showed the highest tracking
performance at 30 frames and 5 frames, respectively. In this
study, 50 positive and 200 negative samples were used in
the training phase and have ≥ 0.7 and ≤ 0.5 Intersection
over Union (IoU) overlap ratios with the bounding box of
the ground truth, respectively. Also, in the inference phase,
the same number of positive and negative samples were used
as in the training phase and have ≥ 0.7 and ≤ 0.3 IoU
overlap ratios with the bounding box of the ground truth,
respectively.

The optimizer used in this study was stochastic gradient
descent, the learning rate was 0.0001, and the number of
positive and negative samples were 500 and 5,000, respec-
tively. The model was trained for 5,000 epochs until the loss
saturation, and the measured precision was 0.719 for the
training dataset. The resulting images were restored to the
original image size to perform the next step.

The performance of the proposed method were compared
to that of the previous CNN-based the hyoid bone detection
algorithm and the Single Shot MultiBox Detector (SSD)
500-VGG [11], [27] after one-pass evaluation (OPE) [28].
The results show that the proposed method has an average
area under curve score of 0.774 in the success plot of the
OPE, as represented in Fig. 3. Qualitative results of the hyoid
bone tracking are shown in Fig.4 and in Supplementary Video
1. In Fig.4, the images in which any part of the hyoid bone
passes the mandible are marked with a red box.

B. PERFORMANCE COMPARISON OF THE SEMANTIC
SEGMENTATION
In this study, we compared the performance of the pro-
posed method with various segmentation models based on
U-Net [21]. Previous studies on semantic segmentation in
the medical domain using CNNs have used U-Net based
architectures [29]–[34]. AI Arif et al. proposed a shape-aware

FIGURE 3. Success plots of one-pass evaluations (OPEs) on Single
Domain Network (SDNet) and Single-Shot MultiBox Detector (SSD)
500-VGG. The performance of SDNet was compared according to
short-term and long-term.

loss term with U-Net and applied it to the cervical ver-
tebrae [35]. In addition, we compared the performance of
U-Net ++ [36], which further enriches the connections
between layers using skip connections. Finally, attention
U-Net [37] was the structure used for adding an attention
gate [22] to the decoder part of the basic U-Net structure. The
proposed method was trained for 500 epochs until the loss
saturation, the optimizer used was Adam, and 5-folds cross
validation was then performed. The measured dice similarity
coefficient (DSC) was 0.92 for the training dataset. The total
number of test subjects was 77 and the applied algorithms
were evaluated quantitatively usingDSC. The training dataset
and performance results are shown in Fig. 5 and Table 1.
The images that were resized to fit the network input size
were restored to their original image size to perform the next
task.

1) CERVICAL VERTEBRAE
Training datasets for the cervical vertebrae segmentation
were obtained from 53 subjects with one frame per sub-
ject. The images were resized to 512 × 512 pixels and the
uninformative background was removed. The DSC was com-
pared with the ground truth once per 15 frames. The results
of the proposed method were 0.93 for healthy individuals,
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FIGURE 4. Qualitative result of the hyoid bone tracking procedure. Red boxes represent the moment hyoid passes through the mandible.

FIGURE 5. Qualitative performance comparison of semantic segmentation methods. (a) Original image (b) Ground truth (c) Result of U-Net (d) Result of
U-Net-S (e) Result of U-Net++ (f) Result of Attention U-Net (g) Result of the proposed method.

0.91 for patients with Parkinson’s disease, 0.91 for patients
with stroke, and a total of 0.92.

2) HYOID BONE
Training datasets for the hyoid bone and tracking algo-
rithm were made up of 845 images from 5 subjects.

The images were resized to 128 × 128 pixels. The DSC
was compared with the ground truth once per 5 frames,
and frames where the hyoid bone was determined as
deformed through shape matching were excluded from
the evaluation. The DSC results for the proposed method
were 0.87 for healthy individuals, 0.88 for patients with
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FIGURE 6. Results of calibrated trajectory of the hyoid bone. The sky points represent the moments passing through the mandible and the blue
points represent those not passing through the mandible. They were then compared with the ground truth. Left Top: Hyoid trajectory (x-axis). Left
Bottom: Hyoid trajectory (y-axis). Right: Hyoid trajectory (2D). (a) Healthy individuals (b) Patients with Parkinson’s disease (c) Patients with stroke.

Parkinson’s disease, 0.85 for patients with stroke, and a
total of 0.87.

C. PERFORMANCE EVALUATION OF THE
SHAPE MATCHING
Shape matching [26] was applied to the segmented hyoid
bone image, obtained as a result of the semantic segmenta-
tion method applies 15 frames after VFSS starts. When the
shape matching result was less than 2 standard deviations
of average image moment during the first 15 frames and
maintained continuously in 5 frames, it was determined as

a deformed hyoid bone and removed. The ground truth of
the deformed hyoid was determined if the average root mean
squared error (RMSE) was increased when 5 consecutive
hyoid images had been removed. Out of 77 subjects, 52 had
cases of their hyoid bones passing through the mandible.
Therefore, the performance evaluation for the shape match-
ing was conducted only for these cases, and the accuracy
was calculated by measuring the success rate among the
frames when the hyoid passes through the mandible. As a
result, the accuracy of the shape matching showed an average
of 0.92.
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TABLE 2. Evaluation of calibrated hyoid trajectory results.

D. AXES TRANSFORMATION OF THE HYOID
BONE AND EVALUATION
In this study, the coordinates of the c2 and c4 were defined
as the bottom left position of the corresponding bone.
The method for localizing c2 and c4 positions is as follows:
the uppermost object of the segmented cervical vertebrae
is the c2 area, and the c3 and c4 areas are below it. Therefore,
by selecting the first and third objects on the y-axis and
obtaining the bottom left coordinates, the c2 and c4 can be
localized as shown in Fig 1g.

By acquiring the c2 and c4 coordinates, we transformed to
a new coordinate axes where the line connecting the c2 and
c4 becomes the y-axis. We then measured the coordinate
differences between the proposed algorithm and the ground
truth. The error measured in the fluoroscopy is in pixel units,
this was also converted intommunits bymeasuring the length
of the marker attached to the patient’s jaw in advance. The
size of the marker before fluoroscopy was 24 mm.

First, we evaluated the pixel difference between the hyoid
trajectory coordinates obtained by the proposed method and
ground truth coordinates through RMSE. The RMSE of the
average trajectory coordinates was 7.83 pixels. In addition,
the range of motion (ROM) that is the maximum distance
of the trajectory was measured. The relative error, which is
the difference between the predicted ROMs and their ground
truth, was normalized by the ROM of the algorithm. As a
result, the average ROM was 4.02 pixels along the x-axis,
4.4 pixels along the y-axis, and 3.67 pixels in 2D, respec-
tively. Finally, Pearson’s correlation analysis was used to
measure the similarity between the predicted trajectories and
their ground truth. The average Pearson’s correlation coeffi-
cients were 0.983 along the x-axis and 0.974 along the y-axis.
Results for the calibrated hyoid trajectories and evaluation
were shown in Fig. 6 and Table 2.

V. DISCUSSION
In this study, we proposed two types of deep neural net-
works as the main methods for tracking the hyoid bone in
VFSS images. The key for training a single-domain network
is to set parameters for short-term and long-term updates

during online learning. Unlike tracking an object in general
domains, the period terms was set relatively small because
the movement of the hyoid bone should be tracked for a
short duration due to the fluoroscopic video recording being
only 2 to 5 seconds long. Parameter optimization for the
VFSS images was performed through various experiments,
we showed that the hyoid bone can be traced stably even
when it passes through the mandible as shown in Fig. 3-4 and
Supplementary Video 1.

Furthermore, this study applied a semantic segmentation
algorithm to the hyoid bone and the cervical vertebrae. Using
the proposed semantic segmentation method, both anatomi-
cal structures are automatically segmented with high perfor-
mance in all frames. The previous study that we compared
the proposed method to used U-Net based architectures that
had been gradually developed in various ways. The method
using a modified loss function is known as U-Net-S [35],
an advanced methods from this architecture is called U-Net
++ [36], and another method was the attention U-Net [37].
By localizing the c2 and c4 coordinates in the segmented cer-
vical vertebrae using the proposed method, converting them
to the new y-axis coordinates, the noise from the patient’s
neck movements could be minimized. In addition, it is pos-
sible to obtain accurate trajectories by localizing the exact
coordinates of the anterosuperior apex of the hyoid bone
(Fig. 5 and Table 1). As shown in the Table 1, the proposed
algorithm has the best performance, even though it does
not differ significantly from the results of the other U-Net
based methods. This is because the cervical vertebrae usually
has a relatively clear boundaries from the background so
that it is less affected by the type of CNN models. It was
the first attempt to automate cervical vertebrae segmentation
using CNN to obtain an adjusted trajectory of the hyoid
bone.

When comparing and analyzing the trajectories obtained
by the algorithm to the ground truth, the predicted y-axis
coordinates tended to fluctuate slightly above and below the
ground truth because the maximum value of the y coordinate
of the hyoid bone passes through the mandible and is affected
by localization errors of the predicted anterosuperior apex of
the hyoid bone, c2 and c4 coordinates.
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In two-dimensional X-ray images, three-dimensional
structures are visualized as overlapped and mixed so cannot
be accurately presented [3]. Especially in the analysis of
fluoroscopic images, this property may cause abrupt changes
of the object contrast during continuous X-ray radiation,
which can interfere with tracking the target object properly.
In developing algorithms to trace the hyoid bone during
swallowing, tracking failures usually occur when it is over-
lapped by the mandible. The algorithm developed in this
study showed robust performance using the online learning
method that trains positive samples obtained at a long-term
and negative samples at a short-term. The proposed algorithm
can be potentially utilized for the analysis of image data from
other organ systems obtained by fluoroscopy including pul-
monary, cardiovascular, genitourinary, musculoskeletal, and
gastrointestinal organs.

The main limitation of this study is that the user has to
specify a bounding box of the appropriate size at the hyoid
position in the first frame before the tracking system can
be used. For an automated system, a deep learning-based
detection algorithm such as SSD [27] can be used to detect
the hyoid bone in the first frame, however, it is too much
to develop a system to implement such a simple function.
Also, when comparing the performance of the hyoid track-
ing systems, deep learning-based detection algorithms often
detect the location of the hyoid-like jaw tip, which can be
a crucial error when acquiring the trajectory of the hyoid.
In addition, there are problems in predicting the results of
multiple bounding boxes including the area surrounding the
hyoid bone. Furthermore, the position of the hyoid bone
must be manually specified in the first frame in SDNet [18],
therefore, the hyoid position can be robustly tracked by adap-
tively changing the bounding box size with respect to the
surrounding background during the inference step. Finally,
since the proposed model is operated using both tracking
and segmentation algorithms in a cascaded manner, the per-
formance of segmentation algorithm can be affected by that
of tracking algorithm. Thus, the overall system performance
can be mainly dependent on the performance of the tracking
algorithm.

VI. CONCLUSION
In this study, we propose a CNN-based online learning algo-
rithm to track and acquire high-accuracy trajectories of the
hyoid bone during swallowing with adjustments of the neck
movements. We prove that the developed methods are able
to track the hyoid bone even when it passes through the
mandible. In addition, the hyoid trajectories can be obtained
with high-accuracy by semantic segmentation of the cervical
vertebrae and hyoid bone, and subsequent transformation
of the coordinate axes. The proposed algorithms provide
the opportunity to conduct swallowing kinematic analysis
for patients with swallowing difficulty in clinical practice.
It can potentially enhance physician’s decision making in
diagnostic and therapeutic modalities based on quantita-
tive swallowing assessments. Future works will focus on

the application of the proposed methods on a large-sized
dataset of hyoid motions from patients with swallowing
difficulty and will develop data-driven diagnostic or prog-
nostic systems based on machine learning to verify clinical
significance.
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