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ABSTRACT The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough
advancements in wireless technologies, providing support of a diverse set of services over a single plat-
form. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond
5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems
and intelligent services supported by extended reality and haptics communications. To accommodate the
stringent requirements of their prospective applications, which are data-driven and defined by extremely low-
latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a
progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative
changes to this premise. In this article, we shed light on some of the major enabling technologies for
6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide
multiple homogeneous artificial intelligence-empowered services, including distributed communications,
control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper
aims to answer several 6G framework related questions: What are the driving forces for the development
of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and
interactions will they support whichwould not be supported by 5G?We address these questions by presenting
a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave
communications, terahertz communications, optical wireless communications, programmable metasurfaces,
drone-based communications, backscatter communications and tactile internet, as well as their potential
applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the
associated requirements, key challenges, and open research problems. These discussions are thereafter used
to open up the horizon for future research directions.

INDEX TERMS 6G, backscatter communications, drone-based communications, terahertz communications,
metasurfaces, mm-wave, optical wireless communications, tactile internet.
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I. INTRODUCTION
The phenomenal growth of connected devices and the
increasing demand for high data rate services have been the
main driving forces for the evolution of wireless technologies
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in the past decades. A forecast study reported by the Interna-
tional Telecommunication Union demonstrates that the vol-
ume of mobile data will continue to grow at an exponential
rate, reaching up to a remarkable figure of about 5 zettabytes
per month in 2030 [1]. Meanwhile, due to the emergence of
the Internet-of-Everything (IoE) paradigm, supporting smart
homes, smart cities, and e-health applications seamlessly
through connecting billions of people and devices over a
single unified communication interface, there is an urgent
need to shift the focus from the rate-centric enhanced mobile
broadband services to ultra-reliable low-latency communi-
cations (URLLC) in order to provide a networked society
through massive machine-type communications (MTC)
[2], [3]. Besides generating massive data, the upsurge of
IoE will naturally give rise to a myriad of new traffic and
data service types, leading to diverse communication require-
ments. This grand vision requires a radical departure from
the conventional ‘‘one-size-fits-all’’ network model of fourth
generation systems.

The fifth generation (5G) of wireless technology represents
a technological breakthrough with respect to the previous
communication networks. In addition to reducing latency,
enhancing connectivity and reliability, and achieving gigabits
per second speeds, 5G is set to deliver a variety of ser-
vice types, often characterized by conflicting requirements
and diverse sets of key performance indicators, simultane-
ously over one platform [4]. These features make 5G a key
enabler for the Internet-of-Things (IoTs) application envi-
ronments, where machine-to-people (M2P) communications
(e.g., industry automation, smart cities, and intelligent mobil-
ity) and machine-to-machine (M2M) communications (e.g.,
autonomous communications between sensors and actuators)
are expected to take place alongside people-to-people com-
munications, (e.g., voice over internet protocol (IP), video
conferencing, video streaming, and web browsing).

Delivering a plethora of services, with profound differ-
ences in terms of quality of service (QoS) requirements,
poses major challenges, such as the need to manage a huge
volume of a mixture of human-type and machine-type traf-
fic, which is heterogeneous in nature. To cater to these
unique challenges, 5G deployment tends to adopt two
main network functionalities, namely softwarization and
virtualization [5], [6]. By jointly exploiting softwarization
and virtualization, cognition and programmability of the end-
to-end network chain may be achieved by decoupling the
network functions from the hardware platform. This yields
enhanced flexibility and reliability, as well as fast network
auto-reconfiguration, enabling a larger portfolio of use cases
and applications to be supported concurrently.

In parallel with addressing the aforementioned chal-
lenges, 5G has introduced potential disruptive technologies
to meet stringent requirements in terms of capacity, con-
nectivity, communication resilience, reliability, deployment
costs, power consumption, latency, and data rate. These
technologies include, but are not limited to, millimeter
wave (mmWave) communications, massive multiple-input

TABLE 1. List of abbreviations.

multiple-output (MIMO), non-orthogonal multiple access
(NOMA), and network ultra-densification [7], [8].

Despite the strong belief that 5G will support the basic
MTC and URLLC related applications, it is arguable whether
the capabilities of 5G systems will succeed in keeping
the pace with the rapid proliferation of ultimately new
IoE applications, which are expected to increase by 12%
yearly, and which are enabled by massive connectivity and
are based on data-centric and automated processes. Mean-
while, following the revolutionary changes in the individual
and societal trends, in addition to the noticeable advance-
ment in human-machine interaction technologies, the market
demands by 2030 are envisaged to witness the penetration
of a new spectrum of IoE services. These services span
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from extended reality (XR), which comprises augmented
reality (AR), virtual reality (VR), and mixed reality ser-
vices, to flying vehicles, haptics, telemedicine, autonomous
systems, and human-machine interfaces. The unprecedented
requirements imposed by these services, such as delivering
ultra-high reliability, extremely high data rates, and ultra-low
latency simultaneously over uplink and downlink, will push
the performance of 5G systems to its limits within 10 years
of its launch, as speculated in [9]. Moreover, the emergence
of such new IoE services necessitates integrating the comput-
ing, control, and communication functionalities into a single
network design.

In order to deliver future cutting-edge services and
accommodate their aforementioned heterogeneous require-
ments, a new breed of challenges have to be effectively
addressed. Examples of these challenges include leverag-
ing sub-terahertz (THz) bands, governing the network per-
formance set by a targeted rate-reliability-latency trade-off,
provisioning flexibility in the network architecture and func-
tionalities, and designing an intelligent holistic orchestration
platform to coordinate all network resource aspects, including
communication, control, computing, and sensing, in an effi-
cient, self-sustainable, and scalable manner, which is tailored
to the demands of a specific application scenario or use
case [10]–[13].

A. 6G VISION AND REQUIREMENTS
The evolution of 5G has urged the conceptualization of
beyond 5G (B5G) wireless systems, including the sixth gen-
eration (6G), which should be capable of unleashing the full
potentials of abundant autonomous services comprising past,
as well as emerging trends. More precisely, 6G is envisioned
to bring novel disruptive wireless technologies and innovative
network architecture into perspective. It is further envisaged
that 6G will ultimately realize the next-generation connec-
tivity, driven by the evolution from connected everything
to connected intelligence, thus enabling ‘‘Human-Thing-
Intelligence’’ interconnectivity. Additionally, it will support
high-precision communications for tactile and haptic appli-
cations in order to provide the required sensory experi-
ence at different levels, including smell, touch, vision, and
hearing [14]. The key technical requirements to realize this
vision include:
• Offering extreme data rates to address the correspond-
ing massive-scale connectivity aspect and to provide
ultra-high throughput, even in extreme conditions or
emergency scenarios, where varying device densities,
spectrum and infrastructure availability, as well as traffic
patterns may exist.

• Achieving the targeted quality of immersion and
per-user capacity and offering a unified quality of expe-
rience required by AR and VR applications, which will
hit retail, tourism, education, etc.

• Delivering real-time tactile feedbackwith sub-millisecond
(ms) latency to fulfill the requirements of haptic appli-
cations, such as e-health.

• Incorporating artificial intelligence (AI) to support
seamless data-centric context-aware communications
for controlling environments such as smart struc-
tures, autonomous transportation systems, and smart
industry [15].

• Meeting the extremely high levels of communication
reliability (e.g., more than 99.9999%) and the low end-
to-end latency to support ultra-high mobility scenarios,
such as flying vehicles.

The envisioned 6G requirements, technologies and appli-
cations are presented in Fig. 1.

B. RELATED WORK AND CONTRIBUTIONS
While 5G services have begun to roll out across markets,
interest in 6G trends has already gained significant momen-
tum both in academia and industry. Several research studies
have appeared in the recent literature reporting key techno-
logical trends and new research directions that would bring
6G into reality, for example, see [9]–[13], [16]–[21]. In [9],
the authors presented a speculative study on the main use
cases that are expected to be brought by 6G and discussed
their associated challenges and the potential enabling tech-
nologies. The authors in [10] presented a vision of some
potential 6G applications and trends, and discussed the asso-
ciated service classes and their performance requirements.
Additionally, they briefly listed their enabling technologies
and pointed out some key open research avenues. In [11],
the authors presented an overview of a number of potential
6G revolutionary technologies and the associated network
architectural innovations that are envisioned to address the
shortcomings of 5G systems. Likewise, the authors in [12]
delivered a roadmap towards enabling AI in 6G. In partic-
ular, they discussed key AI methodologies that can play a
central role in the design and optimization of 6G networks.
In [13], the authors highlighted that in order to support future
use cases, the current communication infrastructure has to
evolve at both physical and architectural levels. They also
discussed the need to develop mechanisms for enabling a
holistic resource management platform and described the
resulting challenges in terms of privacy and security. In [17],
the authors investigated the 6G vision from the economic
standpoint, where they compared the previous wireless gen-
erations to the envisioned 6G networks, and predicted that
6G networks will offer a cost reduction by 1000 times, when
compared to 5G mobile networks. Moreover, they demon-
strated the role of AI towards accomplishing this vision. In the
same context, the authors in [18] presented the new themes
that are likely to emerge and shape the future 6G wireless
networks, such as human-machine interface, universal local
and cloud computing, multi-sensory data fusion and precision
sensing. Furthermore, they emphasized on the potential of AI
as the foundation of 6G networks, in addition to transforma-
tive 6G technologies, such as spectrum sharing techniques,
novel network architectures, and new security mechanisms.
The contribution in [19] outlines the envisioned new use
cases of 6G networks in addition to the revealed paradigms
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FIGURE 1. 6G vision: requirements, technologies and applications.

of future wireless networks, including the new radio fron-
tier, micro-service network architecture, deterministic ser-
vices, and network automation. In [20], the authors re-stated
the 6G vision, trends, requirements and challenges. In par-
ticular, they provided an in-depth discussion about future
6G methods, including the integration of terrestrial and
satellite communications, new spectrum utilization, modu-
lation schemes, AI, and intelligent mobility management.
Dong et al. in [21] provided a framework to define the
expected future applications and outline the required tech-
nologies and anticipated challenges. Finally, the authors
in [16] presented a vision of 6G and its requirements. With
respect to users’ perspectives, they also identified innovations
that need to be considered towards realizing this vision.

It is noted that the aforementioned reported contribu-
tions mainly take a rather use cases-centric approach to the
roadmap of 6G era with a focus on the associated services and
technological trends. Conversely, in this survey, we approach
the 6G vision from the angle of enabling technologies that
manifest themselves as the paradigms needed for the real-
ization of 6G. Specifically, we present an in-depth concep-
tual overview of the main revolutionary technologies in a
holistic manner, taking into explicit account the key drivers,
performance metrics, and major ongoing research for every
single technology. Apart from the technologies discussed
in the previous surveys, which are reviewed here in detail,
we shed light on additional innovative technologies, such

as mmWave communications, THz communications, opti-
cal wireless communications, metasurfaces (also known as
intelligent reflective surfaces), backscatter communications
(BackCom), tactile internet (TI), and aerial networks, which
are envisaged to ultimately promote the 6G revolution. This
survey also delves into the emerging applications of each
technology and identifies their associated challenges. This
discussion is used to provide a directional guidance towards
future research work.

The remainder of the article is organized as follows:
In Section II, we present a comprehensive overview of five
disruptive 6G technologies. This is followed by outlining
some of their potential applications in Section III, whereas
Section IV highlights the fundamental challenges associated
with each technology discussed in Section II. Finally, the arti-
cle is concluded in Section V.

II. KEY ENABLING TECHNOLOGIES FOR 6G NETWORKS
Future 6G systems will require the support of novel tech-
nologies to enable unprecedented functionalities in the
network. These technologies are envisioned to introduce
a plethora of new applications associated with remark-
ably stringent requirements in terms of latency, reliability,
energy, efficiency, and capacity, compared to their
5G counterparts. In this section, we provide a concrete
conceptual background of major disruptive technologies that
will shape the future 6G networks, which includes mmWave

VOLUME 8, 2020 174795



L. Bariah et al.: Prospective Look: Key Enabling Technologies, Applications and Open Research Topics

communications, THz communications, OWC, programmable
metasurfaces, drone-based communications, BackCom,
and TI.

A. MILLIMETER-WAVE AND TERAHERTZ
COMMUNICATIONS
One of the key challenges towards realizing 6G networks is
the scarcity of spectrum, owing to the unprecedented broad-
band penetration rate and the emergence of new use cases
with rigorous bandwidth requirements. In a recent meeting,
3GPP introduced many new features for the upcoming
3GPP-Rel. 17 towards the evolution of 5G New Radio. Most
notably, the enhancement of the physical layer through the
support of frequency bands beyond 52.6 GHz, up to 71 GHz.
To this effect, it is envisioned that future releases will go
beyond this range towards the THz band [22]. Yet, there are
several challenges that must be addressed in order to realize
this vision. Specifically, the current PHY-layer, which has
been mainly optimized for bands below 52.6 GHz, has to be
technically redesigned and redeveloped.

1) MILLIMETER-WAVE COMMUNICATIONS
Millimeter-wave (mmWave) communications operate over
the 30-300 GHz frequency band, with a corresponding wave-
length ranging from 10 to 1 mm [23]. Thanks to the short
wavelength, mmWave communications allow the realization
of small-sized antenna arrays with a large number of elements
in a small physical dimension. Accordingly, narrow direc-
tional beam can be achieved, yielding multipath reflection
suppression [24], high immunity against jamming and eaves-
dropping attacks [25], as well as robustness to co-user inter-
ference, since the involved wireless channels will be largely
uncorrelated. Due to these promising potentials, several activ-
ities were carried out to standardize the mmWave technol-
ogy. In particular, mmWave communication was introduced
in IEEE 802.11ad and IEEE 802.15.3c standards [26]. The
specifications of mmWave communications are summarized
in Table 2.

Nevertheless, despite the undoubted advantages of
mmWave communications, there are still many associated
challenges that need to be addressed prior to effective design,
and successful deployment and operation. For example,
small-sized components manufacturing constitutes a major
challenge, due to the increased manufacturing cost. More-
over, severe signal attenuation (as high as 15 dB/km degra-
dation [27]), caused by strong atmospheric absorption, limits
the transmission range of mmWave communications to few
kilometers.

2) STATE-OF-THE-ART
Wireless links in mmWave systems are extremely prone to
obstacles blockage (including humans), especially when the
physical size of the obstacles is greater than that of the
wavelength, which is in general short in mmWave commu-
nications. In particular, it was shown that a human block-
age can cause 20-30 dB degradation in the mmWave link.

TABLE 2. mmWave communications specifications.

Motivated by this, several research efforts have been devoted
on developing blockage control or scheduling protocols to
minimize the effect of blockage in mmWave transmissions.
For example, the authors in [28] utilized multiple relays with
optimum relay selection and scheduling schemes to steer
the signal around obstacles, and hence, to minimize incurred
signal blockages. In [29], the authors addressed the issue of
blockage by proposing a proactive base station (BS) selection
scheme based on human blockage prediction, where they
utilized RGB depth cameras to estimate the location and
velocity of a passing pedestrian, and consequently, estimating
the time when the pedestrian blocks the line-of-sight (LOS)
component of a mmWave link. In the same context, several
other research contributions have investigated the blockage
issue in mmWave systems, e.g., [30]–[32].

In addition to the above, there has recently been a vast
attention on the application of non-orthogonal multiple
access (NOMA) in the context of mmWave communication
scenarios [33]–[42]. In particular, the research activity in
NOMA-based mmWave systems is mainly directed towards
investigating the secrecy rate of these systems, in addition
to their performance in different realistic communication
scenarios, such as drone-based communications, massive
MIMO, simultaneous wireless information and power trans-
fer (SWIPT) and M2M communications.

Other relevant research directions are focused on the
areas of mmWave channel modeling [43]–[47], transceiver
design [48]–[52] and antenna design [53]–[58]. The core
research directions in mmWave wireless systems are summa-
rized in Table 3.

TABLE 3. Research directions in mmWave wireless systems.

3) TERAHERTZ COMMUNICATIONS
As noted earlier, a promising solution to the current spec-
trum crunch is to explore the THz-band, which is envisioned
to bridge the gap between the mmWave band and infrared
light-waves (optical communications), by providing a con-
siderably wider bandwidth and enabling the development of
new use cases with high data rates requirements. In addition
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to extending the bandwidth, THz communications offer an
amplified gain due to the shorter wavelength experienced at
these bands, allowing for the deployment of a large number
of antennas.

On the other hand, THz based communications require
rethinking of existing solutions and investigate novel
approaches that offer a seamless operation over the
entire THz band. For example, the design of efficient beam-
forming and tracking techniques that are able to dynami-
cally and precisely track down the location of THz-enabled
devices is of great importance, and an open research problem.
Other open issues include hardware architecture design and
the integration of massive MIMO and intelligent surfaces.
An overview of the opportunities and challenges associated
with THz communications is given in [59].

4) STATE-OF-THE-ART
Motivated by the important role of THz modulators in
enabling THz technology in future wireless systems, the per-
formance of several amplitude and phase modulators
was examined for various materials and fabrication pro-
cesses [60]–[67]. For example, silicon (Si) substrates, coated
with effective materials such as gold [60] and manganese iron
oxide [61], as well as graphene-based modulators [68], [69]
are proven to offer a performance enhancement to the THz
modulators by extending the transmission range and pumping
power density, in addition to their tunability and high-speed
characteristics. Nevertheless, the main drawbacks of these
nano-particle-based THz modulators are the high cost and
the increased complexity. On the contrary, graphene-based
modulators suffer from a low modulation depth and high
energy consumption.

The implementation of THz communications in outdoor
environments is rather challenging, which is particularly
due to the inevitable loss caused by molecular absorp-
tion and other atmospheric conditions, such as rain [70].
Accordingly, THz transceiver and antenna designs have
to be thoroughly investigated prior to the effective design
and deployment of these systems. To this end, antenna
and transceiver designs have attracted great interests in
the research community [71]–[84]. Specifically, the devel-
opment of Si-germanium signal generators, quantum cas-
cade laser photonic sources, compact graphene antennas and
graphene/liquid crystal based phase shifters are some of the
reported research work in the field of THz transceiver and
antenna designs [85].

Moreover, channel modeling is vital in THz communi-
cations in order to ensure reliability and high spectral effi-
ciency. Existing research is focusing on the characterization
of LOS and non-LOS (NLOS) components, with empha-
sis on scattering properties for the NLOS component and
free space loss, molecular absorption and harsh weather
conditions for the LOS component. In particular, research
efforts are mainly centered around characterizing channel
coefficients for deterministic and statistical conditions in
indoor and outdoor environments. Ray-tracing is a reliable

method for modeling LOS and NLOS components and is
utilized extensively to characterize the deterministic and
stochastic channel coefficients. For instance, in [86]–[92],
the authors proposed efficient propagation deterministic
models for THz nano-communications while incorporating
the LOS and NLOS components for 2D and 3D scenarios.
Although deterministic models provide higher accuracy in
describing channel coefficients compared to stochastic mod-
els, the underlying high computational complexity and the
required geometrical information of the propagation environ-
ment are critical drawbacks of such models. On the other
hand, statistical characterization of THz channels is rather
challenging, especially when taking into account channel
mobility, channel state information estimation, and channel
correlation. The recent advancements in the design of THz
communications systems are summarized in Table 4.

TABLE 4. Advancements in the design of THz wireless systems.

B. OPTICAL WIRELESS COMMUNICATIONS
Optical wireless communication (OWC) systems has
emerged as a key technology for 6G networks and beyond,
enabling broadband connectivity. There has been an increas-
ing interest in OWC with terrestrial, space and underwater
applications. This interest is stimulated by the advance-
ment in solid state optical technology, in addition to the
promising features ofOWC. These features include ultra-high
bandwidth, inherent physical layer security, spatial reuse,
ultra-low latency, high data rates, immunity to interference,
and low cost, hence, fulfilling the demanding requirements
of beyond 5G wireless networks [101]. It is recalled that
information in OWC is carried over optical links, whose
wavelengths vary between infrared and ultraviolet, including
the visible light. OWC systems in the infrared frequency
range enables long-range data transmission over high-speed
wireless links, which are often encountered in wireless back-
haul networks [102]. In the following, we summarize themost
common OWC technologies.

Visible light communication (VLC) has emerged as a
prominent technology that is anticipated to offer high-speed
indoor connectivity. In VLC systems, light-emitting diodes
(LEDs)/laser diodes (LDs) are used as transmitters while
the receivers consist of photodetectors (PDs) [103], [104].
The transmission range of VLC can reach up to 20 m, with
data rates of 10 Gbps and 100 Gbps, when using LEDs and
LDs, respectively [105]. Furthermore, low-complexity imple-
mentation in VLC scenarios can be realized by using LEDs,
where extra power supplies are not required. In this case,
LEDs can be utilized to perform illumination, communication
and localization simultaneously [104], [105].
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Light-Fidelity (LiFi), a promising optical solution that
is envisioned to complement wireless fidelity (WiFi), is a
subset of OWCs that realizes bidirectional and high-speed
wireless communication [106]. LiFi leverages visible light
in downlink to realize illumination as well as wireless com-
munication, and infrared or RF in uplink. Similar to VLC,
LiFi communication systems depend on LEDs and PDs as
transmitters and receivers, respectively [107].

Optical camera communication (OCC), is another promis-
ing OWC technology, which is mainly used for positioning
and navigation in indoor environments. An OCC receiver
consists of embedded cameras or image sensors, while trans-
mitter is a typical commercial LED [108]. Moreover, OCC
spectrum spans between the infrared and ultraviolet bands,
with wavelength in the range of 10,000 nm [109]. Due
to the wide spread of smartphone devices with sophisti-
cated embedded cameras, OCC can be easily implemented
in these smart devices, rendering it as the practical version
of VLC.

Free space optical (FSO) communication, which takes
place in the near infrared, is considered an effective approach
in realizing high data rate communications over several
kilometers [110]. For example, for reasonable distances
(around 1 km), FSO can achieve data rates in the order
of 10 Gbps [111]. High frequency reuse factor, physical secu-
rity, and robustness against electromagnetic interference are
other advantages exhibited by FSO systems, when restrict-
ing the use of a very narrow laser beam at the transmitter
side [112].

1) STATE-OF-THE-ART
Despite their superior features, OWC systems are impaired
by several factors that have detrimental effects on their perfor-
mance, such as ambient light noise, nonlinearity of LEDs, etc.
The authors in [113]–[120] quantified the effect of ambient
light noise on the performance of different optical systems,
and presented efficient solutions to enhance the performance
of OWC in the presence of ambient light noise. Atmospheric
loss represents anothermajor challenge inOWC, and severely
degrades the performance of OWC systems in indoor and
outdoor environments. Particularly, free space loss is domi-
nating in indoor scenarios, while path loss and atmospheric
turbulence are the main affecting factors on the performance
of outdoor OWC. Research works in [121]–[130] investi-
gated the effect of atmospheric loss on the performance of
OWC systems. Moreover, OWC performance is vulnerable to
pointing errors, which is caused by the horizontal movement
of high buildings due to thermal expansion, weak earthquakes
and wind [131]. Due to pointing errors, transmitters and
receivers in OWC may experience misalignment, resulting
in the degradation of the system performance. The conse-
quences of pointing errors on OWC systems under different
scenarios have been thoroughly investigated in the litera-
ture, e.g., [132]–[138]. A summary of the research efforts in
OWC impairments is provided in Table 5.

TABLE 5. Research in OWC impairments.

C. PROGRAMMABLE METASURFACES FOR WIRELESS
COMMUNICATIONS
The mmWave and THz communications are envisioned as
key enablers for 6G systems. They are expected to satisfy the
stringent requirements of various potential 6G use cases by
exploiting higher frequency bands. However, owing to the
severe attenuation and scattering properties, the detrimen-
tal effects on communication efficiency remains the grand
challenge in wireless communications. For example, small
and large objects in indoor environments, e.g., walls and
furniture, typically scatter rays in all directions, leading to
severe multipath propagation environments. The Doppler
effect is another key challenge, which can limit the realiza-
tion of ultra-broadband communications, particularly in the
mmWave and THz bands [139]. Existing solutions mainly
rely on device-side approaches, which consider the wire-
less environment to be uncontrollable and hence, it remains
unaware of the on-going communication processes.

1) METASURFACES
Metasurfaces have recently emerged as an innovative tech-
nology, which is envisioned to revolutionize wireless com-
munications by allowing wireless system designers to fully
manipulate the propagation of electromagnetic (EM) waves
in a wireless link. The building block of a metasurface is a
meta-atom, which is an artificial conductive structure with
engineered EM properties that is repeated periodically across
a rectangular surface (also called tile). At the macroscopic
level, metasurfaces exhibit unique EM properties such as
customized permittivity and permeability levels, and nega-
tive refraction [140]. As a consequence, metasurfaces enable
unprecedented capabilities when interacting with impinging
EM waves, which include wave focusing, absorption, imag-
ing, scattering, polarization, to name but a few [140]. It is
worth mentioning that metasurfaces leverage these unique
abilities without any limitation on their operating frequency.

Recently, there has been a steadily growing interest in
both industry and academia on tunable metasurfaces, also
called programmable metasurfaces. In this context, the meta-
atom design can be dynamically altered through a simple
external stimuli, such as a binary switch, empowering meta-
surfaces with unique adaptivity. More specifically, dynamic
meta-atoms are fitted with tunable switching components,
such as micro-electro-mechanical switches or CMOS tran-
sistors, which can alter the structure of the meta-atoms. This
allows metasurface tiles to receive commands from an exter-
nal programming interface, where parameters of the incident
and reflected waves, e.g., phase, amplitude, frequency, and
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polarization, are carefully manipulated in order to enable the
EM behavior of interest [139]. Moreover, the discovery of
communicating nodes in the surrounding wireless environ-
ment can be realized by equipping the metasurface tile with
efficient sensing and reporting features.

Tunable mechanisms of metasurfaces facilitate massive
connectivity, interference mitigation, and enhanced diversity
by introducing an additional degree of freedom. These tun-
able features are essential in order to realize the flexibil-
ity needed for future wireless communications. The authors
in [141] presented the first model to describe a programmable
wireless indoor environment using programmable metasur-
faces. The introduction of programmatically controlled wire-
less environments has undeniably opened the door for a broad
range of functionalities to be ultimately achieved even at the
mmWave and THz bands. Some metasurface functionalities
are summarized as follows:
− Beam steering: This function can be achieved by allow-

ing a metasurface to change the direction of the imping-
ing wave towards the desired direction through manipu-
lating either the refraction or reflection index which can
override the outgoing directions defined by the Snell’s
Law [139].

− Beam splitting: In this function, a metasurface tile splits
an incident wave into customized orthogonal multiple
beams steered towards multiple directions to serve mul-
tiple users simultaneously [141].

− Wave absorption: Blocking the access of an unautho-
rized wireless device can be accomplished by adjust-
ing the properties of the metasurfaces to ensure no or
minimal reflection or refraction of the incident wave.
This functionality can be utilized to prevent eaves-
dropping and optimize the network physical-layer secu-
rity. As demonstrated in [142], for a given incident
wave, metasurfaces are able to reduce the wave power
by 35 dB.

− Wave polarization: This function allows a metasurface
to fully control the polarization of impinging waves and
manipulate their oscillation orientation [141].

− Phase control:This functionality of metasurfaces allows
for the alteration of the carrier phase [141].

2) ARTIFICIAL INTELLIGENCE (AI)-EMPOWERED
METASURFACES
To facilitate simultaneous functionalities within an
uninterrupted connectivity, AI tools are envisioned to be
indispensable in programmable metasurfaces as they enable
the identification of the best operation policy based on data
driven techniques [143], [144]. Leveraging AI is particu-
larly attractive in heterogeneous wireless applications, with
diverse networks, and QoS user requirements, as it can
potentially provide an efficient and dynamic means to adapt
network parameters, such as coding rate, route selection,
frequency band, and symbol modulation.

Machine learning (ML)-enabled solutions, which are a
subfield of AI, are expected to be a core component in

smart programmable metasurfaces, allowing them to achieve
a complex level of coordination, and thereby maintaining a
desired global behavior while ensuring scalability, energy
and overhead reduction [144]. In this setup, a metasurface
interface can be empowered with intelligence by applying
novel data processing paradigms that can learn from data and
perform functionalities to complete complex tasks efficiently.
This would support self-organization and automation of all
metasurface functions, including maintenance, management,
and operational tasks. A recent research study proposed a
deep learning (DL)-based ML approach to achieve signal
focusing through learning themapping between the estimated
channel state information (CSI) at a user location and the
optimal configuration of the metasurface’s unit cell [145].
Furthermore, adaptive control and coordination of multiple
metasurfaces in programmable wireless environments was
demonstrated for a set of users through the application of
neural networks [146]. More recently, convolutional neural
network approaches were proven to exhibit their merit for
beamforming by learning the physics of the beamform-
ing from computed data to make online prediction of the
coding matrices, to fulfill the network requirements [147].
Additionally, the principle of ML-enabled imager was
proposed for programmable metasurfaces to produce
high-quality EM imaging and high-accuracy object recogni-
tion [148]. The results are promising in real-time compressed
imaging applications in the microwave, millimeter-wave, and
THz frequencies [148].

3) STATE-OF-THE-ART
Programmable metasurfaces have recently attracted a large
attention of the international scientific community. In partic-
ular, a number of research studies examined the potentials of
programmable metasurfaces as modulators [149]–[153]. Fur-
thermore, the research works in [154]–[157] investigated the
design of smart beamforming in metasurface-based wireless
secrecy communication systems. Researchers also explored
the use of metasurfaces in wireless power transfer (WPT)
[158]–[160]. The role of machine learning in controlling
the functionalities of metasurfaces to actively improve the
coverage of the highly dynamic indoor environments is ana-
lyzed in [161]–[163]. The aforementioned state-of-the-art is
summarized in Table 6.

TABLE 6. Advancements in metasurfaces.

D. DRONE-BASED COMMUNICATIONS AND
AUTONOMOUS SYSTEMS
A key driving force behind the vision of 6G is the deployment
of connected and autonomous vehicle (CAV) systems and
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FIGURE 2. Advantages, categories, applications, and challenges of drone-based systems.

drone-based communications. The research efforts in CAV
and drone (also known as unmanned aerial vehicles (UAVs))-
based communication systems, have been steadily growing
in both academia and industry, targeting strict requirements,
particularly ultra-low latency and unprecedented communi-
cation reliability. The advantages, categories, applications,
and challenges of drone-based systems are depicted in Fig. 2.
In the following, we focus our attention on the current and
futuristic application scenarios of UAVs, as well as the state-
of-the-art. An in-depth discussion of the underlying chal-
lenges is then provided in the following section.

1) DRONE-ASSISTED WIRELESS COMMUNICATIONS
Drones constitute the basic building block of aerial networks,
whose inherent features, such as mobility and flexibility,
enable several imminent and futuristic applications in wire-
less networks [164]. It is shown that the use of drones can sig-
nificantly improve the coverage and transmission rates [165].
Furthermore, standardization activities led by 3GPP are cur-
rently ongoing to adapt the necessary changes in order to
integrate drones in the future wireless networks [166].

Drone-assisted wireless communications can be catego-
rized as follows:

a: CELLULAR-ENABLED DRONES (CED)
CEDs are operated as user equipments (UEs) (i.e., drone-
UEs) in order to enable several key applications such as
mining, oil and gas, transportation, surveying and moni-
toring, with a velocity of 160 km/h in urban and rural
environments [167]. To ensure connectivity with cellular net-
works, several essential requirements, which include reliable
and low-latency communications between the drone-UEs and

ground BSs, have to be met. User-centric cell-free mas-
sive MIMO, also known as distributed massive MIMO, was
recently proposed as a prominent solution to efficiently
increase the system coverage and energy efficiency of aerial
networks [168], [169]. By efficiently utilizing cell-free mas-
sive MIMO, in which massive number of antennas are
distributed over a wide area to serve multiple drone-UEs,
the effect of large scale fading becomes less as all users
approximately have equal distances to the allocated access
point. This is beneficial for cell-edge users who experience
severe large scale fading. Recent results showed that the
utilization of cell-free massive MIMO architecture brings
substantial benefits to the performance of drone-UEs, com-
pared to multi-cell massive MIMO, as inter-cell interfer-
ence is eliminated in the former [170]. In some applications,
drone-UEs will require high-speed connectivity from ground
BSs or from drone-BSs (i.e., drones operating as BSs).
It should be pointed out that nowadays cellular networks are
designed for ground users with unique mobility and traf-
fic characteristics that are considerably distinct from those
experienced with drone-UEs. Therefore, the integration of
drone-UEs into cellular networks in a single wireless network
presents a set of new key challenges and design considera-
tions that must be addressed for the efficient realization and
successful deployment of CEDs [171].

b: WIRELESS INFRASTRUCTURE DRONES (WIDs)
WIDs are intended to extend the network capabilities by
enhancing network coverage or capacity.WIDs can be further
classified based on their functionalities into:
• Drone-BSs: Drone-BSs are aerial nodes with some
BS features and functionalities, that are envisioned to
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provide capacity and coverage enhancements for
6G networks. They are cost-effective solutions that
render wireless connectivity to hard-to-reach areas,
as well as geographical areas with limited cellular
infrastructure. Drone-BSs are also attractive solutions
for delivering reliable, broadband and wide-scale tem-
porary wireless connectivity in special events or harsh
scenarios, such as sport events and natural disasters.
Furthermore, high altitude drone-BSs are expected to
provide a long-term and cost effective connectivity for
rural areas. The integration of drone-BSs with other
physical layer techniques such as mmWave and massive
MIMO, cognitive radios, etc., is a promising solution to
provide data-hungry services and is expected to create a
new set of challenges for the next generation of flying
BSs [171]. Optimal positioning of the drone-BSs is one
of the critical challenges that needs to be addressed in
dense deployment scenarios [172].

• Aerial Relays: Relaying has been extensively inves-
tigated in the context of terrestrial communications
aiming to enhance network reliability, throughput, and
coverage. However, such relays are subject to limited
mobility and often are constrained by wired backhaul-
ing [173]. On the contrary, drones acting as wireless
relays, are versatile and offer high mobility. This fea-
ture makes them a promising candidate for providing
enhanced wireless connectivity beyond LOS. Moreover,
aerial relays can play a significant role in extending the
battery life of drones [174].

• Aerial Backhaul for Cellular Networks: Wireless
back-hauling has been shown to provide a cost-effective
solution compared to wired backhauling. However, it is
subject to interference, blockage and path loss, which
can significantly degrade the performance and reduce
the data rate [175]. In this respect, drone-based networks
are foreseen to play a fundamental role in achieving
robust and high-speed backhaul connectivity for cellular
networks [176]. Such networks are expected to provide
flexible drone-based backhaul communications that will
enhance the network capacity, reliability, as well as the
operation cost [171].

2) AIR-GROUND-SPACE INTEGRATED Networks
There is a strong belief that existing terrestrial, aerial and
satellite networks will not be able to cope with the massive
volume of generated data, which will continue to grow at an
exponential rate together with the rapid proliferation of new
IoE applications. On the other hand, the integration of these
networks is viewed as the next evolution of wireless infras-
tructure, that is envisioned to cater to diverse use cases with
different QoS requirements, particularly in realistic scenarios
such as urban, rural, and lightly dense areas. Yet, despite
their indispensable benefits, the envisioned integrated archi-
tecture will introduce unprecedented challenges that include,
but are not limited to, heterogeneity, security, resource

management, self-organization, energy consumption, and
backhauling [177].

3) DRONE-BASED MULTI-ACCESS EDGE COMPUTING
Multi-access edge computing (MEC), enables cloud com-
puting capabilities at the edge of cellular networks, and has
recently emerged as one of the potential technologies for
5G networks. In particular, MEC enables mobile devices with
limited resources to offload their computation tasks to the
edge of the network.

In drone-enabled networks, mobile devices can offload
their computationally demanding tasks to drones with
MEC capabilities, typically at the edge of the network, thus
reducing the network congestion and allowing for the rapid
deployment of new applications. Additionally, the drone-
based network can provide an effective mobility management
without the necessity of handover, as well as uninterrupted
MEC services for high mobility users, due to their large-scale
coverage and LOS connection [178], [179].

Within the same context, the limited on-board processing
capabilities of drones, which are mainly due to their storage
and battery constraints, bring about several concerns towards
the efficient execution of complex tasks [180]. In particular,
heavy computation demanding applications, such as real-time
image processing, may not be supported by the anticipated
vision of drones. Recent research efforts proposed efficient
techniques to tackle these limitations by leveraging cloud
computing to offload the computation-intensive tasks from
the drones to remote cloud servers [181]. The role of these
servers can be summarized as follows [182]:
− Storage: Storage services can be offered by the cloud to

store drones data streams that include environment and
mission-related parameters, captured images and sensed
data.

− Computation: Intensive computations are executed in
the cloud in order to minimize the processing time and
energy consumption at the drone. Moreover, the large
amount of stored data from the drones can be exploited
to perform data analytic tasks in order to enhance
the performance of drones-enabled networks, in terms
of trajectory adaptation, altitude optimization, and
energy consumption customization, in an intelligent
manner.

4) SWIPT-ENABLED DRONES
Short built-in battery lifetime restricts the utilization of
drones in numerous applications, due to the limited size
and weight of drones, which results in a limited energy
storage, and consequently, short cruising duration. Aiming
to prolong the system’s lifetime, trajectory design, location
adjustment, and power allocation optimization approaches
have been proposed in the literature as promisingmechanisms
to overcome the energy shortage issue in drones [183]–[185].
However, these schemes are not always feasible in
practice and do not provide fundamental solutions to
the involved energy inefficiency problem [186]. In this
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context, SWIPT has been foreseen as an emerging
energy-replenishment solution, in which drones harvest
energy from received RF signals to extend the cruising
duration [187]–[189]. Despite their remarkable advantages,
SWIPT-enabled drones are more vulnerable to physical
layer attacks, such as eavesdropping, spoofing and jamming
attacks, due to the LOS and broadcast features of drone chan-
nels. There have been several attempts to propose efficient
solutions in order to enhance the secrecy rate performance
of SWIPT-enabled drones, including conventional physical
layer security mechanisms, such as cooperative jamming,
artificial noise, and multiple antenna techniques, in addition
to position optimization and resource allocation [186], [190],
[191]. An interesting work reported in [192] investigated
the resource allocation optimization in UAV-assisted SWIPT
systems, in which drones are exploited to send data to
specific ground receivers, in addition to transmitting the
same RF signals to ground energy receivers, which are
equipped with wireless power harvesting devices. These
energy receivers may be possible eavesdroppers. Therefore,
the authors in [192] formulated an optimization problem to
obtain the optimum resource allocation scheme that maxi-
mizes the secrecy rate of the information receivers.

5) STATE-OF-THE-ART
The research efforts have focused thus far on basic and
more advanced design aspects of drones, including CEDs and
WIDs. Specifically, extensive research efforts are directed
towards proposing encryption and authentication mecha-
nisms to ensure a robust secure communication infrastructure
that also maintains privacy [193]–[203].

The energy efficiency and battery properties are key prac-
tical design aspects, in which the battery lifetime, charging
mechanism and energy consumption must be optimized to
enable seamless and uninterrupted wireless communications.
In this context, the optimization of energy consumption and
charging time of drones have lately received significant atten-
tion [204]–[211].

Various design issues, that allow for the realization of the
full potential of drone networks, are tackled in the literature,
such as network architecture [177], [212]–[214], image pro-
cessing [215]–[217], interference management [218]–[223]
and storage [224], [225]. Recent advances in aerial networks
are summarized in Table 7.

TABLE 7. Recent advancements in aerial networks.

E. THE NEXT FRONTIER FOR IoE: BACKSCATTER
COMMUNICATIONS AND WIRELESS POWERED
NETWORKS
The exponential growth of connected devices, constituting
the emerging IoE, is a major driving force towards the
development of energy-efficient solutions to sustain wireless
communication among connected nodes [226]. Nonetheless,
despite the notable advancements, the short battery lifetime of
the deployed battery-operated devices still constitutes amajor
design challenge, which requires a paradigm shift towards
the development of the next generation green communication
architecture. Accordingly, ambient BackCom have emerged
as a new communication paradigm for low power communi-
cations in 5G networks. This approach is based on the concept
that a transmitter sends data to its receiver by backscattering
ambient signals, e.g., TV or Wi-Fi signals. Compared to con-
ventional systems, backscatter transceivers consume signifi-
cantly less power (orders of magnitude), rendering it a strong
candidate for low power networks and IoE applications [227].
Owing to its promising features, several new and disruptive
technologies can be integrated with BackCom.

1) RADIO-FREQUENCY (RF)-POWERED BackCom
NETWORKS
RF energy harvesting (RF-EH) has been recently proposed
as a promising solution to provide perpetual energy replen-
ishment for such networks. RF-EH is realized by allowing
wireless devices, equipped with dedicated EH circuits, to har-
vest energy from either ambient RF signals or dedicated RF
sources. It can be divided into two main categories, namely
wireless-powered communications [228] and simultaneous
wireless information and power transfer, which have been
shown to provide noticeable gains in terms of power and
spectral efficiencies by enabling simultaneous information
process. Despite the remarkable advantages, RF-EH tech-
niques still suffer from particular limitations, especially in
the context of low power wireless networks. Specifically,
wireless-powered devices are not able to communicate per-
petually, as they require dedicated time for energy harvesting.
Additionally, these devices depend on active RF signals for
communication; as a consequence, they suffer from relatively
high power consumption, which can pose major issues, par-
ticularly in large-scale low power wireless networks [227].
Motivated by this concern, a new trend is to integrate Back-
Com systems with various RF-EH techniques in a single
network. This promising paradigm is envisioned to address
some of these challenges and catalyze the deployment of new
technologies and services [229].

2) RF-POWERED COGNITIVE RADIO NETWORKS AND
AMBIENT BackCom
The integration of RF-EH techniques with cognitive
radio (CR) networks has led to the development of a
new communication paradigm, called RF-powered CR net-
works [230]. In such networks, a CR transmitter harvests
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RF energy when a primary (licensed) user (PU) is active,
which is subsequently utilized for data transmissions between
secondary (unlicensed) users (SUs) [230], [231]. Evidently,
the performance of these networks greatly depends on the
availability of PU signals. In this context, BackCom is envi-
sioned as a potential solution to address this challenge by
allowing SUs to harvest energy from PU signals in addition to
transmitting data by backscattering the PU signals. Therefore,
it is evident that although BackCom and energy harvesting
have not played a major role yet in 5G, they are envisaged to
be a core part of 6G with full potentials.

3) VISIBLE LIGHT BackCom
VLC is a new paradigm that is foreseen to provide ubiqui-
tous connectivity while addressing some of the limitations
and challenges of RF communications. It is based on inten-
sity modulation and direct detection, where the intensity of
LEDs is modulated to convey information, and then demodu-
lated/detected directly using a photodiode. There are several
key advantages of VLC that include inherent communica-
tion security, high degree of spatial reuse, and its immu-
nity to RF interference, which makes it safe to be used in
critical places with high electromagnetic interference, e.g.,
hospitals and industrial plants. The principle of visible light
BackCom (VLBC) systems is similar to its RF counterpart,
in which VLBC leverages ambient light to harvest energy and
thenmodulates VLC signals to transmit its data to backscatter
receivers [232], [233].

4) QUANTUM BackCom
Quantum backscatter communications is another promising
technology which is anticipated to contribute towards the
development of 6G and the next generation IoT, particularly
in terms of performance and security [234]. In this new
paradigm, a transmitter produces entangled signal-idler (S-I)
photon pairs. The S-photon is transmitted and backscattered
from a backscatter transmitter, while the I-photon is kept
at the receiver. This quantum setting provides a signifi-
cant gain in the error exponent for the communication link
and facilitates secure communication by exploiting quantum
cryptography.

5) STATE-OF-THE-ART
BackCom networks are subject to critical security threats,
such as eavesdropping and jamming. This stems from the typ-
ical simplicity and low-complexity of BackCom transceivers.
As a result, existing security solutions, including encryp-
tion and digital signatures, may not be applicable due to
the power and complexity constraints of BackCom devices.
This has motivated the international research community to
investigate new security mechanisms that can guarantee fully
secure and private wireless communications [235]–[242].
Self-interference is another major limitation in BackCom
systems. The sources of self-interference include: (i) signals
from ambient RF sources, and (ii) multipath propaga-
tion. Based on this, several self-interference cancellation

techniques have been recently reported in the open
technical literature [243]–[250].

It is noted that BackComnetworks are not optimized and/or
designed for large-scale low power networks comprising a
massive number of IoT devices, e.g., sensors in environmen-
tal monitoring, sensors in smart roads to collect data about
the pavement conditions and traffic, etc. Furthermore, such
systems are different from human-centric communications
with diverse and unique traffic characteristics as well as QoS
requirements, which requires the development of efficient
physical layer and media access control schemes to pre-
vent access congestion. Within this context, multiple access
techniques in BackCom systems are regarded to be instru-
mental in improving the efficiency of backscatter networks.
In particular, conventional orthogonal multiple access and
non-orthogonal schemes (e.g., NOMA [251] and rate splitting
multiple access), are recognized as promising candidates for
enablingmassive connectivity, whilemaintaining high energy
and spectral efficiency [252]–[260].

In addition to the aforementioned studies, major research
efforts have focused on channel modeling and estimation
[261]–[266], resource allocation [252], [253], [267]–[269]
and wireless energy harvesting [270]–[276] in BackCom sys-
tems. Table 8 summarizes the timely open research topics in
the field of BackCom.

TABLE 8. Open research topics in BackCom systems.

F. TACTILE INTERNET
Tactile Internet (TI) is seen as the next frontier of IoE,
focusing on M2P and M2M interactions. With the recent
advances in tactile/haptic devices, it is predicted that TI will
catalyze the deployment of a plethora of new applications
ranging from health care to education and smart manufac-
turing. Therefore, it is expected to reshape our daily lives
and ultimately realize the full potential of the next industrial
revolution, also known as Industry 4.0.

To fully realize TI, the communication infrastructure (CI)
has to meet strict design guidelines, as it is currently unable to
address the stringent requirements of the use cases envisioned
for TI. In particular, the CI has to support extremely low
end-to-end latency with high-reliability [277]. Furthermore,
it must ensure data security without jeopardizing the latency
requirements imposed by the computationally demanding
encryption techniques.

To address these requirements and catalyze the deployment
of new use cases with unique requirements, the develop-
ment of unique and disruptive B5G wireless communication
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technologies is of paramount importance. To this end,
we envision the development of: 1) communication technolo-
gies in the THz band; 2) novel wireless network architectures;
and 3) AI-enabled communication networks.

1) STATE-OF-THE-ART
The use cases of TI have recently drawn significant research
and industrial attention, as they are envisioned to have
great potential to advance all aspects of our daily lives.
As reported in the literature, TI has been adopted in
numerous applications, such as VR and AR [278]–[287],
healthcare [288]–[294], education [295]–[299], intelli-
gent transportation [300]–[303], industry [304]–[307] and
robotics [308]–[313]. Table 9 summarizes the envisioned
applications of TI.

TABLE 9. Applications of tactile internet.

III. DRIVING APPLICATIONS OF 6G TECHNOLOGIES
In this section, we highlight the potential applications asso-
ciated with the aforementioned technologies, which are
expected to realize the vision of 6G systems.

A. MILLIMETER-WAVE COMMUNICATIONS
• Wireless Backhaul: Due to ultra-dense deployment of
heterogeneous multi-tier small cells in future wireless
communications, fiber-based backhauling will no longer
be an economical option to connect multiple BSs to each
others and to the gateway, due to several installation
restrictions. Therefore, wireless backhaul represents a
scalable promising alternative to connect multiple BSs
in small cells. This can be achieved by utilizing the
wide and underutilized mmWave bandwidth, such as
the unlicensed 60 GHz band, as well as the 70-80 GHz
band. Specifically, leveraging the mmWave band to
realize wireless backhaul solutions is expected to pro-
vide increased flexibility, high speed transmission, cost
efficiency and enhanced data rates [314]. Another key
advantage of adopting the mmWave band in wireless
backhauling is the controlled level of inter-cell interfer-
ence, due to the LOS nature of the mmWave links [315].

• Wearable devices: Recent advancements in miniature
electronics fabrication technology prompts the spread of
smart high-end wearable devices, which require higher
data rates and longer battery lifetime, such as smart
watches, smart AR/VR glasses and helmets, health-care
gadget, and motion trackers [27]. Given that the trans-
mission range constraint is relaxed in these applications,

wireless communication between wearable devices and
the smart receiver (which can be a smartphone) can
be efficiently realized by incorporating mmWave com-
munications as a perfect candidate to establish high
data rate, low interference and reliable communica-
tion between the device and the receiver, especially in
densely populated indoor environments [316].

• Imaging and Tracking: Given that signals in the 60 GHz
band will be mostly reflected from objects larger than
their short wavelength, mmWave communications is
considered as a promising candidate in imaging and
tracking systems. Particularly, objects’ dimensions can
be accurately measured by relying on the highly direc-
tional beams of the 60 GHz links, which also helps
reducing the interference, and subsequently, providing
a precise imaging and tracking systems. Furthermore,
the miniaturized antenna arrays facilitate the integra-
tion of these antennas in small receivers (such as smart
phones or tablets).

B. TERAHERTZ COMMUNICATIONS
The wide bandwidth in the THz band is envisioned to drive
the deployment of a large array of new use cases, as outlined
next.
• Wireless Data Centers: Today’s data centers suffer from
high complexity, power consumption, maintenance cost,
and wasted spaces occupied by large cables. Therefore,
there have been attempts to address these issues in order
to enable fast and reliable access to cloud-based ser-
vices. According to [317], the power consumption of
all data centers will reach 73 billion KWh by 2020.
Therefore, THz communications could be a promising
candidate for the next generation of data centers, satisfy-
ing the peak data rate of 10-20 Gbps required by 5G, and
even higher [318]. Although still in infancy, there have
been recent research investigations on channel modeling
for indoor environments, which have paved the way
for utilizing THz communications in indoor wireless
data centers [319], [320]. Initial results showed that the
cabling cost can be reduced without compromising the
bandwidth.

• Secure Drone Communications:Drone communications
in the THz band is one of the envisioned applica-
tions of THz communications that are expected to
achieve higher capacity gains and support increased
mobility [321]. Moreover, the deployment of large
antenna arrays for coverage extension enables extremely
narrow beams, which inherently limits the probabil-
ity of eavesdropping, and therefore, it achieves secure
communications [322].

• Health Monitoring: THz communications is a promis-
ing candidate in the field of health care. Specifically,
several nano-sensors can be utilized to monitor different
ions in the human blood, such as glucose and sodium,
in addition to cholesterol levels, infections and can-
cer bio-markers. The collected data by the sensors are
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FIGURE 3. Indoor and outdoor applications of THz communications.

forwarded to a micro interface, e.g., a cellular phone or
a medical device, using THz communications [317]. It is
noted that the THz radiations are considered safe for the
human-being bodies compared to the gamma rays [323].

• Wireless local area networks (WLANs)/Wireless per-
sonal area networks (WPANs): THz band communi-
cations are envisioned to enable bandwidth-intensive
applications such as high definition holographic video
conferencing and ultra-high speed data transfer. This
stems from the fact that a seamless interconnection may
be facilitated between ultra-high wired networks (e.g.,
fiber optical links) and wireless devices (e.g., laptops or
tablets) inWLANs or between personal wireless devices
in WPANs [322].

Potential applications of THz communications are outlined
in Fig. 3.

C. OPTICAL WIRELESS COMMUNICATIONS
• Smart Transportation Systems: The wide spread of
LEDs in current transportation lighting systems, such as
vehicles lights, street lamps and traffic signals, facili-
tates the utilization of these LEDs to perform wireless
communications besides their original role of illumi-
nation. LEDs can be exploited to implement OWC to
realize safe and smart transportation systems, by allow-
ing vehicles to communicate road-related information,
including vehicles speed, navigation, and traffic sta-
tus, while maintaining low-complexity and low-cost
implementation [324].

• Airplane Passenger Lights: OWC can be interestingly
applied to travelers lighting in airplanes, in which
LEDs can realize wireless communications for in-flight

passengers audio and video files transmission, in addi-
tion to instant messaging and data exchange [325].

• Underground Mining: Serious accidents, due to cave
collapsing, chemical leakage, and gas explosions,
in undergroundmining raise a critical issue in themining
industries. In such events, it is of paramount importance
to detect the location of the miners in order to provide
the proper assistance. Recently, VLC has emerged as a
promising technology for indoor positioning, due to its
suitability in enclosed places, in addition to its low cost,
low interference and high data rates features [326].

• Healthcare: Electromagnetic interference caused by
RF signals is considered as a threatening factor for
expensive medical machines. Moreover, intensive care
units pose restrictions on the use of mobile phones
operating over the RF band [327]. Intra-clinical data
transmission is considered an attractive application to
OWC, which is reported as safe for human health. OWC
can be implemented in healthcare buildings to provide
safe and high data rate transmission over short distances,
in addition to lighting, which minimizes the implemen-
tation cost and provides a health-friendly alternative to
RF communications [328].

D. METASURFACES FOR WIRELESS COMMUNICATIONS
• Metasurfaces in WPT Applications: WPT is foreseen
as a game-changing technology, in which future net-
works are envisioned to provide perpetual energy replen-
ishment, particularly for low power devices/sensors.
A major concern, however, is the ability of devices
to harvest enough energy in wireless channels. The
unique properties of metasurfaces, that include their
abilities to steer and concentrate electromagnetic waves,
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enable efficient power transfer and energy harvesting.
The work in [329] discussed the potentials of integrat-
ing smart tables with metasurfaces in order to enable
multiple wireless devices to be powered/charged simul-
taneously. The integration of WPT in metasurfaces for
biological applications was studied in [159], where a
metasurface-based wearable device was placed over the
human skin surface to improve the efficiency of an
implanted WPT system.

• Metasurface-based Textiles for Wireless Body Sensor
Networks (WBSNs): Very recently, metasurface-based
textiles were developed for energy-efficient and secure
WBSN applications [330]. In this approach, regular
clothing is fitted with conductive metasurface textiles,
where wireless signals can glide around the surface of
the body on the clothes to interconnect wireless wearable
devices with each other forming a WBSN. In this appli-
cation scenario, wearable devices are located in close
proximity to the body. This results in a significant reduc-
tion in the power dissipated by the wireless devices,
leading to an improvement in the battery life and data
rates of these devices. In fact, this innovative WBSN is
foreseen to boost the received signal compared to con-
ventional technologies. Furthermore, metasurface-based
textiles may enable personal sensor networks, which are
highly efficient, immune to interference, and inherently
secure [330]. Looking ahead, they are envisioned to have
future applications in high-tech athletic wear, health
monitoring, and human-machine interfaces.

E. DRONE-BASED COMMUNICATIONS AND
AUTONOMOUS SYSTEMS
• Search and Rescue Missions: Search and rescue mis-
sions are some of the critical driving applications of
drone networks. This is primarily due to the flexibility
of drones compared to manned vehicles, which take a
longer time to deploy [331].

• Mailing and Delivery: Package delivery is one of the
attractive civil applications of drones, adopted by major
courier companies around the world in order to accom-
plish fast, cost-effective and reliable delivery. This
is motivated by the fact that most of the packages’
weights are below the maximum tolerable load of a
single drone [180]. For example, Amazon reported that
83% of their packages weights fall below the 2.5 kg
[332], while FedEx average package weight is less
than 5 kg [180].

• Marine Drones:Underwater drones can accomplish sev-
eral military and civil underwater missions, such as oil
spills exploration and identification, in addition to per-
forming intensive studies relating to marine organisms
and ecosystem [333].

F. BackCom AND ENERGY HARVESTING
• Smart Homes: Low power battery-less backscatter sen-
sors equipped with energy harvesting devices can be

efficiently embedded in homes to perform a wide range
of tasks, such as gas leak detection, smoke and carbon
oxide detection, and movement monitoring. Another
driving application of BackCom is smart dustbins,
in which backscatter devices keep track of the garbage
level and report it to garbage collecting trucks.

• Smart Cities: Backscatter enabled sensors can be flex-
ibly placed in street lamps, parking lots, buildings, and
bridges to realize the envisioned energy-efficient low-
cost smart cities. BackCom can be utilized in smart cities
to enhance air quality by monitoring the pollution and
noise level in the air. Additionally, it can be used to man-
age traffic in closed parking areas and ease the process
of finding an available parking place by indicating the
available slots.

• Biomedical Applications: Wearable and implantable
human medical devices, in addition to plants and ani-
mals monitoring, are some of the key drivers of Back-
Com technology. For example, Smart Google contact
lenses, which are equipped with miniaturized Back-
Com devices, are designed to continuously measure the
glucose levels in the tears for diabetes patients and
backscatter the reported results to a wireless controller.
Other serious diseases, such as epilepsy and Parkin-
son’s, are envisioned to be diagnosed and treated by
the assistance of BackCom technology. In particular,
it is envisaged that brain-implantable BackCom neural
devices will play the role of the brain-computer interface
needed for studying and diagnosing diseases of interest.

Potential applications of BackCom systems are presented
in Fig. 4.

G. TACTILE INTERNET
• Industry: Automation in industry realizes the control
of machinery and processes through a large network of
sensors and actuators in order to improve productivity
and reduce labor costs. Industrial automation is steadily
growing in the context of TI, enabling the full control
of rapidly moving devices with high sensitivity while
meeting the end-to-end latency requirements. However,
the ever-growing need for control processes with differ-
ent latency, reliability, data rate, and security demands is
envisioned to catalyze the development of new wireless
solutions tailored to these requirements.

• Virtual Reality (VR): VR enables users to physically
interact with each other by applying various motor
skills over a VR simulation platform. In this context,
TI is anticipated to provide the low latency required
to facilitate shared virtual environments. High-fidelity
interaction requires haptic feedback to allow users to
touch objects in a VR environment and enable users to
feel one another’s actions on the same touched object.
This requires a stable and seamless user communication
coordination, which is not supported by today’s VR sys-
tems. Hence, TI is foreseen as a key enabler for haptic
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FIGURE 4. Applications of BackCom systems.

communications with ultra-low delay communication
and reliability requirements.

• Augmented Reality (AR): AR applications are fast grow-
ing, owing to the availability of AR glasses and powerful
smart devices equipped with small sensors and cam-
eras. However, the present AR systems are restricted to
deliver pre-processed content due to the limited com-
putational capabilities of the small wireless devices
and the inherent delays in the communication network.
TI, on the other hand, is perceived to enable the aug-
mentation of dynamic and real-time information to the
contents.

• Healthcare: Potential applications of TI in health-
care include tele-surgery, tele-rehabilitation, and tele-
diagnosis. Different from healthcare services provided
by current communication networks, which are location-
dependent, medical expertise provided by the TI will
not be bounded by time and/or a physical location.
For example, a physician can diagnose patients at their
locations by remotely controlling a robot while receiv-
ing haptic feedback as well as audio-visual informa-
tion. Tele-surgery is another example, which has the
potential to revolutionize healthcare delivery in the next
decade.

• Education: Improved learning experiences over dis-
tances can be achieved via TI by allowing teachers
and learners to exchange haptic information. Identical
multi-modal human-machine interfaces are required to
enable auditory, visual, and haptic interactions, which
can be realized by enabling ultra-low latency commu-
nication systems. For example, TI may allow a remote

music instructor to apply instant actions over the haptic
overlay to correct the hand moves of a student learning
a musical instrument.

IV. CHALLENGES AND FUTURE DIRECTIONS
In this section, we discuss the open research issues associated
with the previously presented potential 6G technologies and
highlight their research challenges.

A. MILLIMETER-WAVE COMMUNICATIONS
• User Mobility: User mobility constitutes a major chal-
lenge in the implementation of mmWave networks,
that severely affects the system’s capacity. Therefore,
to realize the full potential ofmmWave communications,
there is a need to develop novel, efficient and adaptive
modulation and coding schemes in order to compensate
for channel variations. Moreover, in indoor small cell
scenarios, which comprise sets of access points serving
multiple devices (each set called basic service set), user
mobility causes severe and rapid load fluctuations in
each set, in addition to recurrent handovers between
multiple access points [334]. This calls for the devel-
opment of sophisticated user association and handovers
mechanisms between multiple access points, which are
capable of providing a guaranteed QoS, balanced load,
and improved system capacity for the realization of
efficient mmWave communications in future wireless
networks.

• Interference Management: To overcome the short range
limitation in mmWave communications, a large num-
ber of access points are employed to extend the link
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coverage in small cell environments. In several indoor
scenarios, such as office cubicles and conference rooms,
networks experience interference due to the deployment
of a large number of access points (i.e., large number of
basic service sets). This interference can be detrimental
if the device is close to the interfering access point,
which is a highly probable event. Therefore, research
interests should be directed towards developing novel
interference management mechanisms to prevent sig-
nificant deterioration in the performance of mmWave
communications.

• Blockage and Shadowing Control: Sensitivity to block-
age represents a fundamental challenge for wire-
less mmWave communications. Specifically, a sudden
blockage for the LOS transmission between the BS
and the user causes a disconnected session, yielding a
significant degradation in the system’s reliability. Addi-
tionally, re-establishing a new connection between the
user and another BS increases the network overhead,
affecting the system’s latency, which is a major issue
in the envisioned 6G mobile networks. Signal steering,
to avoid human blocking, requires a very large number
of access points, which augments the level of interfer-
ence in addition to the increased complexity. Therefore,
the design of reliable anti-blockage schemes is neces-
sary before implementing efficient mmWave communi-
cations in future wireless networks.

B. TERAHERTZ COMMUNICATIONS
• Transceiver Architecture: Transceiver architectures in
the THz band is one of the critical aspects to be consid-
ered due to the unique characteristics of the propagation
environment of THz links. In order to realize the full
potentials of the THz-band, there is a growing interest in
the development of novel transceiver architectures that
can operate across the entire THz-band. The developed
architectures are expected to combat the severe path loss,
thus, enabling high sensitivity and high power gains.
Moreover, the co-existence of different frequency bands,
such as THz, mmWave, and microwave cells, requires
thorough investigations over different layers.

• THz Modulator: The characteristics of THz modulators,
including amplitude and phase modulators, play a cen-
tral role in quantifying the efficiency of THz commu-
nication systems. These characteristics include, but not
limited to, modulation speed and depth in amplitude
modulators and phase shift amount in phase modulators.
Current modulators designs, with the adopted architec-
ture and utilized materials, limit the modulator ability
to achieve ultra-high speed and consequently to realize
efficient THz wireless systems. This stems from the fact
that the existing modulators do not allow EM radiation
manipulation in the THz band, which is required in order
to facilitate high-speed control of the modulator char-
acteristics. Therefore, this calls for research interven-
tion to develop intelligent and tunable ultra-high speed

modulators, with approximately 1 picosecond response
time, to enable efficient and reliable THz wireless com-
munications [317].

• Channel Modeling for THz Communications: Existing
low frequency channel models can not accurately cap-
ture the entire behavior of high frequency THz links,
which experience severe attenuation due to molecular
absorption and antenna aperture, in addition to the free
space loss. Note that themulti-path channel of THz com-
munications compromises LOS and NLOS components.
On the contrary, LOS attenuation, represented by path
loss, is measured by the addition of the spreading and
molecular absorption losses, which are encountered due
to wave expansion and molecular absorption, respec-
tively. The severity of molecular absorption is deter-
mined based on the density of molecules experienced
along with the transmission link, distance, weather con-
ditions (e.g., heavy rain), and frequency window in
the THz band. Accordingly, LOS channel component
in the THz band is described as severely frequency
selective. Therefore, it is essential to develop an accu-
rate model to represent the LOS component in the THz
wireless system, which is necessary to identify the per-
formance limits of THz communications and propose
enhancement schemes for such technology [335].
On the other hand, due to the unavailability of the LOS
components in some scenarios, the THz link might be
limited to the NLOS component, which can be classified
into specular reflected, diffusely scattered and diffracted
EM waves. Therefore, for precise channel characteri-
zation, it is required to accurately trace the reflection,
scattering and diffraction coefficients of the incident
beam in the THz system [336], which depend on the
incident angle and surface material and geometry.
Hence, the development of realistic and accurate channel
models for THz links is still an open research prob-
lem, which requires thorough investigation to enable the
implementation of an efficient THz wireless system.

C. OPTICAL WIRELESS COMMUNICATIONS
• Physical Layer Security:Heterogeneous ultra-dense net-
works are envisioned to shape the future 6G wireless
networks, in which hybrid RF/optical wireless com-
munications are widely deployed. Although physical
layer security in OWC is thoroughly investigated in
the literature, implementing secure hybrid RF/optical
networks, which require the development of efficient
physical layer security mechanisms, represents a major
challenge in such systems. By noting that legitimate
users and eavesdroppers in hybrid networks are con-
nected to either RF or VLC sources, it is essential to
propose physical layer security mechanisms to associate
users to the appropriate source in a way that maximizes
the system secrecy rate [337].

• Multiple Access Networks: The limited modula-
tion bandwidth and peak optical power represents
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a performance limiting factor in the realization of
efficient OWC systems, as it directly affects the spec-
tral efficiency in such systems, particularly in VLC
scenarios. Several multiple access schemes have been
proposed in the literature to accommodate multiple
users, and hence improve the spectral efficiency in
OWC networks, such as NOMA, rate splitting multi-
ple access (RSMA) and space-division multiple access
(SDMA) [338]. It is worth noting that existing research
in the field of optical multiple access is primarily relying
on perfect impractical scenarios. In specific, in the
reported work, perfect CSI, Gaussian noise, and avail-
ability of LOS assumptions are considered. Therefore,
it is essential to examine the performance of OWC
systems under imperfect scenarios, such as investigating
the effect of ambient light. Additionally, considering
that VLC links may experience fading and shadowing,
it is essential to examine the performance of different
optical multiple access schemes under imperfect channel
conditions.Moreover, physical layer security of NOMA,
RSMA, and SDMA systems, in the context of OWC,
remains an open research problem.

• Reconfigurable Intelligent Surfaces for FSO: The exis-
tence of a LOS link constraint constitutes a major chal-
lenge in the implementation and generic deployment
of FSO networks. This is due to the fact that optical
links in FSO systems are usually impaired by several
factors, such as atmospheric turbulence and geometric
and misalignment losses [339]. Consequently, optical
reconfigurable intelligent surfaces (RIS) have emerged
as an efficient solution to relax the LOS constraint in
FSO networks. Different than relay, RIS is considered an
energy efficient technology to extend the coverage area
of FSO wireless networks at low implementation cost
and complexity. Motivated by the promising potentials
of RIS in FSO networks, the research community has
recently started to actively investigate the integration of
RIS in FSO scenarios [339]–[341].

D. METASURFACES FOR WIRELESS COMMUNICATIONS
In spite of the promising prospects of metasurfaces in 6G,
several design aspects should be further investigated in
order to realize the full potential of this promising
technology.
• Dynamic Structure Design: The ability to manipu-
late the configurations of meta-atoms constitutes a key
design challenge for the efficient operation of recon-
figurable metasurfaces, whose deployment is needed
to support a wide range of functionalities in highly
dynamic wireless environments. Although there exist
some research studies that have successfully demon-
strated that multiple functionalities can be achieved
by multiple metasurfaces, only a few have presented
the capability of a metasurface to perform differ-
ent functionalities simultaneously [342]. In this case,
each unit cell of the metasurface has to be controlled

independently, raising the need to develop effective dis-
tributed meta-atom control mechanisms and to examine
the performance of the variety of functions supported
by each metasurface. Additionally, since metasurfaces
are envisioned to be deployed in application scenarios
involving the operation over a wide frequency range
(varying from 1 to 60 GHz), designing efficient metasur-
face structures that are capable of dynamically switching
the operation frequency poses an essential research
goal [140].

• Efficient Programmable Interface: Apart from the need
to develop metasurface structures capable of realizing
different functions in real-time, there is a compelling
need to investigate advanced multi-functional metasur-
faces that can switch from one EM behavior to another
in a fast manner to cater for the increasingly diverse
user demands, especially in high mobility scenarios
where the system convergence rate may not be within
the coherence time of the surrounding wireless environ-
ment. As a result, research efforts should be directed
towards developing control software that incorporates
low-complexity and fast configuration optimizers to
facilitate the optimization and adaptation of metasur-
faces functionalities to the surrounding environment.
Also, advanced signal processing and machine learn-
ing algorithms may be developed to leverage the sens-
ing capabilities of metasurfaces for enabling intelligent
system performance optimization, which can converge
within the coherence time of the environment and can
be alignedwith the network requirements of 6G systems,
such as massive connectivity, ultra-low latency, and high
reliability [140].

• High-order Modulation: The design of high-order mod-
ulation and novel waveform designs for metasurface-
based wireless communication systems constitute
promising solutions for enabling high data rate trans-
missions. This is of paramount importance since cur-
rent metasurface-based transmitters are limited to
single-carrier low-order modulation schemes, such as
binary/quadrature phase-shift-keying [150], [151].

• WPT in Metasurfaces: It is recalled that the last years
witnessed remarkable advancements in battery design.
Nonetheless, the short battery life of wireless devices
still constitutes a major design challenge and requires a
paradigm shift towards the development of the next gen-
eration green communication architectures. WPT was
proposed recently as a promising solution to provide
perpetual energy replenishment for such networks. It is
realized by allowing wireless devices, equipped with
dedicated energy harvesting circuits, to harvest energy
from either ambient RF signals or dedicated RF sources.
Given that metasurfaces have the ability to steer, absorb
and collimate EM waves, particular research efforts
should be dedicated to exploit the unique functionalities
of metasurfaces to wirelessly charge the wireless devices
from long distances.
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E. DRONE-BASED COMMUNICATIONS AND
AUTONOMOUS SYSTEMS
• Network Architecture and Analysis: Network planning,
performance evaluation and resource allocation are
some of the challenges that drone-BSs encounters in
aerial networks. While terrestrial mobile networks are
designed to meet the requirements of ground users, they
are not optimized to support aerial networks. Specifi-
cally, terrestrial BS antennas are not designed to sup-
port the ultra-low latency requirements of high elevation
angle users in aerial networks. Therefore, there is a
need to develop a novel and efficient system architecture
that can efficiently integrate terrestrial BSs with drone-
based UEs.

• Energy and Storage Efficiency: Energy constraint is a
limiting factor in mobile-enabled drones, particularly
since solar energy and the limited size of built-in batter-
ies are the only sources of power. This is a crucial issue,
especially in power-hungry monitoring missions, where
continuous monitoring and transmission are inevitable.
Various energy-aware mechanisms have been reported
in the literature to address the energy efficiency problem
in drones. For example, an approach is to utilize multiple
cooperative drones to allow a single drone to temporarily
leave the network for energy replenishment [173]. Stor-
age constraint is another major concern, e.g., in monitor-
ing missions, where drones must store a large amount of
data. This motivates the investigation of novel forward-
ing and compression schemes to efficiently handle this
huge amount of data.

• Collision Avoidance: Buildings and large obstacles rep-
resent a major hazard to drones, so they must be
addressed thoroughly in order to avoid collisions to
objects in the surrounding environment. A way to
address this problem is to restrict the drone flying zones
to limited areas. However, this will increase the inter-
ference between multiple drones and lead to higher col-
lision probability [343]. Therefore, there is a need for
efficient collision avoidance schemes to enable drones
dynamically adjust their trajectories to minimize colli-
sion probability.

• Channel Modeling: Efficient implementation of coop-
erative aerial networks requires accurate characteriza-
tion of communication links to ensure reliable and
safe operation of air-to-air and air-to-ground links.
In flying ad-hoc network architectures, drone commu-
nications require the development of robust theoret-
ical framework to model air-to-air and air-to-ground
links. While there have been reported works on link
characteristics of aerial networks in different frequency
bands [344]–[346], there are still not enough results to
characterize the channel models, particularly for coop-
erative (relaying) scenarios [347].
Although the communication link characteristics of
drone-based systems are unique, some terrestrial chan-
nel models, such as two-ray and Rician models, were

shown to be a good fit for drone environments; however,
more experimental and real-time tests are required in
order to verify the accuracy of such models and prop-
erly select their parameters. More importantly, further
research efforts must be dedicated to verify the validity
of these models in different frequency bands, such as
433 MHz, 1575.42 MHz, and 2.4 GHz bands [347].

F. BACKSCATTER COMMUNICATIONS AND ENERGY
HARVESTING
• Security and Jamming: BackCom systems typically suf-
fer from potential security and jamming attacks, owing
to their simple modulation and coding schemes. The
key issue is that the limited resources in backscatter
systems are not able to support the implementation of
conventional security solutions that include encryption
and digital signatures [243]. This calls for the develop-
ment of simple, yet highly efficient security solutions to
realize secure BackCom systems.

• Interference to Licensed Systems: Data transmission in
ambient BackCom is based on reflecting ambient signals
received from licensed sources. Therefore, interference
imposed on licensed users is inevitable, which calls for
the need to develop communication protocols that guar-
antee no orminimal interference. Recent research efforts
have focused on interference modeling and development
of compensation schemes [227].

• Full-Duplex Ambient Backscatter: Full-duplex Back-
Com systems are proposed to enable simultaneous
communication between multiple ambient backscatter
nodes. In such cases, the same antenna is used by
a backscatter receiver to transmit and receive signals.
As a result, a significant amount of self-interference
exists between different components of the Back-
Com transceiver. This calls for the development
of self-interference mitigation schemes and consti-
tutes an open research issue towards addressing this
challenge [244], [348].

G. TACTILE INTERNET
Although TI is considered as a new paradigm envisioned to
generate a plethora of new applications, several open research
challenges exist and need to be fully addressed for the suc-
cessful realization of this enabling technology.
• Haptic Devices: Haptic devices, such as sensors and
actuators, enable users to feel, touch, and manipulate
objects in real or virtual environments. Although haptic
devices have already been commercialized, they still
fall short in terms of degrees of freedom as well as
the cost effectiveness. Additionally, in order to realize
the envisioned applications, haptic devices have to offer
kinesthetic and tactile control simultaneously [349].

• Data Compression: Bandwidth-limited networks rep-
resent a major challenge for haptic communications,
which requires a paradigm shift towards the develop-
ment of innovative solutions that would enhance system
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reliability and user experience. In this regard, several
haptic data compression techniques have been thor-
oughly investigated in the literature, to realize the full
potential of TI. However, further investigations towards
haptic codec design for TI are required. This might
include the proposal of a new set of kinesthetic and
tactile codec solutions that will lead to highly efficient
data compression techniques.

• Integration of Multi-Modal Sensory: One of the key
challenging aspects in enabling haptic feedback is
multi-modal sensory, where visual, haptic, and audi-
tory feedback are integrated simultaneously. However,
these different modalities vary in terms of their latency,
sampling, and transmission rate. Subsequently, novel
multiplexing schemes have to be studied in order to
temporally integrate multiple modalities with different
priorities.

• Ultra-Reliability: Since TI is expected to disrupt major
attributes in the society, ultra-reliable network connec-
tivity is necessary to minimize the packet losses and
reduce the outage to 10−7 [349]. A highly lossy envi-
ronment in haptic communications leads to erroneous
sensations and directly interrupts the user’s activity.
There are several factors that impact the reliability of
TI applications. This includes uncontrollable interfer-
ence, lack of resources, equipment failure, and reduced
signal strength. This will require the investigation of
efficient reliability enhancement mechanisms to achieve
ultra-high reliability in real-time operations [350].

• Ultra-Low Latency:As stated earlier, TI requires sub-ms
end-to-end latency. Therefore, it is essential to under-
stand the latency budget between sensors and actuators
in order to investigate the impact of each contributing
factor in the chain. In general, the end-to-end latency is
dominated by air-interface, backhaul, and core latencies.
To cater to the critical latency requirements, innovative
latency optimization mechanisms are necessary in addi-
tion to effective protocol stack and hardware designs.

V. CONCLUSION
Although the glory of 5G networks is at its peak, initial
implementation and testing phase of 5G networks along with
the emergence of a plethora of new applications, such as
bio-interface applications, are revealing new challenges and
limitations of the upcoming wireless networks, including but
not limited to, ultra-high reliability, extremely high data rates
and ultra-low latency. Accordingly, this spots the lights on
the fundamental question: Will the forthcoming 5G wireless
networks be able to accommodate the newly emerged appli-
cations with the concurrent stringent requirements, neces-
sary for realizing fully autonomous and intelligent systems?
To answer this question, in this paper, we sketched out the
roadmap into the future hypothetical vision of B5G net-
works. Particularly, we focused on exploring expected new
technologies for 6G networks, such as mmWave commu-
nications, THz communications, OWC, metasurfaces, aerial

networks, BackCom, and TI, along with their potential appli-
cations and inherent challenges. The technical challenges
associated with these technologies call for a deeper investi-
gation, which will potentially accelerate the development of
innovative solutions as well as standardization efforts for 6G.
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