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ABSTRACT With the prevalence and growing volume of Electronic Health Records (EHRs), there has been
increasing interest in mining EHRs for improving clinical decision support. The accurate identification of
patients with similar conditions based on EHRs is a key step in personalized healthcare. Existing studies
model EHRs by medical knowledge graph embedding to learn the latent embeddings of medical entities
(e.g., patients, medications, diagnoses and procedures). However, such precisely structured data is usually
limited in quantity and in scope. Therefore, to enhance the quality of the embeddings it is important to
consider more widely available medical information such as medical entity descriptions. In this paper we
propose a novel framework, called Deep Patient Similarity (DeepPS). Specifically, DeepPS incorporates
medical entity descriptions by augmenting the embeddings of medical entities and relations with the
embeddings of words, which leverages both information from medical knowledge graph structures and the
contexts of medical entity descriptions. Furthermore, DeepPS employs the embeddings to patient similarity
learning by leveraging Siamese Convolutional Neural Network (CNN) with Spatial Pyramid Pooling (SPP).
Extensive experiments on real datasets are conducted to show superior performance of our proposed
framework.

INDEX TERMS Patient similarity, medical knowledge graph embedding, medical entity descriptions,
Siamese CNN with SPP.

I. INTRODUCTION
Patient similarity learning [1] is a key and fundamental task
in the medical healthcare domain, which aims to improve the
doctors’ diagnoses and the treatment of patients. With the
tremendous growth of the adoption of EHRs, various sources
of clinical information (e.g., demographics, diagnostic his-
tory, medications, procedures and laboratory test results)
are becoming available about patients. This makes EHRs a
valuable resource for identifying similar patients. The study
of patient similarity aims at deriving a meaningful distance
metric in the clinical field to measure the relative similarities
among patients according to their health records. A proper
similarity measure enables various downstream applications,
such as personalizedmedicine [2], behavioral analysis [3] and
medical diagnoses [4]–[11].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

A. MOTIVATION
The precise patient similarity measures can group patients
into cohorts effectively, which not only is beneficial to ana-
lyze the disease development trend of patients in similar
cohorts, but also helps doctors make better clinical deci-
sions to improve patients’ health. For example, patients with
higher risks of death during 48 to 72 hours of admission
can be accurately identified, which enables doctors to take
proactive measures to contain the risks. By understanding
the development of the patients’ conditions, doctors can
design more targeted treatment plans for patients. This means
that there will be fewer cases of over-treatment or under-
treatment, patients will receive better advice, and patient care
will become more personalized. Therefore, how to accurately
and precisely measure patient similarity is an important and
challenging issue.

With the increasing emergence of knowledge graphs, many
world-leading researchers have successfully incorporated

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 156663

https://orcid.org/0000-0001-9759-0390
https://orcid.org/0000-0002-3817-7333
https://orcid.org/0000-0001-5602-8203
https://orcid.org/0000-0002-4558-9803


Z. Lin et al.: Patient Similarity via Joint Embeddings of Medical Knowledge Graph and Medical Entity Descriptions

FIGURE 1. An annotated toy example of medical knowledge graph.

knowledge graphs into recommender systems [12]–[16] to
improve the recommendation accuracy and explainability.
In medical fields, it is of great significance to extract the
valuable medical information from EHRs and build up a
giant medical knowledge graph that reflects medical facts.
Consequently, harnessing a well-built medical knowledge
graph can provide more useful information for patient sim-
ilarity learning. To efficiently exploit medical knowledge
graphs in practice, many medical knowledge graph embed-
ding approaches based on translation mechanism [17]–[19]
and deep learning [20], [21] have been proposed to learn the
embedding vectors of medical entities and relations. These
approaches are demonstrated particular success in both per-
formance and scalability, and are commonly adopted for
deriving clinically meaningful representations of medical
entities which are furthermore employed for patient profiling.

B. CHALLENGE
The key of patient similarity learning is to derive the effective
representations of medical entities in the medical knowledge
graph without loss of information. However, there are still
significant challenges on learning effective vector represen-
tations of medical entities for deriving the patient similarity
leveraging the medical knowledge graph:

1) Computational efficiency: Querying medical entities
and relations based on conventional graph factorization
algorithms have limitations in portability and scalabil-
ity. The computational complexity becomes unfeasible
when the medical graph reaches a very large scale.

2) Limited contents: Content limitations in EHRs
constrain the researchers to establish more and more
accurate relationships between medical entities of
patients, which makes the final results less trustworthy
for the complicated patients.

3) Exclusiveness: The embeddings are exclusive to
entities/relations within the medical knowledge graph.
As a result, the predictive ability is fundamentally lim-
ited by the information stored explicitly or implicitly
in the medical knowledge graph, and the computation
between the medical knowledge graph and medical
entity descriptions cannot be handled.

C. SOLUTION
Taking into account all challenges mentioned above,
we propose a novel patient similarity learning framework
based on knowledge representation learning, which is able

to take advantages of both medical knowledge graph and
medical entity description. We name our framework as Deep
Patient Similarity (DeepPS) throughout this paper. There
are two parts in the proposed DeepPS: graph-text joint
embedding and patient similarity learning. In graph-text
joint embedding, we construct a medical knowledge graph
(See Fig. 1.) from EHRs, ICD-9 ontology [22] and DrugBank
[23], and obtain medical entity descriptions fromWikipedia1

and EHRs. Then, DeepPS enables a joint embedding model
to learn simultaneously from (1) medical knowledge triples
that have been directly observed in a given medical knowl-
edge graph, and (2) medical entity descriptions which have
rich semantic information about these medical entities. More
specifically, our joint embedding model consists of three
parts: (1)Medical KnowledgeGraphEmbedding. We learn
both medical entity and relation embeddings following the
translation-based methods according to known triple facts in
the medical knowledge graph. (2) Medical Entity Descrip-
tion Embedding. We learn the embedding representations
of words in medical entity descriptions from word concur-
rences in text windows [24], where the distance between the
words reflects the similarity between them. (3) Alignment
Model. We learn to map both medical entity/relation and
word embeddings into a unified low-dimensional semantic
space. In the learning process, the joint embedding model
encodes the semantics of medical entity descriptions to
enhance the learning of medical knowledge graph embed-
ding, and integrates such learned entity/relation embeddings
to constraint their corresponding word embeddings in medi-
cal entity descriptions. In patient similarity learning, we pro-
pose a temporal patient representation based on the learned
embeddings of medical entities. Afterwards, we deploy a
patient similarity learningmethod based on the Siamese CNN
model [25], [26] to compute the similarity score between all
patient pairs.

D. CONTRIBUTIONS
The main distinctive technical contributions of our work are
summarized as follows:

1) We develop the knowledge graph embedding model
and medical entity description embedding model to
learn medical entity/relation and word embeddings
respectively, and leverage the alignment model
to jointly map medical entity/relation and word

1https://encyclopedia.thefreedictionary.com/
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embeddings into the same continuous vector space.
The representations of medical entities enable the pro-
posed framework to even effectively analyze the patient
similarity.

2) We propose a novel method for modeling a patient
based on the learned embeddings of medical entities
and incorporate Siamese CNN with SPP as a deep
learning model to measure the similarity between all
patient pairs.

3) We conduct extensive experiments on large real
datasets to show the efficiency of our proposed
framework, which significantly outperforms the other
baselines in terms of hospital readmission rate and inci-
dent rate difference for mortality. Moreover, compara-
tive experiments are conducted between our proposed
framework and the baselines in the performance of
patient similarity learning, and the result of our exper-
iments demonstrates that our proposed framework has
the best performance.

The rest of this paper is organized as follows.
Section 2 introduces the related work on patient similarity
and medical knowledge graphs. We discuss our proposed
framework in Section 3. The experimental results are reported
in Section 4. Section 5 concludes the paper and our future
work.

II. RELATED WORK
In this section, we first review some related work on
evaluating the clinical patient similarity, and then review
some relevant work associated with medical knowledge
graphs.

A. PATIENT SIMILARITY
Recently, researchers have concentrated a lot of works on
patient similarity measure in the field of health informatics.
For example, Reference [27] deployed a cosine-similarity-
based patient similarity metric (PSM) to weight the patient
similarity measures. Reference [2] used the Tanimoto Coef-
ficient (TC) to compute similarities between all patient pairs.
Reference [28] proposed a locally supervised metric learning
which is used for measuring similarities between patients
represented by multi-dimensional time series. Nguyen et al.
[29] proposed the sequential matching procedure to calcu-
late the distance between two patients, which can utilize
the sequential order of medical concepts. In addition, there
are also a number of patient similarity measure methods
taking into account the temporal information in EHRs. For
example, Wang et al. [30] presented a convolutional
matrix factorization for detection of temporal patterns, and
Cheng et al. [1], [31] proposed an adjustable temporal fusion
scheme using CNN extracted features. However, these meth-
ods are limited to patients with single disease, and the patients
with a variety of diseases have been discarded directly.
Therefore, Zhao et al. [32] designed a patient similarity label
generation method for patients with multiple diseases, and
converted the patient similarity measurement method into a
multi-label classification problem.

B. MEDICAL KNOWLEDGE GRAPHS
Knowledge graphs have become ubiquitous nowadays as the
backbone of multiple applications such as search engines
and recommendation systems. Knowledge graphs provide
an uncanny ability to capture the relationships between
different entities by linking them through edges based on
information extracted from various heterogeneous sources.
Therefore, deploying knowledge graphs in the medical
healthcare domain has proven to be an effective method to
map relationships between the enormous variety and struc-
ture of healthcare data. An increasing number of knowledge
graphs have been constructed from huge volumes of med-
ical databases over the last years, such as Bio2RDF [33]
and Chem2Bio2RDF [34]. However, there is little patients’
clinical information within these medical knowledge graphs.
STRIDE2RDF [35] and MCLSS2RDF [36] apply Linked
Data Principles to represent electronic health records of
patients. Unfortunately, such medical knowledge graphs are
still limited to the interlinks from clinical data, which impedes
its application in the medical healthcare domain.

III. THE PROPOSED FRAMEWORK
In this section, we first introduce the important notations used
in this paper, and then explain our joint embedding model
to construct the embeddings that jointly maps medical enti-
ties/relations and words of medical entity descriptions into
the same continuous vector space. Finally, we present how to
leverage Siamese CNN with SPP to measure the similarity
between all patient pairs.

A. NOTATIONS
A patient’s health record contains a sequence of medical
concepts, which are recorded indicating the diagnoses, med-
ications and procedures the patient suffered or received. The
medical concepts are mapped to the International Classi-
fication of Disease (ICD-9) [37] and National Drug Code
(NDC) [38]. We denote the set of all unique medical con-
cepts from the EHR data as ε = {c1, c2, . . . , c|ε|}, where
ci is the medical concept and |ε| is the number of unique
medical concepts. A medical knowledge graph can be noted
as G = (E , R) which is a set of medical knowledge, where
E is the set of medical entities including medical concepts in
EHRs and medical entities in ICD-9 ontology and DrugBank,
and R is the set of relations existing in the medical knowledge
graph. Medical knowledge is comprised of entity-relation-
entity triples in the form (eh, r , et ). Here ehεE , r εR, and
etεE denote the head, relation and tail of a medical knowl-
edge triple, respectively. For instance, in Fig. 1 a triple
(p1, prescribed, Insulin) indicates that there is a relationship
prescribed from the patient p1 to the medication Insulin. And
a triple (Insulin, sameAs, DB00030) indicates the medical
concept Insulin from EHRs has the sameAs relation with the
medical entity DB00030 from DrugBank. Given a medical
entity e, we let text(e) = w1, w2, . . . , wn be the sequence
of words associated with medical entity e. In other words,
text(e) is the description of medical entity e (See Fig. 2.).
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FIGURE 2. Example of medical entity descriptions.

We try to learn the embeddings e, r and w for each medical
entity e, relation r and word w respectively. The descriptions
of all medical entities are used as a text corpus 1 and the
vocabulary of words from text corpus 1 is V . The union
vocabulary of medical entities and words is � = E ∪ V .

B. JOINT EMBEDDING MODEL COMBINING MEDICAL
KNOWLEDGE GRAPH AND MEDICAL ENTITY
DESCRIPTIONS
Our joint embedding model consists of three parts: medical
knowledge graph embedding, medical entity description
embedding and alignment model. Fig. 3 demonstrates the
overall architecture of our joint embedding model. In the
following section, we introduce the three parts in details.

1) MEDICAL KNOWLEDGE GRAPH EMBEDDING
A medical knowledge graph G = (E , R) consists of a set
of interconnected medical entities and their relations, where
medical entities E and relations R can be different types.
Given a medical fact triple (eh, r , et )εG, the letters eh, r,
et are characterized as the corresponding embedding rep-
resentations of eh, r , et . Recently, significant advancement
has been made in using the translation-based method to
train medical knowledge graph embedding. To characterize
a medical fact triple (eh, r , et ), the translation-based models
follow a common assumption e∗h+ r ≈ e∗t , where e

∗
h and e∗t

are either the embedding representations of eh and et , or the
transformed vectors under a certain transformation w.r.t. rela-
tion r . TransR [19] is a state-of-the-art translation-based

embedding approach. It has achieved promising results in
knowledge graph completion and link prediction from text.

Consider the above reason, for each medical fact triple
(eh, r , et ), medical entities embeddings are set as eh, etεRk

and relations embeddings are set as r εRd . For each relation r ,
we set a projection matrix HrεRk×d , which may project
medical entities from entity space to relation space.We define
the translations between medical entities and get the energy
function z(eh, r , et ) as:

z(eh, r, et ) = b− ‖ehHr + r− etHr‖L1/L2 (1)

where b is a constant for bias designated for adjusting the
scale for better numerical stability.

Then, we define the following conditional probability of
a medical fact triple (eh, r , et ) in a medical knowledge
graph:

P(eh|r, et ) =
exp{z(eh, r, et )}∑

êh∈�
exp{z(êh, r, et )}

(2)

and P(et |eh, r), P(r|eh, et ) can be defined in the same way
by choosing corresponding normalization terms respectively.
We define the likelihood of observing a medical fact triple
(eh, r , et ) as:

£(eh, r, et ) = logP(eh|r, et )+ logP(et |eh, r)

+ logP(r|eh, et ) (3)

The goal of medical knowledge graph embedding is to max-
imize the conditional likelihoods of existing fact triplets in
the medical knowledge graph. Based on (3), the objective
function of medical knowledge graph G = (E , R) can be
defined as follows:

£G =
∑

(eh,r,et )∈G

£(eh, r, et ) (4)

FIGURE 3. Overall architecture of our joint embedding model.
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2) MEDICAL ENTITY DESCRIPTION EMBEDDING
The medical entity descriptions contain rich and important
knowledge information, and it is also one of the multi-source
information that can interact with the medical knowledge
bases (e.g., MIMIC-III, DrugBank and ICD-9 ontology). It is
assumed that the medical entities are similar if they have
similar entity descriptions. To encode the rich semantic rep-
resentations of words in given medical entity descriptions,
we adopt the text model proposed in [39] as our medical
entity description embedding model. It learns word embed-
dings by capturing the co-occurrence of words observed in a
text corpus 1. In the medical entity description embedding
model, we assume any pair of words w and v that concur
in some fixed-size context windows are of certain rwv but
rwv is a hidden variable, and the goal is to fit the concurring
pairs of words. Therefore, the energy function z(w, rwv, v)
evaluating the co-occurrence of two words w and v based on
their embeddings is defined as follows:

z(w, rwv, v) = b− ‖w+ rwv − v‖L1/L2 (5)

where w and v are the embedding representations of two
words w and v respectively.

Then, the conditional probability of a target wordw appear-
ing close to a context word v (within a context window of a
certain length) can be defined as follows:

P(w|rwv, v) , P(w|v) =
exp{z(w, rwv, v)}∑

v̂∈V
exp{z(w, rwv̂, v̂)}

(6)

Subsequently, the objective function of the medical entity
description embedding model is to maximize the likelihood
of the concurrences of pairs of words in text windows:

£W =
∑

(w,v)∈C

#(w, v)logP(w|v) (7)

where C is all the distinct pairs of words concurring in text
windows of a fixed size, and #(w, v) is the number of times
(w, v) appears in the text corpus 1.

3) ALIGNMENT MODEL
The embedding vectors of medical entities/relations from
knowledge graph embedding model and word embeddings
from medical entity description embedding model do not
interact, and they can be placed in different subspaces of
the vector space. To address this issue, based on medical
knowledge graph embedding and medical entity description
embedding, we introduce the alignment model to jointly
embed medical entity/relation and word embeddings into the
same vector space.

Inspired by the translation-based methods for knowledge
representation learning such as TransE [17], it is straightfor-
ward to regard the alignment as a special relation between
the medical entity and each word in its description, and
perform an alignment-specific translation operation between
the medical entity and each word in its description to learn
joint embeddings.

Formally, given the medical entity e and each word w in its
description, we assume there is an alignment relation rew so
that e + rew ≈ w. The energy function of joint embeddings
is thus defined as:

z(e,w) = b− ‖e+ rew − w‖L1/L2 (8)

The conditional probability P(w|e) of predicting w given e
can be defined as follows:

P(w|e) =
exp{z(e,w)}∑

ŵ∈V
exp{z(e, ŵ)}

(9)

We also define P(e|w) in the same way by revising the
normalization term:

P(e|w) =
exp{z(e,w)}∑

ê∈E
exp{z(ê,w)}

(10)

Then the objective function of alignment model can be
defined as follows:

£A =
∑
e∈E

∑
w∈text(e)

[logP(w|e)+ logP(e|w)] (11)

4) OPTIMATION AND TRAINING
To jointly learn the embeddings of words and medical
entities/relations by simultaneously maximizing the sum of
the three logarithm likelihood of objective functions just as
follows:

£(T ) = £G + £W + £A + γ2(T ) (12)

where T stands for the embeddings of medical entities,
relations and words, γ is a hyper-parameter weighting the
regularization factor 2(T ), which is defined as follows:

2(T ) =
∑
e∈E

[‖e‖ − 1]+ +
∑
r∈R

[‖r‖ − 1]+

+

∑
w∈V

[‖w‖ − 1]+ (13)

where [x]+ = max(0, x) denotes the positive part of x.
The regularization factor will normalize the embeddings
during learning. And we adopt stochastic gradient descent
(SGD) [40] to maximize the transformed objective function.

Optimizing objective functions (4) and (7) in (12) are
computationally expensive, as calculating them need to sum
over the entire set of medical entities, relations and words.
To address this problem, we use negative sampling (NEG)
to transform the original objective, i.e., Equation (12) to
a simple objective of the binary classification problem—
differentiating the observed data from noise.

For (4), we should transform log P(et |eh, r), log P(eh|r ,
et ) in (3). Taking as P(eh|r , et ) an example, we maximize the
following objective function instead of it:

log σ (z(eh, r, et ))+
µ∑
i=1

Eẽih∼zneg({ẽh,r,et )}[σ (z(ẽ
i
h, r, et ))]

(14)
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where µ is the number negative examples to be discriminated
for each positive example, σ (x) = 1/(1 + exp(−x)) is
the sigmoid function. {(ẽh, r , et )} is the invalid triple set,
and zneg is a function randomly sampling instances from
{(ẽh, r , et )}. When a positive triple (eh, r , et )εG is selected,
to maximize (14), µ negative triples are constructed by sam-
plingmedical entities from an uniform distribution overE and
replacing the head of (eh, r , et ). The transformed objective of
log P(r|eh, et ), log P(et |eh, r) are maximizing in the same
manner, but for log P(r|eh, et ), the negative relations are sam-
pled from a uniform distribution over R to corrupt the positive
relation rε (eh, r , et ). We iteratively select randommini-batch
from the training set to learn embeddings until converge.
Thus, we can also simplify (7) and maximize it in the same
way by choose the corresponding negative distribution.

In our training process, we implement a multi-threading
version to learn the representations for a better efficiency.
To avoid overfitting, we initialize entity and relation embed-
dings with results of TransE, and initialize projection matrix
as identity matrix.

C. PATIENT SIMILARITY LEARNING
Inspired by the text similarity problem tackled by the Siamese
LSTM model [41], it is available to measure the similarity
between all patient pairs using Siamese CNN. Each of the
twin subnetworks of Siamese CNN uses this same CNN
architecture. However, there is a technical issue in the training
and testing of CNN: the fixed-size patient representations
are taken as the input of CNN, which limits both the aspect
ratio and the scale of the input. When applied to the patient
representations of arbitrary sizes, current methods mostly
fit the input to the fixed size, either via cropping [42] or
via warping [43]. But the cropped region may not contain
the entire object, while the warped content may result in
deformation. Therefore, in order to remove the fixed-size
constraint of the CNN, we add an SPP layer [44] on top
of the last convolutional layer. The architecture of CNN is
adapted by introducing the SPP layer. The new architecture
of CNN is called SPP-net. Specifically, we utilize the learned
embeddings to construct the temporal patient representation,
and then train a Siamese CNN model with SPP, which first
maps the pair of temporal patient representations with dif-
ferent dimensions to the fixed-size vectors respectively and
then we use the Euclidean distance as the negative similarity
function to express the degree of relatedness between the pair
of patients. That is, the Euclidean distance between the two
patient vectors is taken as the final similarity score.

1) TEMPORAL PATIENT REPRESENTATION
The process of patient similarity learning involves the
construction of patient representations based on the medi-
cal entity embeddings we have learned. A straightforward
representation of a patient is to convert all medical concepts
in his medical history to medical concepts vectors, and then
summing all those vectors to obtain a single representation
vector. However, this kind of patient representation ignores
the temporal information of medical concepts from EHRs.

Therefore, we adopt a temporal patient representationmethod
based on the happening timestamps of medical concepts in an
increasing order, i.e., a patient is represented as an embed-
ding matrix which has a dimension of Nc × k , where Nc
is the number of medical concepts in the medical history
of a patient and k is the dimension of all medical concept
vectors. Usually, Nc varies from patient to patient. Given the
temporal representations of pairwise patients, calculating the
clinical similarity between pairwise patients is not intuitive.
We will describe the patient similarity learning method in the
following section.

2) SIAMESE CNN WITH SPP
The Siamese CNN model is a CNN-based architecture
that usually contains two identical CNNs. To generate the
fixed-length outputs from the temporal patient representa-
tions of arbitrary sizes, we replace the CNN with SPP-net.
The twin SPP-nets have the same configuration with the same
parameters and share weights. Two copies of this subnet-
work are joined by a loss function at the top, which com-
putes a patient similarity metric using the Euclidean distance
between the patient vectors extracted by each subnetwork.

a: THE ARCHITECTURE OF SIAMESE CNN WITH SPP
Fig. 4 shows the architecture of patient similarity learning
using Siamese CNN with SPP. Here, XA = [c1, c2, . . . , cK ]T

and XB = [c1, c2, . . . , cN ]T are the representation matrices
of two patients pA, pB respectively, where K and N are the
lengths of two patient medical concept sequences, and ci is
the vector representation of medical concept ci. We use XA
and XB as the input to two identical SPP-nets with the same
weights, and then the patient vectorsFW(XA) andFW(XB) are
extracted by each of the SPP-net that the Siamese network
comprises. The output of Siamese CNN with SPP DisW =
‖FW(XA) − FW(XB)‖ measure the similarity between the
patient vectors. Our hypothesis is that, on one hand, two
patients of the same cohort will have the similar embedding
vectors and therefore their distance is close to zero. On the
other hand, two patients of different cohorts will have more
different embedding vectors and therefore their distance will
be larger.

The similarity between the feature vectors FW(XA) and
FW(XB) of temporal patient matrices XA and XB can be
measured by distance metrics such as those induced by the
norms L1 and L2 or with similarity function such as cosine
similarity. In our case, we choose Euclidean distance because
it is widely used and have the best performance in a series of
practices.

b: LOSS FUNCTION USED FOR SIAMESE CNN WITH SPP
Given XA and XB are a pair of input patient representations,
W represents shared weighted matrix, and the mapping of
XA and XB in the feature space is represented by FW(XA)
and FW(XB), then Siamese CNN with SPP can be con-
sidered as a measure function that measures the simi-
larity between XA and XB, by calculating the Euclidean
distance between the patient vectors. This learned similarity
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FIGURE 4. Patient similarity learning using Siamese CNN with SPP.

measure function is defined as:

DisW(XA,XB) = ‖FW (XA)− FW (XB)‖2 (15)

During the training phase of Siamese CNN with SPP we
use the contrastive loss function introduced by Chopra et al.
in [45], which is defined as follows:

L(W,Y ,XA,XB)=
Y
2
DisW(XA,XB)2

+
1− Y
2

(max{0,m− DisW(XA,XB)})2

(16)

where m > 0 is a constant called a margin and Y is a binary
label assigned to the pair of input patient representations,
so that Y = 1 if the patients belong to the same cohort and
Y = 0 otherwise.

Note that if the patients belong to the same cohort (Y = 1)
their distance contributes to the loss function, while if they
belong to different cohorts (Y = 0), only whose distance
is less than or equal to m contribute. Therefore, minimizing
L(W, Y , XA, XB) with respect to W would result in a small
value of DisW(XA, XB) for patients of the same cohort and a
large value ofDisW(XA,XB) for patients of different cohorts.

D. ALGORITHM DESCRIPTION
Algorithm 1 represents our proposed framework for patient
similarity learningŕDeepPS in detail. The inputs of DeepPS
are a patient dataset, a set of patient’s health records, a text
corpus, a medical knowledge graph and the corresponding
vocabulary of words, medical entities and relations. DeepPS
has two main phrases. Phrase 1: After initializing medical
entity/relation embeddings and projection matrix (Line 1),
we alternatively learn from a batch of triplets randomly
sampled from the medical knowledge graph (Line 3-6),
and a batch of word pairs sampled by scanning the text

corpus (Line 7-10). To combine such two informa-
tion, we apply the alignment strategy based on the
translation-based methods to join medical entity/relation and
word embeddings into a unified low-dimensional semantic
space (Line 11-18). Phrase 2: For each patient p, the tem-
poral representation of patient p is denoted as Xp which is
constructed by stacking all medical concepts vectors in the
medical history of patient p (Line 20-21). Lastly, the patient
matrices are fed into Siamese CNN with SPP to measure the
similarity between all pair patients (Line 22). Additionally,
for each patient, we select the patient corresponding to the
highest similarity score (Line 23-29).

IV. EXPERIMENTS
In this section, the performance of the proposed framework,
DeepPS, is evaluated using four real-world datasets. First,
the experimental setup is introduced. Then we evaluate
the effectiveness of proposed framework on three tasks:
patient similarity analysis, patient clustering and visualiza-
tion. In addition, we explore the influence of different metric
functions in the patient similarity learning performance. Last,
parameter sensitivity analyses of margin b, hyper-parameter
γ , margin m and number of convolutional filters f are
provided.

A. EXPERIMENTAL SETTINGS
1) DATASETS
Our experiments are performed on the real EHR dataset,
MIMIC-III [46], and three knowledge bases ICD-9 ontology,
DrugBank and Wikipedia which are publicly available in
different forms.
• MIMIC-III (Medical Information Mart for Intensive
Care III) is a large database of intensive care patients
open to the public free of charge and collects all
charted data (demographics, vital signs, medications,
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Algorithm1 Patient Similarity via Joint Embeddings ofMed-
ical Knowledge Graph and Medical Entity Descriptions
Input: A patient dataset D, a set of patient’s health records
S = {TC1, TC2, . . . }, a text corpus 1, a medical knowledge
graphG, and the corresponding vocabulary of words, medical
entities and relations (V , E and R, respectively)
Output: A set of the most similar patients Ď
1: Initialize medical entity and relation embedding vectors e
(eεE) and r (rεR), and projection matrix Hr

2: repeat
3: Sample a batch of triples from Gbatch from G
4: for (h, r , t)εGbatch do
5: Update h, r, t by using Equation (1-4) with negative

sampling
6: end for
7: Sample a batch of word pairs 1batch from 1

8: for (w, v) 1 1batchdo
9: Update w by using Equation (5-7) with negative

sampling
10: end for
11: Sample a batch of medical entities Ebatch from E
12: for eεEbatch do
13: Sample a batch of words Vbatch from entity

description text(e)
14: for wεVbatch do
15: Map e and w into a unified semantic space
16: Update e, w← based on Equation (8-11)
17: end for
18: end for
19: until Convergence
20: foreach p εD do
21: Construct the patient matrix Xp← based on TCp =

{c1, c2, . . . }
22: Train Siamese CNN with SPP using patient matrices as

the input
23: Ď← {}
24: foreach pi εD do
25: foreach pj εD \pi do
26: Compute the similarity score between pi and pj
27: Rank the similarity score
28: Select the patient pj corresponding to the highest

similarity score
29: Ď← pj
30: Return Ď

procedures, diagnoses, patient outputs, laboratory tests,
physician notes, and treatment details) on ICU patients
from Beth Israel Deaconess Medical Center between
2001 and 2012. The MIMIC-III dataset includes
6,918 distinct diseases, 4,525 distinct medicines and
2,003 distinct procedures from 46,297 unique patients.

• ICD-9 ontology (the 9th revision of the International
Statistical Classification of Diseases and Related Health
Problems) contains 13,000 international standard codes
of diagnoses and their hierarchical relationships.

• DrugBank is a knowledge base containing extensive
biochemical and pharmacological information about
drugs, their mechanisms and their targets. It covers
7,683 active moieties. Although not primarily devel-
oped for clinical use, DrugBank provides a set of
12,128 drug-drug interactions (DDIs), asserted at the
ingredient level, along with a brief textual descrip-
tion of the interaction, and information about the pos-
sible molecular basis of the interaction (target-based,
enzyme-based, transporter-based).

• Wikipedia is a free multi-lingual online encyclopedia
that is constructed in a collaborative effort of voluntary
contributors and still grows exponentially. It contains
more than 5.7million articles and 46million pages and is
edited on average by more than 128k active users every
month.

2) MEDICAL KNOWLEDGE GRAPH CONSTRUCTION
Before constructing a large medical knowledge graph by
connecting MIMIC-III, ICD-9 ontology, and DrugBank,
we introduce how to select patients and their medical
concepts.

a: THE SELECTION OF PATIENTS
Following the cohort selection reasons in [47], we extract nine
patient cohorts from the MIMIC-III dataset: Atherosclero-
sis, Heart Failure, Kidney Failure, Intestinal Diseases, Liver
Diseases, Pneumonia, Septicemia, Respiratory Failure and
Gastritis. To perform patient similarity learning, the patients
from nine cohorts are selected as follows: (1) We remove the
patients with missing data on admission date and discharge
date; (2) We keep the patients which consist of at least three
ICD-9 codes; (3) We remove the patients which have the
discharge date after 2200/1/1; and (4) we remove the patients
who suffer from more than one disease in the cohort list.
Totally 26,009 patients are finally selected and divided into
training set (80%), test set (10%) and validation set (10%).

b: THE SELECTION OF MEDICAL CONCEPTS
Themedical knowledge graph consists of medical fact triples,
where a medical fact triple indicates that a patient takes
a medication, a patient performs a surgery, or a patient is
diagnosed with a disease, etc. Therefore, we need to extract
the diagnosis information, medication information, and pro-
cedure information from MIMIC-III as medical concepts of
patients. A subset of medical concepts is selected by remov-
ing medical concepts which appear less than five patients to
avoid biases and noise. Finally, there are totally 9,067 distinct
medical concepts left.

After extracting patients and their medical concepts,
we need to tackle the task of finding sameAs links between
MIMIC-III and other biomedical knowledge graphs (ICD-9
ontology and DrugBank). In MIMIC-III, the ICD-9 codes for
diagnoses and procedures can be directly linked to ICD-9
ontology by string matching. For the medication entity link-
ing, medication names are various and often contain some
insignificant words (10%, 200mg, glass bottle, etc.), which
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TABLE 1. Statistics of medical entities.

TABLE 2. Statistics of medical relations.

challenges the medication entity linking if the label matching
method is directly used. In order to overcome this problem,
we use an entity linking method which is mentioned in [48].
Table 1 and 2 show the statistics of the medical knowl-
edge graph we construct. The medical knowledge graph will
be used to learn low-dimension representations of medical
entities and relations by the DeepPS framework.

3) MEDICAL ENTITY DESCRIPTION RETRIEVAL
The text corpus1 is composed of medical entity descriptions
from Wikipedia and EHRs. For patient entity descriptions,
we use the discharge summary associated with each patient
fromMIMIC-III. For diagnosis and procedure entity descrip-
tions, we use the detail description for the corresponding
ICD-9 code in the tables from MIMIC-III. For remain-
ing entity descriptions, we use the Wikipedia article asso-
ciated with each corresponding entity. In contrast to the
whole Wikipedia articles which might contain much noise,
the summary section of eachWikipedia article generalizes the
main topic and is of relatively higher quality. Therefore, the
summary section of entity’s corresponding Wikipedia article
is also considered as its entity description in our work. Plus,
the punctuation should be removed before being forwarded to
training. Finally, we filter out rare words that appeared fewer
than five times in the text corpus. Consequently, the total
number of unique words in the text corpus is approximately
36,723.

4) COMPETING METHODS
To evaluate the effectiveness of the proposed DeepPS,
we compare the framework with the following baselines and
approaches in terms of different performance metrics.
• Principal ComponentAnalysis (PCA): A unsupervised
method is widely used for dimension reduction and fea-
ture extraction [49]. We apply PCA on the one-hot EHR
matrices of patients and perform Euclidean distance
based on the PCA results.

• Code Sum based Matching (CSM): A method
presented by Choi et al. [50] that represents a patient by
summing up all its ICD code vectors, absolutely elim-
inating the sequential structure of ICD codes. It deter-
mines the similarity between a pair of patients by
computing the cosine distance between their summed
vectors.

• CNN_triplet: A patient similarity learning framework
proposed by Suo et al. [51] that uses CNN to capture
local important information in EHRs and then feed the
learned representation into triplet loss.

• Deep Embedding: A framework introduced by
Chang et al. [47] that combines CNNwith distributional
medical event embeddings from Word2Vec. Based on
the temporal embedding matrices, patient features are
filtered through the convolutional layer of neural net-
work. Feature maps that represent patient clinical char-
acteristics are then used to measure the distance between
patients.

• TransR-DeepPS: It applies TransR instead of the joint
embedding model in the proposed DeepPS to learn
medical entity/relation embeddings, without taking the
additional corpus information into consideration.

• T-DeepPS: A Triplet architecture based on the proposed
DeepPS inspired by Patient Similarity Deep Metric
Learning Framework (PSDML).

5) EVALUATION METRIC
With generated representations of each patient, we calculate
the similarity score among all patient pairs using two different
criteria: hospital readmission rate and incident rate difference
for mortality. With the inherent difficulty of measuring the
patient similarity, these two criteria are chosen since (1) both
hospital readmission rate and incident rate difference for
mortality play a significant role in many patient matching
applications [52] and (2) they are recorded in most routinely
collected data, and hence have a broad prospect of applica-
tion [53], [54]. Also, we use Rand Index [55] and Normalized
Mutual Information [56] to evaluate the patient clustering.
We will describe the detailed definitions of these four criteria
next.

a: HOSPITAL READMISSION RATE (HRR)
Assume Case= {r1, r2, . . . , rN} is the collection of readmis-
sion statuses of N patients and Control = {ř1, ř2, . . . , řN}
is the collection of readmission statuses of the most similar
patients of N patients. HRR is computed as follows:

HRR =
N∑
i=1

ω(Case[i],Control[i]) (17)

where ω(Case[i],Control[i]) =
{
0,Case[i] 6= Control[i]
1,Case[i] = Control[i]

.

HRR measures the overall matching efficiency and HRR ε
[0, 1].

b: INCIDENCE RATE DIFFERENCE FOR MORTALITY (IRDM)
Assume Case = {(t1, d1), (t2, d2), . . . , (tN , dN )} is the
collection of tuples (discharge date, death date) of N patients,
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where ti is the discharge date, and di is the death date. The
incidence rate of the collection of N patients is computed as
follows:

IR(Case) =
count(death)

N∑
i=1,di 6=null

(di − ti)+
N∑

i=1,di=null
(dnull− ti)

(18)

where count(death) is the number of patients which have the
death dates and dnull is 2200/1/1.

Similarly, we can compute the incidence rate of the most
similar patients of N patients, called IR(Control). IRDM is
computed as follows:

IRDM = |IR(Case)− IR(Control)| (19)

c: RAND INDEX (RI)
RI is the most frequently used evaluation metric in data
clustering. RI is computed as follows:

RI =
TP+ TN(

n
2

) (20)

where TP is the number of times a pair of patients belonging
to the same cohort who are grouped into one single cluster. TN
is the number of times a pair of patients from different cohorts
who are grouped into different clusters. n is the total number
of patients. In general, the larger the value of RI, the more
consistent the clustering results is with the real situation.

d: NORMALIZED MUTUAL INFORMATION (NMI)
NMI is often used in data clustering to measure the similarity
of the two clustering results. NMI is computed as follows:

NMI (X ,Y ) =
2 · I (X ,Y )

[H (X )+ H (Y )]
(21)

where Mutual Information I (X , Y ) is the relative entropy
of the joint distribution p(x, y) and the product distribution
p(x)(y), whose formula is:

I (X ,Y ) =
∑
x

∑
y

p(x, y)log
p(x, y)
p(x)p(y)

(22)

H (X ) is the information entropy, and the formula is:

H (X ) = −
∑
i

p(xi)log p(xi) (23)

Similar to the value of RI, the closer the value of NMI is to 1,
the better is the patient clustering.

6) PARAMETER SETTINGS
a: JOINT EMBEDDING LEARNING
The configurations for joint embedding learning are given
as follows: the learning rate α is set as 0.025, the
hyper-parameter γ is among {0, 1E−7, 1E−5, 1E−3,
1E−1}, the margin b is among {2.0, 4.0, 6.0, 8.0, 10.0},
the dimensions of medical entity embedding k and relation
embedding d are set as 100, the number of negative sam-
ples µ is set as 10, the context window size β is set as 5,
the dimension of word embedding n is set as 100, and the
distance function is set as L1-norm.

TABLE 3. Hospital readmission rate (HRR).

TABLE 4. Incidence rate difference for mortality (1E-5).

b: SIAMESE CNN WITH SPP
For Siamese CNN with SPP, we use the Adam [57]
optimization algorithm as it is computationally efficient and
exhibits faster convergence than standard stochastic gradi-
ent descent methods. The number of convolutional filters f
is set to 50, 100, 150, 200, 250, and the margin m takes
on 0.5, 1.0, 1.5, 2.0, 2.5. The metric function is among
{L1, L2, Cosine}. The optimization hyper-parameters are
fixed to γ1 = 0.9, γ2 = 0.999 with a learning rate of
α = 0.0009. In the SPP layer, we use a 3-level pyramid.
The pyramid is {4 × 4, 2 × 2, 1 × 1} (totally 21 bins).
We train Siamese CNNwith SPP using 128 examples of shuf-
fled mini-batches and adopt nonlinear rectification (ReLU)
activation function. With regards to overfitting issue we add
dropout regularization with dropout rate setting to 0.6.

B. EXPERIMENTAL RESULTS
1) PATIENT SIMILARITY ANALYSIS
We first compare the performance on the task of patient
similarity analysis. We train the proposed DeepPS and all
baseline methods to learn the similarity degrees among
patients, and then use HRR and IRDM to measure the patient
similarity. The results of HRR and IRDM are shown in
Table 3 and 4 respectively.

As shown in Table 3 and 4, we observe that the values
of HRR and IRDM of DeepPS are significantly higher than
that of the baseline methods. More specifically, the proposed
DeepPS achieves the best performance in HRR and IRDM,
which are 0.879 and 0.239, respectively. Among all baseline
methods, PCA, CSM, CNN_triplet and Deep Embedding
achieve the lower values of HRR and IRDM. This is probably
due to the fact that these methods learn lower dimensional
feature representations directly from the correlation matrix
or medical texts while not benefiting from the structural
information brought by the medical knowledge graph. How-
ever, in the medical knowledge graph, the inner structure
usually reflects the known medical facts, which could serve
as important features for discriminating whether a pair of
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FIGURE 5. Performance of patient clustering.

patients are similar. TransR-DeepPS embeds entities and rela-
tions of a medical knowledge graph. It achieves fairly good
results on patient similarity analysis although not as good as
T-DeepPS. The superior performance of T-DeepPS indicates
that medical knowledge graph embedding can be improved
better through the external information such as medical entity
descriptions. Compared with the best performing baseline
T-DeepPS, the proposed DeepPS achieves an improvement
from 0.866 to 0.879 in HRR and 0.241 to 0.239 in IRDM,
which indicates that contrastive loss performs better than
triplet loss on patient similarity analysis. Overall, DeepPS
achieves the best results on large real datasets, demonstrating
its generalizing ability in similarity learning of patients.

2) PATIENT CLUSTERING
Risk prediction can help the medical decision on identifying
symptoms for early diagnosis, while patient clustering can
help to analyze disease cohort distributions. The performance
of patient clustering is shown in Fig. 5. We adopt k-means
clustering algorithm with k = 9. In this experiment, we run
the proposed DeepPS and all baseline methods to generate
a representation vector for each patient, which is used as a
feature representation for patient clustering.

We use RI and NMI to measure the performance of patient
clustering. From Fig. 5, we can observe that the proposed
DeepPS significantly outperforms the results of all baseline
methods in patient clustering task. For instance, DeepPS
increases RI from 20.2% compared with Deep Embedding
to 44.3% compared with CSM; increases RI from 25.2%
compared with CNN_triplet to 92.5% compared with PCA;
increases NMI from 3.3% compared with T-DeepPS to
381.5% compared with CSM and increases NMI from 11.9%
compared with TransR-PSI to 1638.3% compared with PCA.
The wide margin in the results between DeepPS and all other
baseline methods demonstrates the power of medical knowl-
edge graph embedding and the importance of incorporating
external information of medical entities. This experimental
results on patient clustering can be used to further study of
disease cohort distributions.

3) VISUALIZATION
We utilize the visualization tool t-SNE [58] to plot the
low-dimensional patient representations learned by different

patient similarity learning methods. As a result, each patient
is mapped as a two-dimensional vector. Then we can visual-
ize each vector as a point on a two-dimensional space. For
patients which are labelled as different cohorts, we use dif-
ferent colors on the corresponding points. Therefore, a good
visualization result is that the points of the same color are
near from each other. The visualization figure is shown
in Fig. 6.

From Fig. 6, we can see that the result of PCA is not
satisfactory because the points belonging to different cohorts
are mixed each other. For CSM, the clusters of different
cohorts are formed. However, in the top part the patients
of different cohorts are still mixed with each other and the
boundaries of each group are not very clear. For CNN_triplet,
the results look better because points of the same color form
segmented groups. However, in the center part the patients of
different cohorts are still mixed with each other. The result of
Deep Embedding is better than that of CNN_triplet, which
is because Deep Embedding uses the Skip-gram model to
learn the embedding representations of medical concepts.
Obviously, the visualization of DeepPS performs best in both
the aspects of group separation and boundary aspects.

C. COMPARISONS BASED ON DIFFERENT METRIC
FUNCTIONS
In this experiment, we first select two patient cohorts from
the MIMIC-III dataset, namely, Pneumonia and Heart Fail-
ure. Then we additionally try to use other metric functions,
such as the Manhattan distance (also known as L1 distance)
and the cosine similarity to analyze the two patient cohorts.
Fig. 7 shows the performance of patient similarity learning by
using different metric functions. As we can see, the L2 dis-
tance as the Euclidean distance has the best effect on the two
patient cohorts. Furthermore, the L1 distance is better than the
cosine similarity for the Heart Failure cohort and the cosine
similarity is better than the L1 distance for the Pneumonia
cohort. The results indicate that using the L1 (rather than L2)
distance can lead to undesirable plateaus in this case. That
is mainly because we employ the contrastive loss function
in this paper. Indeed, from the perspective of energy mini-
mization, if the energy is the L2 distance between the embed-
ding vectors of the two patients, the gradient of the energy
with respect to the parameter would vanish as the energy
approached zero. This could lead to failure of the machine
to learn in cases where the two patients are impostors and the
corresponding energy is near zero. As such, depending on the
differences of loss functions and patient cohorts, we should
carefully choose the metric function.

D. PARAMETER SENSITIVITY ANALYSES
In the proposed framework DeepPS, there are two sets of
parameters. One is the set of parameters for the joint embed-
ding model, and the other set are the parameters for Siamese
CNN with SPP. To analyze the influence of the parameters in
the similarity learning performance of the proposed frame-
work, we perform a parameter sensitivity evaluation for the
four key parameters: the margin b, the hyper-parameter γ ,
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FIGURE 6. Visualization of patients. Each point indicates one patient. Color of a point indicates the cohort of the patient.

FIGURE 7. Performance of patient similarity learning using different
metric functions.

FIGURE 8. Parameter sensitivity analyses.

the margin m and the number of convolutional filters f . The
line plots in Fig. 8 show the accuracy of the proposed frame-
work with different parameter values. In Fig. 8 (a), the margin
b is used for the energy function of our joint embedding
model, and the best performance is achieved when b is set
as 8.0. From Fig. 8 (b), setting the hyper-parameter γ which
is used for maximizing the objective function of our joint
embedding model as 1E−5 shows the best performance for
the proposed framework. The Fig. 8 (c)-(d) show the accuracy

of the proposed framework in the margin m and the number
of convolutional filters f . The margin m is used for the
contrastive loss function of Siamese CNN with SPP and the
number of convolutional filters f is used for the convolution
operation of CNN. We find that m = 1 and f = 100 produce
the best performance of the proposed framework.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel framework that learns the
pair-wise patient similarity degree, referred to as DeepPS. To
make full use of the semantics of medical entity descriptions,
DeepPS enables a joint embedding model to learn simultane-
ously from medical knowledge triples that have been directly
observed in a given medical knowledge graph, and medical
entity descriptions which have rich semantic information
about these medical entities. In such a way, our joint embed-
ding model can perform better in knowledge graph represen-
tation learning, going beyond previous medical knowledge
graph embedding methods. In addition, the learned embed-
dings can be used for patient similarity measuring leveraging
Siamese CNNwith SPP. Extensive experiments on real world
datasets are conducted and demonstrate the effectiveness of
DeepPS.

In future work, we will explore the following research
directions: (1) We plan to extend the medical knowledge
graph by considering more information of patients, such as
vital signs, lab measurements and demographics. (2) There
are various of information like textual information of rela-
tions or medical entity types. We will incorporate these infor-
mation sources into our framework that jointly derives the
latent representations for medical entities.
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