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ABSTRACT The number-theoretical phase unwrapping method has recently been widely applied in fringe
projection profilometry. But fringe order errors may occur due to noise or distortion, leading to errors in
the unwrapped phase map, and eventually affecting the accuracy of the reconstructed object surface. In this
paper, we propose a novel fringe order correction method based on the maximum likelihood principle. The
direct cause of fringe order error is the deviation of an intermediate variable which in theory should be an
integer, and the ground truth of the integer stays unchanged within a valid neighborhood. By modeling the
calculated intermediate variable as an observed sample from the normal distribution of the unknown ground
truth integer, we can determine a valid neighborhood relative to the observed pixel. Then the ground truth
integer can be calculated by maximizing the likelihood function and then the fringe order error is corrected.
The simulation results and experimental comparisons have verified the feasibility, robustness, and superiority
of the proposed method in contrast with other fringe order correction methods.

INDEX TERMS Fringe projection, phase unwrapping, fringe order correction, maximum likelihood
principle.

I. INTRODUCTION
Fringe projection profilometry (FPP) is an important tech-
nique for three-dimensional measurement due to its accuracy
and high efficiency [1]. The basic FPP system is composed of
a camera and a projector. The principle of the FPP technique
is to project fringe patterns onto the object surface, calculate
phase information of the images captured by the camera in
another direction, and then the height of the object surface
is obtained by phase-height calibration [2]–[4]. The phase
calculated by either phase-shifting algorithm [5], [6] or a
transform-based method [7], [8], however, is wrapped in the
range of –π to π , and thus the process of phase unwrapping
must be carried out to obtain the continuous phase map by
adding multiple integer numbers of 2π . The number of 2π
for each pixel is called fringe order, and the main challenge
of phase unwrapping is calculating the fringe order of each
pixel accurately and efficiently.

The associate editor coordinating the review of this manuscript and
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Dozens of phase unwrapping methods have been pro-
posed in recent years, which can be generally divided into
two main categories: spatial methods [9]–[11]and temporal
methods [12], [13]. The spatial methods unwrap the phase
of a pixel by referring to phase information of the spa-
tial neighboring pixels, they tend to fail when the mea-
sured objects contain discontinuities or separations. The
temporal methods are more robust owing to their pixel-by-
pixel phase unwrapping procedure and are widely used in
high-precision measurement scenarios. The temporal phase
unwrapping method can be categorized into gray-code [13],
multifrequency [14], multiwavelength [15], and number-
theoretical [16]–[22] approaches. Among these approaches,
the number-theoretical method shows better reliability [12]
with only bi-frequency fringe patterns needed.

However, fringe order errors (FOE) may occur due to
noise or distortion [23], leading to errors in the unwrapped
phase. Most previous studies concentrated on reducing
noise/distortion [24]–[26] or increasing the tolerance of
noise [27]–[29] while other studies focused on eliminating
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the FOEs directly [30]–[33]. Ding et al. [30] applied the
majority rule method to determine the most likely order
within the interval, but this method is unstable when intervals
are small. Assuming that the fringe order changes smoothly,
the least square method was applied by referring to the fringe
orders of adjacent pixels [31], but this assumption is unten-
able when the measured surface is complex. Lu et al. [32]
used a fringe order gradient map to find false positive pixels
and exclude small regions, but it is hard to distinguish the
pixel where the FOE occurs from the pixel where the fringe
order is correct. Kam et al. [33] employed the k-nearest-
neighbor search method and spatial comparison method, but
the false-positive correspondences may increase because of
ambiguity in the phase.

Unlike the above fringe order correction methods, this
paper proposes a method that focused on the intermediate
variable ψ that determines the fringe orders. The ground
truth of the observed variable stays unchanged within the
neighborhood in most cases even though the surface is com-
plex, inspiring an idea to combine the spatial method with
the temporal method: the fringe order for each pixel can be
corrected by maximizing the likelihood function related to
the neighborhood, yielding relatively better robustness and
feasibility.

II. PRINCIPES OF NUMBER-THEORETICAL PHASE
UNWRAPPING
A. PHASE-SHIFTING ALGORITHM
The digital projector is usually employed as the light source
to project the sinusoidal fringe patterns in FPP. The analyti-
cal expression of the sinusoidal fringe pattern in the N-step
phase-shifting algorithm can be expressed by:

IPn
(
xP, yP

)
= aP + bP cos

(
2π

λP0
xP − 2πn

/
N

)
(1)

where
(
xP, yP

)
is the coordinate of the projected pixels, aP

is the direct current component of the intensity, bP is the
amplitude, λP0 is the spatial wavelength of the sinusoidal
signal, n is the phase-shift index, and N is the total number of
phase-shift steps.

After projecting these patterns onto the object surface,
the phase signals are modulated, and the images captured by
the camera can be expressed as:

In (x, y) = A (x, y)+ B (x, y) cos
(
8(x, y)− 2πn

/
N
)

(2)

where A (x, y) is the average intensity of the image, B (x, y) is
the intensity modulation, and8(x, y) is the phase containing
the height information of the measured object. From the
captured images, the wrapped phase φ (x, y) can be retrieved
as follows:

φ (x, y) = tan−1
∑ N−1

n=0 In (x, y) sin
(
2πn

/
N
)∑ N−1

n=0 In (x, y) cos
(
2πn

/
N
) (3)

Since the phase is calculated pixel-by-pixel, the pixel coor-
dinate index (x, y) is removed from equations henceforth in
this paper.

B. BI-FREQUENCY NUMBER-THEORETICAL PHASE
UNWRAPPING METHOD
The output of the four-quadrant inverse tangent function in (3)
ranges from –π to π , and thus the phase solved by (3) is
wrapped. To unwrap the phase using temporal phase unwrap-
ping methods, multiple phases derived from fringe images
in different frequencies are needed. For the bi-frequency
method, the wrapped phase derived from high-frequency and
low-frequency phase-shifting images are represented as φh
and φl respectively, and the corresponding unwrapped phases
are 8h and 8l , which can be calculated by:{

8h = φh + 2πkh
8l = φl + 2πkl

(4)

where kh and kl represent the fringe orders. The essential task
of the phase unwrapping algorithm is to determine the fringe
orders accurately and efficiently. According to the number-
theoretical phase unwrapping method [16], there exists a
unique mapping from fringe order pair (kh, kl) to wrapped
phase information if the following inequality holds:

LCM (λh, λl) > W (5)

where W is the total length along the sinusoidal signal (i.e.,
the horizontal resolution of the projector) and LCM() is the
function that outputs the least common multiple of input
variables.

The unwrapped phase 8h and 8l have the relationship as
follows:

8hλh = 8lλl (6)

Define ph = LCM (λh, λl)
/
λh, pl = LCM (λh, λl)

/
λl , and

then (6) can be rewritten as:

8hpl = 8lph (7)

Combining (4) and (7), we have:

ψ =
plφh − phφl

2π
= khpl − klph (8)

where khpl − klph is an integer, and thus ψ in theory should
also be the same integer. The results of the khpl − klph can
be pre-calculated and restored as entries in a lookup table
(LUT) [17]. The closest integer of ψ , is uniquely mapped to
an orders pair; examining the closest integer ofψ in the table,
the fringe order pair is determined by (9), and the unwrapped
phase can be calculated by (4) eventually.

(kh, kl) = LUT [round (ψ)] (9)

C. FRINGE ORDER ERROR
In the number-theoretical phase unwrapping method, ψ is
rounded to the closest integer. However, if the unwrapped
phase φh or φl is corrupted, the error of ψ may exceed 0.5,
and the corruption will lead to the wrong integer and then the
wrong pair of fringe order. These phase errorsmay result from
sensor noise, gamma distortion, or projector/camera defocus.
In the works of predecessors [12], [34]–[36], the Gaussian
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model is widely adopted to describe the error of phase. Con-
sidering all the effect of phase error as a perturbation on the
true phase, the variance of the wrapped phase φh and φl can
be calculated as:

σ 2
φ =

2σ 2
I

NB2
(10)

where σ 2
I is the variance of the intensity of the fringe image

captured by the camera. According to (8), the variance of ψ
can be calculated as:

σ 2
ψ =

1
4π2

(
p2h + p

2
l

)
σ 2
φ (11)

Combined with statistical analysis, the n-sigma criterion of
reliability theory is applied to estimate the maximum error of
ψ : 1ψmax = nσψ (99.73% confidence level when n = 3).
The FOE occurs when |1ψmax| > 0.5, thus, we can find the
upper boundary of wrapped phase variance by (13):

σ 2
φ
<

π2

n2
(
p
2

h + p
2

l

) (12)

III. FRINGE ORDER CORRECTION VIA MAXIMUM
LIKELIHOOD PRINCIPLE
A. THE VALID NEIGHBORHOOD
Under the circumstance that the wrapped phase is affected by
noise and distortion, for each pixel, we characterize ψ as a
random variable subjected to the normal distribution:

ψ∗ ∼ N
(
ψ̄, σ 2

ψ

)
(13)

where ψ̄ is the ground truth integer, and ψ∗ is the observed
value of ψ .

Without loss of generality, we suppose a fringe pattern with
600 pixels in horizontal resolution, and the wavelengths of bi-
frequency fringes are λh = 16 pixels and λl = 39 pixels. The
ideal distribution of ψ̄ along the horizontal direction can be
calculated by (8), and is shown in Fig. 1. We can see that ψ̄
is distributed as several stairs along with the horizontal axis,
and pixels of each stair share the same ψ̄ , which is different
from any other stairs. In other words, if the neighboring
pixels share the same fringe order pair kh and kl , according
to (8), they should share the same ψ̄ . For a certain observed
value ψ∗x0,y0 of the pixel (x0, y0), the observed group ψ of
neighboring pixels is denoted as:

ψ =
(
ψ∗x0,y0 , ψ

∗

x0−1,y0 , ψ
∗

x0+1,y0 , ψ
∗

x0,y0−1,

ψ∗x0,y0+1, ψ
∗

x0−1,y0−1, . . . , ψ
∗
x0±εx ,y0±εy

)
=
(
ψ∗1 , ψ

∗

2 , ψ
∗

3 , . . . , ψ
∗
m
)

(14)

wherem is the total number of pixels of the neighborhood, εx
and εy are the coordinate limits of the neighborhood.
When all neighborhood pixels belong to the same fringe

order kh in high-frequency images and kl in low-frequency
images, the group ψ can be considered as repeated observa-
tion of ψ∗x0,y0 . In this paper, we call ψ the valid neighborhood

FIGURE 1. The distribution of ground truth of ψ for λh = 16 pixels,
λl =39 pixels, and W = 600 pixels.

of ψ∗x0,y0 . However, when the neighborhood covers pixels
from other fringe orders, there will be at least one jumping
change in the group ψ , and in this case the ψ is the invalid
neighborhood of ψ∗x0,y0 .
As for the example given in Fig. 1, the difference of adja-

cent pixels is shown in Fig. 2. For the 599 pixels in horizontal
direction, the difference is zero in most cases (547 pixels),
while the difference of some pixels has jumping change (ph
in 14 pixels, −pl in 37 pixels and ph − pl in 1 pixel). The
neighborhood is invalid if it covers these jumping pixels.

FIGURE 2. The difference distribution of ψ for λh = 16 pixels, λl =

39 pixels, and ph = 39, pl = 16.

According to the property of chi-square distribution, if the
neighborhood is valid, the following probability formula is
satisfied:

P

{
(m− 1) s2

σ 2
ψ

≤ χ2
α (m− 1)

}
= 1− α (15)

where s2 is the sample variance of the neighborhood, α is
the significance, in this paper we use α = 0.001 to achieve
99.9% confidence. We use this condition to determine valid
neighborhood: the neighborhood is valid only if the following
inequality holds:

s2 ≤ χ2
0.001 (m− 1) σ 2

ψ

/
m− 1 (16)

Otherwise, the neighborhood is invalid.
When the neighborhood is invalid, there exist two or more

ground truth integers of ψ̄ in the neighborhood, or outliers
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caused by noise. K-means clustering method can divide ψ
into clusters according to the condition of minimum sample
variance. As with the prior example, the difference between
ground truth integers is nhph − nlpl, (nh, nl ∈ N). Then,
by changing the values of one or more clusters, we can
turn the invalid neighborhood into a valid neighborhood. The
detail of the procedure is as follows:

Step 1: Make cluster analysis of ψ in minimum-variance-
criterion, and ψ is divided into

(
ψ1,ψ2,ψ3 . . .

)
.

Step 2: Find the clusters that contain only one element or
do not satisfy (16), and then exclude them from the ψ .

Step 3: Treat the cluster which includes the currently
observed valueψ∗x0,y0 as the target cluster. If the target cluster
is excluded in Step 2, replace it with the cluster whose mean
value is closest to ψ∗x0,y0 .
Step 4: Change the value of elements of other clusters

by adding nhph − nlpl, (nh, nl ∈ N). If the union cluster
of the post-change cluster and target cluster satisfies (16),
the changed cluster is retained. Otherwise, the changed clus-
ter is discarded. Therefore, the reunion of remaining clusters
and target clusters is a valid neighborhood of ψ∗x0,y0 .

To elaborate on the procedure, we add Gaussian noise
(σ 2
ψ = 0.143) to the previous distribution of ψ in Fig.1.

We choose the pixel 296, which is on the edge of jumping
change, as the observed pixel. The 1 × 5 sized neighbor-
hood of ψ∗296 is: ψ = (ψ∗294, ψ

∗

295, ψ
∗

296, ψ
∗

297, ψ
∗

298) =
(23.79,23.89,7.41,8.38,8.02). The sample variance s20 is

76.16, which is larger than χ2
0.001 (4) σ

2
ψ

/
4 = 0.67, and thus

ψ is invalid. By k-means clustering method,ψ is divided into
ψ1 = (23.79,23.89) and ψ2 = (7.41,8.38,8.02), and s21 =
0.004, s22 = 0.26. ψ2 is the target cluster because it includes
ψ∗296. Subtracting the value of ψ1 with pl , the reunion cluster
is ψ ′

= (7.79,7.89,7.41,8.38,8.02), and ψ ′ is a valid neigh-
borhood of ψ∗296.

B. ESTIMATION OF GROUND TRUTH INTEGER VIA
MAXIMUM LIKELIHOOD PRINCIPLE
According to (13), the values in the valid neighborhood can
be considered as samples from the normal distribution with
unknown mean ψ̄ . The probability density function relative
to observed ψ∗ is defined as

f
(
ψ∗; ψ̄

)
=

1
√
2πσψ

e
−
(ψ∗−ψ̄)

2σ2
ψ (17)

The likelihood function is defined as the product of all
individual probability of the values in the neighborhood:

L
(
ψ̄
)
=

m∏
i=1

f
(
ψ∗i ; ψ̄

)
=

m∏
i=1

1
√
2πσψ

e
−
(ψ∗i −ψ̄)

2

2σ2
ψ (18)

Since the unknown mean ψ̄ should be an integer, the like-
lihood function is discrete, and the problem can be simplified
as:

ψ̂ = argmaxψ̄∈(ψ̄1,ψ̄2,ψ̄3,...) L
(
ψ̄
)

(19)

where ψ̂ is the most likely integer that maximizes the likeli-
hood function;

(
ψ̄1, ψ̄2, ψ̄3 . . .

)
are several integers that are

close to round (ψ∗), and can be considered as possible can-
didates of ground truth value. If ψ̂ is not equal to round (ψ∗),
the fringe orders previously calculated by (9) are considered
incorrect, and then fringe orders are recalculated by replacing
round (ψ∗) in (9) with ψ̂ .

As for the example given in Section III(A), the procedure
of order correction is detailed as follows: Fringe order pair
of pixel 296 is previously determined by LUT (7) because
round

(
ψ∗296

)
= 7. The candidate ground truth integers of

ψ∗296 are (6,7,8). The likelihoods for candidate integers are
calculated by (18). Since L (8) is larger than L (6) and L (7),
the fringe order pair of pixel 296 is corrected by LUT (8).

IV. SIMULATIONS
A. SELECTION OF NEIGHBORHOOD SIZE
In the proposed method, the fringe orders are calculated
pixel-by-pixel. For each pixel, the values of ψ∗ in the valid
neighborhood are used to estimate the most likely fringe
order. Thus, the selection of neighborhood size is an essential
algorithmic component of the proposed method, which is
determined by εx and εy in (14). A small-size neighborhood
may be susceptible to noise or distortion, while a large-size
neighborhood will increase computational complexity and is
likely to cover pixels from other fringe orders. The neighbor-
hood size should be selected as the trade-off of accuracy and
efficiency.

The simulation platform is programmed by MATLAB and
the computation processor is Inter Core i7-7700 CPU. The
simulated surface of peaks distributed at 600× 400 pixels is
generated by the computer and considered as the measured
object. We add noise with standard deviation 12 to the simu-
lated images, and we set λh = 16 pixels, and λl = 39 pixels.
Since fringe order calculated by noise-free fringe images is
absolutely correct, success rate (SR) of fringe order calcula-
tion under noise conditions can be obtained by comparison.
The fringe orders are calculated using different neighborhood
sizes for five times, and the average of calculated SR and
time consumption results are shown in Table 1. As can be
seen, SR by and large increases as we set neighborhood size

TABLE 1. The calculated SR and time consumption using different
neighborhood sizes.
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FIGURE 3. The simulated fringe order results. From top to bottom: (a) results using strategy 1 and noise level 1; (b) results using strategy
1 and noise level 2;(c) results using strategy 2 and noise level 1; (d) results using strategy 2 and noise level 2. From left to right of each
row: (1) uncorrected; (2) majority rule method; (3) least square method; (4) proposed method.

larger, but the SR decreases and time consumption increases
(e.g., the 1 × 9 and 7 × 7 neighborhood) when neighbor-
hoods with too many columns may cover pixels from differ-
ent fringe orders, resulting in trial-and-error determining the
valid neighborhood. Through this paper, we choose the 3× 3
sized neighborhood as the trade-off between SR and the time
consumption.

B. ANTI-NOISE PERFORMANCE
According to (11), the smaller p

2

h + p
2

l , the less likely fringe
orders are affected by noise. In other words, FOEs are deter-
mined not only by the noise of fringe images but also by
fringe-frequency-selection strategies.

The simulated measured object is the same as
Section IV(A). To verify the anti-noise performance of the
proposed approach, fringe order results under two different
levels of noise, applying two different fringe-frequency-
selection strategies are simulated in this section: level 1: the
standard deviation of image noise is 8; level 2: the standard
deviation of image noise is 12. Strategy 1: λh = 16 pixels,

λl = 39 pixels, ph = 39, pl = 16; strategy 2: λh = 28 pixels,
λl = 88 pixels, ph = 22, pl = 7. For comparison, the fringe
order result is corrected by the majority rule method [30],
the least square method [31], and the proposed method
respectively. The corrected fringe order results are shown in
Fig. 3. The simulation environment is different for each row
of Fig. 3; the uncorrected results, and the results corrected
by the majority rule method, the least square method and the
proposed method are shown separately in columns of Fig. 3.
Through the comparison of Fig. 3(a)-(b) and Fig. 3(c)-(d),
the fringe orders are easily corrupted by noise, but the effect
of noise can be reduced using selected fringe frequency.
Through the comparison of SR and phase distribution in dif-
ferent columns, the proposed method outperforms the other
two methods. As illustrated in Fig. 3(b1)-(b4), the proposed
fringe order correction method maintains good performance
against other methods even under the high noise level.

C. APPLICABILITY TO COMPLEX SURFACES
Many fringe order correction methods [31] are based on
the assumption that fringe orders or unwrapped phases
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FIGURE 4. Simulation on complex surfaces. (a) height distribution of multiple steps, (b) residual FOEs of least square method, (c) residual
FOEs of the proposed method.

change smoothly. However, complex surfaces may have huge
jumps in height, causing discontinuities in fringe orders or
unwrapped phases.

A simulated complex surface with multiple steps is con-
sidered as the measured object in this section, as shown
in Fig. 4(a). The applied noise level 2 and fringe-frequency-
selection strategy 1 is detailed in Section IV(B), and other
simulation environments are the same as Section IV(B). The
fringe order result is corrected by the least squaremethod [31]
and the proposed method respectively. By subtracting the
original noise-free fringe order result from the corrected
fringe order results, the residual FOEs are obtained, as shown
in Fig. 4(b) and (c). The SR is 95.61% for the least square
method and 99.36% for the proposed method. The result
proves that the proposed method is not appreciably affected
by surface step edges, and that it is more applicable to com-
plex surfaces.

V. ACTUAL EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
An experimental FPP system is set up to verify the pro-
posed method, as shown in Fig. 5. The system mainly con-
sists of a digital projector (TENGJU TJ21HB, resolution:
1280 × 720), a CMOS camera (HIKVISION MV-CA013-
21UM, resolution: 1280 × 1024), and a computer for image
processing. A lens (COMPUTAR M0814-MP2) with a focal
length of 12 mm was attached to the camera. The measured
object is placed on a reference plane. The algorithms are
programmed by MATLAB and the computation processor is
Inter Core i7-7700 CPU.

In the experimental implementation, the wrapped phases
are calculated by N-step phase-shifting algorithm, to achieve
relatively better precision and robustness, and the number of
steps is set to 4 unless we specified otherwise. The shadow
or low reflective areas of the object usually yield unreliable
and useless wrapped phase results, and these areas can be
removed by the preset threshold of the intensity modulation
and in Eq. (2) [6]. For each pixel, if their intensity modulation
is under 20, the phase result will be eliminated.

The unwrapped phase increases along the horizontal axis,
so it is not easy to distinguish the phase which is modulated
by the measured object from the background. For better

FIGURE 5. The set-up of experimental FPP system.

illustration in our experiments, the phase map of the back-
ground reference plane is calculated in advance, and then the
background phase is subtracted from all phase maps of the
measured object.

B. ESTIMATION OF WRAPPED PHASE VARIANCE
As we discussed in Section III(A), the variance of ψ is nec-
essary to verify the valid neighborhood. According to (12),
the wrapped phase variance σ 2

φ should be pre-calculated.
In synthetic experiments presented in Section IV, we can
simulate the image noise and calculate σ 2

φ by (10). However,
error sources that come from the real-world are unpredictable,
and in this section, we present a simplemethod to estimate the
real-world σ 2

φ .
For the phase-shifting algorithm introduced in

Section II(A), if the number of steps is 6 at least, we can
compute two uncorrelated wrapped phase results. The dif-
ference between the two results is consistent with a normal
distribution:

φ1 − φ2 + 2π
/
n ∼ N

(
0, 2σ 2

φ

)
(20)
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FIGURE 6. Wrapped phase variance results of different tested materials in
different measuring conditions.

where φ1 and φ2 are the two wrapped phase and phase shift
is 2π

/
n. For example, the 8-step phase-shifting images can

generate two wrapped phase results, φ1−3−5−7(calculated by
4-step phase-shifting algorithm using 1st, 3rd, 5th and 7th
images) and φ2−4−6−8(calculated by 4-step phase-shifting
algorithm using 2nd, 4th, 6th and 8th images). σ 2

φ can be
estimated by the variance of the difference between φ1−3−5−7
and φ2−4−6−8 − π

/
4.

In this experiment, three objects with different materials
(paper, wood, and metal) are tested in different measuring
conditions. The horizontal resolution of the projector is
W = 1280 pixels, fringes with different wavelengths
(W ,W

/
2,W

/
4,W

/
8,W

/
16, and W

/
32) are projected

onto the tested objects, and then the wrapped phase vari-
ances σ 2

φ are estimated, as shown in Fig. 6. It can be eas-
ily concluded that σ 2

φ is not significantly affected by the
wavelength λ, though vulnerable to the reflection rate of

tested material, hardware device parameters (e.g., camera
exposure) and measurement strategy (e.g., number of steps of
phase-shifting).

In actual measuring situations, poor measurement condi-
tions and unsuitable surfaces may lead to huge σ 2

φ , resulting
in massive FOEs. Thus, hardware device parameters and
measurement strategy should be adapted to the measured
surfaces. However, it is the precision of σ 2

φ estimation instead
of σ 2

φ itself that affects the feasibility of the proposed method.
A further discussion is covered in the next section.

C. ANALYSIS OF ALGORITHMIC COMPONENT
The efficiency and accuracy of the proposed method are
determined by several algorithmic components. In this
section, experiments are performed to analyze the influences
of several controllable algorithmic components. We choose
a metal part as the measured object because the reflective
nature of its surface can stress the proposed method in case
of high noise levels.

In the first experiment, the influence of the precision of
σ 2
φ estimation is analyzed. The fringe-frequency-selection

strategy is set as λh = 30 pixels, λl = 129 pixels, and
the pre-estimated value of σ 2

φ in this experiment is 0.00073.
The captured images and phase map results calculated using
different σ 2

φ are shown in Fig. 7. The FOEs are counted in
the region of interest (marked as a rectangle in Fig. 7(c)) of
each map. The counted FOEs for Fig. 7(c)-(h) are: (c) 249;
(d) 99; (e) 13; (f) 1; (g) 2; (h) 2. The results show that the
corrected phase map has the least FOEs when the wrapped
phase variance is correctly estimated. When wrapped phase
variance is under-estimated, the FOE rate rises, while the
FOE rate does not rise noticeably when wrapped phase
variance is over-estimated. The reason is as follows: the step
differences ofψ are far more than 1 in most cases, and thus an

FIGURE 7. Captured images and calculated phase map results of a metal part. (a) fringe image with λh = 30 pixels, (b) fringe image
with λl = 129 pixels, (c) uncorrected phase map, (d)-(h) phase map corrected by proposed method using different wrapped phase
variances: (d) 0.0001; (e) 0.0004; (f) 0.00073; (g) 0.0015; (h) 0.0030.
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FIGURE 8. Calculated phase map results by proposed method using different
fringe-frequency-selection strategies: (a) λh = 30 pixels, λl = 129 pixels; (b) λh = 30 pixels, λl =

43 pixels; (c) λh = 15 pixels, λl = 86 pixels.

FIGURE 9. Phase results of several objects using different methods. From top to bottom: (a) frosted plastic mouse; (b) wooden comb;
(c) blue-black plastic calculator. From left to right of each row: (1) original uncorrected; (2) the majority rule method; (3) the least square
method; (4) the proposed method; (5) three-dimensional phase distribution using the proposed method.

over-estimated wrapped phase variance can still distinguish
the invalid neighborhoods. In practice, we prefer an over-
estimated wrapped phase variance to reduce the influence of
wrapped phase variance.

In the second experiment, the influence of the fringe-
frequency-selection strategy is analyzed. The wrapped phase
variance in this experiment is set as 0.0015. The phase map
results calculated using different fringe-frequency-selection
strategies are shown in Fig. 8. The FOEs are counted in the
region of interest (marked as a rectangle in Fig. 8(a)) of
each map. The counted FOEs for Fig. 8(a)-(c) are: (a) 63;
(b) 306; (c) 942. We can conclude that fringe-frequency-
selection strategy influences FOEs, and strategy with smaller
p
2

h + p
2

l is less likely to arise FOEs.

D. EXPERIMENTAL COMPARISONS
In this section, we present experimental comparisons
of different fringe order correction methods. The
fringe-frequency-selection strategy is set as λh = 30 pixels
and λl = 129 pixels. Several representative objects are placed

on the reference plane, including a frosted plastic mouse,
a wooden comb, and a dark-color plastic calculator. The
fringe order results are corrected by the majority rule method,
the least square method, and the proposed method separately.
The unwrapped phase map obtained using three-frequency
phase unwrapping method can be considered as ground truth.
For each pixel, if the absolute difference between the calcu-
lated phase and ground truth exceed π , the pixel is marked as
FOE pixel.

The phase map results are illustrated in Fig. 9. For a
better visual presentation, we set boundaries for the phase
of FOE pixels, and thus the FOEs are denoted black dots
or white dots in the figures. Fig. 9(b-2) and (c-2) show
the incapacity of majority rule method to deal with order
steps with small intervals. The least square method shows
poor robustness when dealing with pixels close to sur-
face step edges, such as comb teeth shown in Fig. 9(b-3).
Fig. 9(a-4), (b-4), and (c-4) show that there exist fewer
black dots in phase maps calculated by the proposed method
than other methods. The three-dimensional phase distribution
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FIGURE 10. Histogram of FOE count for unwrapped phase maps
calculated by different methods.

results in Fig. 9(a-5), (b-5), and (c-5) are in shape with the
measured objects and can be further mapped to height dis-
tribution after phase-height calibration.

For a clearer comparison, the FOEs are counted for each
method. The histogram of FOEs for the above experiments is
shown in Fig. 10.

In the case of mouse, the surface is smooth and quasi-
Lambertian. Compared with the uncorrected phase map, all
the three methods show effectiveness at the smooth area.
However, in the case of comb, the surface is complex with
narrow teeth. The FOEs of pixels close to teeth edges are
easily spread to neighboring pixels. Since the effect of edge
pixels is reduced viamaximum likelihood estimation, the pro-
posed method is more applicable in complex surfaces. In the
case of calculator, more original FOEs are aroused by noise
because of the low-reflection of surface. The FOEs are sig-
nificantly reduced by the proposed method compared with
other methods. In conclusion, the comparison results are able
to prove that the proposed method provides better feasibility
and robustness for fringe order correction.

VI. CONCLUSION
In this paper, we present a novel fringe order correc-
tion method for the bi-frequency number-theoretical phase
unwrapping. Specifically, we consider the calculated inter-
mediate variable which determines the fringe orders as
an observed sample from the normal distribution with an
unknown ground truth integer. Via the pre-estimated wrapped
phase variance and the condition of chi-square distribution,
the valid neighborhood of the observed pixel is determined.
By introducing the maximum likelihood principle to the
neighborhood, the most likely correct integer is calculated,
and the FOEs are corrected eventually. We performed simula-
tions and actual experiments to stress the robustness and fea-
sibility of the proposed method, with the fringe order errors
significantly reduced. The comparison results demonstrate
that the proposed method is capable to unwrap phase accu-
rately, even in high-noise and complex-shape environments.
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