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ABSTRACT Efficient automatic guided vehicle (AGV) scheduling is the key to increase the throughput of
automated container terminals. Traditional transport strategies cannot guarantee that AGVs are fully loaded
during their traveling between the dock and the container yard, which leads to the insufficient utilization
of AGVs. A load-in-load-out AGV route planning mode provides two-way loading between the dock and
the container yard and thus improves the efficiency of container terminals. In this paper, a load-in-load-out
AGV route planning model is designed with the help of a buffer zone where an AGV can carry at most
two containers. A simulated annealing algorithm is used to solve it. Comparisons with the popular generic
algorithm and particle swarm algorithm are made. Simulation results show that the proposed algorithm can
effectively solve the problem and realize the bi-directional loading of AGVs, which is of great significance
to improve the efficiency of the production of automated container terminals.

INDEX TERMS Load-in-load-out, AGV scheduling, automated container port, simulated annealing
algorithm.

I. INTRODUCTION
As one of the most basic logistics and transportation modes,
sea transportation has been playing an important role in eco-
nomic trade and cultural communication among worldwide
countries. With the development of the current frequent inter-
national trade, container terminals need to use advanced tech-
nologies to increase their efficiency and throughput. Efficient
automatic guided vehicle (AGV) scheduling strategies are the
key to ensure the high efficiency of an automatic container
terminal, which has been studied by many scholars. They can
support the full use of port resources and realize the efficient
operations of the quayside and yard.

Studies about AGV scheduling can be divided into three
aspects: path planning, real-time scheduling, and resource
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allocation optimization. Path planning means scheduling
AGV to complete transportation tasks. It can use intelli-
gent optimization algorithms or hybrid algorithms to plan
the AGV routes. Mohammad and Saeed propose a mathe-
matical model that is composed of a job shop scheduling
problem and a conflict-free routing problem. A two-stage
ant colony algorithm is also proposed to solve it [1]. Based
on the characteristics of the A∗ algorithm, Zheng et al.
optimize a node search method and use an angle evalua-
tion cost function to find the path with the least inflection
point [2]. Jerald and Asokan implement a non-traditional
optimization technique called the adaptive genetic algorithm
to do simultaneous scheduling [3]. Liu proposes an algo-
rithm based on an immune algorithm and constructs AGV
path planning by using a bipartite graph [4]. Chen et al.
propose a new navigation method based on a fuzzy neural
network by defining safety measures [5]. Cordeau et al.
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provide a unified tabu search heuristic algorithm for time
windows and multi-warehouse vehicle paths [6]. Real-time
scheduling is a strategy for avoiding collisions in a planned
path. It implements deadlock-free and collision-free transport
rules. This will achieve the goal of increasing the efficiency
of the container terminals. Ayoub et al. propose a hybrid
approach to solve the scheduling and path selection of auto-
matically guided vehicles [7]. Nishi et al. propose a Petri net
decomposition method for scheduling and conflict-free rout-
ing simultaneously for two-way automatic vehicle systems
in dynamic environments [8]. Dimitri et al. propose a new
strategy based on time logic to avoid collisions by delaying
AGV operations [9]. Shi et al. present a two-stage scheduling
strategy for offline shortest path library generation and online
optimal scheduling scheme generation [10]. Ho develops a
strategy that not only can prevent the collision of vehicles but
also can avoid the disadvantage of fixed-zone strategies [11].
Gan et al. aim to minimize the end time of AGV tasks and
the time of invalid operations and optimize the unloading
operations of automatic container terminals [12]. Luo and Ni
propose a method based on ordinary Petri nets to design
the programmable logical controller to prevent collisions
between vehicles in the automatic vehicle system [13].
Resource allocation focuses on disposing of containers
in the shortest time with limited transportation resources.
Singh et al. adopt a new scheduling rule and simulate the
distribution efficiency and uniformity [14]. Toshiyuki et al.
study the scheduling and path planning of AGV with a
capacity [15]. Hadjar and Soumis consider a widespread
branch-and-price approach to solve the multiple depot
vehicle scheduling problems with time windows [16].
Confessore et al. propose an approach for solving the dis-
patching problem in an AGV system. The problem is mod-
eled through a network by relying on the formulation of a
minimum cost flow problem [17]. Kim and Chung present
an analytical model to design a tandem AGV system with
two-load AGVs [18]. Hassan and Edward define a scheduling
problem for automated guided vehicles in container terminals
and formulate as a minimum cost flowmodel [19]. A delay in
one job may affect all the subsequent jobs served by the same
quay crane. To handle this assignment problem, Song and
Huang propose a hybridmetaheuristic method [20]. However,
the aforementioned studies cannot guarantee that AGVs are
fully loaded during their traveling between the dock and
the container yard, which leads to the insufficient utilization
of AGVs.

With the increasing throughput of the port, the traditional
operation mode will cause a waste of time and resources. This
will affect the whole transport link of the quayside bridge,
AGV transport zone, and yard bridge. To the best of our
knowledge, the existing big container ports cannot guarantee
that AGVs are fully loaded during their traveling between the
dock and the container yard, which leads to the insufficient
utilization of AGVs. Also, in the existing studies few scholars
study the considered fully loaded mode. Thus, this paper pro-
poses a load-in load-out route planning for AGVs providing

two-way loading between the dock and the container yard.
It is designed with the help of a buffer zone. A simulated
annealing algorithm is used to solve it. It can undoubtedly
improve the efficiency of port transport. In this paper, we con-
sider the strategy that an AGV can accommodate and carry
two containers at the same time. In recent years, abundant
achievements in various areas including scheduling in slab
yard [21], manufacturing [22]–[25], transportation [26]–[28]
and cooperative systems [29], [30] have been made with
the help of intelligent optimization algorithms. We use a
simulated annealing algorithm to solve the model and adopt
a repetitive locations combination strategy to improve the
efficiency of the algorithm.

The rest of the paper is organized as follows. Section II
presents the formulation of the problem where an AGV can
carry two containers. Based on a seaside buffer zone,
it designs a load-in-load-out AGV scheduling model.
Section III proposes a solution algorithm for the model based
on a simulated annealing algorithm. Section IVmakes a com-
parative analysis of the results. Finally, Section V concludes
this paper and discusses the future work.

II. PROBLEM FORMULATION
The model studied in this paper is the multi-AGV path opti-
mization model for a single cargo ship. Fig. 1 shows the part
of seaside transportation area in Qingdao Qianwan Container
Terminal. In this figure, there are some quay cranes, a ship
on the left of quay cranes, and some AGVs under the quay
cranes. At the seaside of the port, the task of AGVs is to
transport imported containers from a quay crane to a yard
crane, unload the containers, and return to the quay, or to
transport exported containers from a yard crane to a quay
crane, unload the containers, and return to the yard.We design
a load-in-load-out AGV transportation (LILO) mode in this
process. After the imported container is unloaded at a yard,
the AGV loads another exported container and returns to the
quay as shown in Fig. 2. The goal is to complete all containers
transfer tasks between the sea-side and the yard in the load-in-
load-out mode while minimizing the total traveling distance
of all AGVs. A quayside buffer can ensure loose coupling
between quayside work and trolley path planning, and thus
the efficiency of port work can be increased. The buffer at

FIGURE 1. Part of seaside transportation area.
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FIGURE 2. The load-in-load-out mode. After an imported container is
unloaded at a yard, the AGV loads another exported container and
returns to the quay.

the quayside bridge is designed in Fig. 3. Taking the loading
process as an example, quayside buffers store containers.
Containers are allocated from the bridge crane to the carriage,
and the carriage canmove from side to side between the tracks
so that there is no requirement.

FIGURE 3. Quayside buffer where AGVs load or unload the carriages that
are full of containers.

We give some assumptions about the model:

1) There is one ship, several AGVs, and a similar number
of containers that need to be transferred from quayside
to the yard and from the yard to the quayside.

2) Each AGV can carry two containers at most, and each
task needs to transport containers from the quayside to
the yard or from the yard to the quayside.

3) The quayside buffer can automatically realize the con-
tainer loading and unloading of AGVs.

First, we give the notations that are used in the paper below.

1) N: N = {1, 2, . . .} is the set of natural numbers;
2) Nm: Nm = {1, 2, . . . ,m};
3) S∗: the multiple sets of a set S;
4) V : V = {v0; v1, v2, . . . , vn} denotes a set of locations

where v0 represents a quayside bridge and vi represents
the ith location in the yard;

5) V (vi): V (vi) ∈ {vi}∗ represents a subset of a multiple
set consisting of vi, i ∈ N;

6) X : X ∈ {V -{v0}}∗ represents a set of locations where
each location in the yard needs to receive a container
that is unloaded from the ship;

7) Y : Y ∈ {V -{v0}}∗ represents a set of locations where
each location in the yard has one container that needs
to be transported to the ship;

8) |S|: represents the number of elements in set S;
9) c: The maximum number of containers for each AGV;

10) m: m ∈ N is the total number of AGVs;
11) k: k ∈ Nm represents an index of an AGV;
12) dij: represents the distance between location vi to vj;
13) ηk : ηk = x1x2 . . . xj represents a sequence of locations

that the kth AGV passes through during its transporta-
tion, and for the convenience we denote xi ∈ ηk ;

14) Qk : Qk =
∑

i,j dij represents the distance traveled by
the kth AGV;

15) lki : it represents the number of loading containers at vi
in ηk , lki ∈ {0, 1, 2, . . . , c};

16) uki : it represents the number of unloading containers at
vi in ηk , uki ∈ {0, 1, 2, . . . , c};

17) nki : it represents the number of the containers carried by
the kth AGV before its next loading or unloading task
at vi in ηk , nki ∈ {0, 1, 2, . . . , c}.

According to the LILO mode, the objective function is the
shortest distance of AGVs that can accomplish all tasks.

minZ =
m∑
k=1

Qk (1)

The constraints are as follows.

lk0 = uk0 = c, ∀v0 ∈ ηk (2)

0 ≤ nki ≤ c, ∀vi ∈ η
k (3)

uki ≤ nki , ∀vi ∈ η
k (4)

nki+1 = nki − u
k
i + l

k
i , ∀vi ∈ η

k (5)(
uki
)2
+

(
lki
)2
6= 0, ∀vi ∈ ηk (6)

m∑
k=1

uki = |V (vi)| , V (vi) ⊆ Y , i ∈ Nn (7)

m∑
k=1

uki = |V (vi)| , V (vi) ⊆ X , i ∈ Nn (8)

Constraint (2) means that AGV should fully load into and
out of the quayside bridge, and this meets the requirements
of the LILO mode. (3) means that the maximum carrying
capacity of the AGV is no more than c. (4)-(5) restrict the
number of loading and unloading containers for each AGV.
(6) prohibits the illegal operation of neither loading nor
unloading in the process of transportation at a location in the
yard. (7) means that each unloading container at a location
can be accomplished. (8) means that each loading container
at a location can be accomplished.
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III. PROPOSED ALGORITHM
First, we analyze the scale of the solution space of the prob-
lem. When c = 1 and X = Y = n. A basic sequential
operation of an AGV is ‘‘unloading→ loading’’ denoted by
UL for short. Both the numbers of solutions for unloading
containers in X and loading containers in Y are n!. When we
have m AGVs, the solution space is O(n!2 × Cm−1

n−1 ). When
c = 2 and X = Y = n. There are two basic sequential
operations, i.e., ‘‘unloading→ loading→ unloading→ load-
ing’’ and ‘‘unloading→ unloading→ loading→ loading’’
that are respectively denoted by (UL)2 and U2L2 for short.
We 2n

4 assume that the number of carriage times by AGV
is t , then t = 2n

4 , there are altogether 2
t modes of transport.

Both the numbers of solutions for unloading containers in X
and loading containers in Y are n!. When we have m AGVs,
the solution space is O(2t × n!2×Cm−1

n/2−1). It can be seen that
the time complexity level of the exhaustive method is O(n!).
When the scale of the problem becomes larger, the traditional
algorithm cannot solve the problem within an acceptable
time. Therefore, simulated annealing algorithms for solving
the problem are presented in this paper.

We adopt a two-stage coding scheme. It divides the code
into two parts. The first part is an integer sequence repre-
senting an order of locations. The second part represents
the number of locations traversed by AGV. Fig. 4 shows an
example of the two-stage coding scheme.

FIGURE 4. A two-stage coding scheme. The first segment represents the
locations and the second segment represents the number of locations
traversed by AGVs.

Now, we propose a code decomposition and combination
(CDC) strategy. In order to make the algorithm have good
convergence and avoid falling into local optimum, we screen
the same locations in a scheduling process. At the same
time, we analyze the condition that an AGV could carry two
containers.

A. SIMULATED ANNEALING ALGORITHM BASED ON LILO
A simulated annealing algorithm was proposed by
Metropolis et al. [31] in 1992. The idea comes from the
similarity between the annealing process of solid matter in
physics and general combinatorial optimization problems.
The steps of the simulated annealing algorithm to solve
this problem are as follows: a) Constructing an initial solu-
tion; b) Generating new solutions from the random per-
turbations of the old ones; c) Calculating the difference
between the new-generated and the old solutions;
d) Updating the solution according to a Metropolis rule;
e) Going back to b) until reaching the maximum number of
iterations.

B. CODING COMBINATION AND INITIALIZATION
First, we give some symbols that will be used in the following
content.
F(v): Mapping of location v to an integer, F(v) ∈ N;
F(v)−1: F(v)−1 = v maps an integer to a location,

F(v)−1 ∈ V ;
CX: A set of repeated locations for unloading containers;
CY: A set of repeated locations for loading containers;
C : A set of locations in X and Y after removing duplicate

elements;
α: A scheduling sequence;
αi: The ith segment in an sequence, where i ∈ {1, 2, 3},

α1 = β1β2 . . . βj and βi ∈ {β1, β2, . . . , βj} represents the
sequence of locations that an AGV passes through during
a legal loading and unloading process; α2 represents the
starting point of each car traveling sequence; α3 = x1x2 . . . xj,
xi ∈{x1, x2, . . . , xj}, xi = 1, 2, record the loading and
unloading sequence combinations for each legitimate trans-
portation, if xi = 1, then βi represents U2L2, if xi = 2, then
βi represents (UL)2.
Initial Solution Generation: Step1: Combining repeated

locations. To reduce the size of the initial solution space,
we can combine successive operations in the same yard.
If c = 1, we select the same locations from X and Y to
form C , and remove the locations of X and Y appearing in C
to form X ′ and Y ′. If c = 2, for every two identical locations
in X , both locations are screened out from X and put into CX.
For every two identical locations in Y , they are screened out
from Y and put into CY. By referring to CX and CY, elements
in X and Y are removed to generate X ′ and Y ′, the same
elements are screened from X ′ and Y ′ to form C , and the
locations that appear in C are removed.

Step2: Coding initialization. The location v in X ′, Y ′, CX,
CY and C is mapped to F(v), and F(v) is coded to α. If c = 1,
then α = α1α2, else α = α1α2α3.

C. ALGORITHM PROCESS
In addition to the symbols defined in the problem model and
the initial solution generation process, symbols and formulas
in the simulated annealing algorithm are as follows.
T0: Initial temperature, T0 ∈ N;
Tend : End temperature, Tend ∈ N;
Tv: Cooling rate, 0 ≤ Tv ≤ 1;
L: The number of iterations per temperature, L ∈ N;
l: Current iteration number, l ∈ N;
Pathlength(α): Pathlength(α) =

∑
i,jdij, vi, vj ∈ α1,

the distance traveled in a sequence.
Input: locations V , set of unloading locations X , set of

loading locations Y , the number of AGVs m, the maximum
capacity c, the number of iterations per temperature L, the ini-
tial temperature T0, the end temperature Tend , cooling rate Tv.
Output: legally scheduled travel distance Z .
Step1: Code split and set the initial value. Elements in

α1 are composed into unloading sequence αx and loading
sequence αy, we initialize l = 1, and αbest = α;
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Step2: Generate new solutions. Two randomly selected ele-
ments in αx and αy are exchanged to produce a new solution;

Step3: Accept new solutions. We combine αx and αy into
a new solution α′, let dp = Pathlength(α′)- Pathlength(α).
If dp < 0, then α = α′, otherwise, we accept the α′ with a
probability of -dp/c. If αbest > α, αbest = α;
Step4: If l < L, then l = l + 1 and return Step2, else enter

Step 5;
Step5: Iteration. T0 = T0 ∗ Tv, if T0 < Tend , then return

Step1, else end the algorithm and map αbest back to the
sequence of locations F(v)−1, output the travel distance Z .
The flowchart of the algorithm is shown in Fig. 5.

FIGURE 5. The flowchart of the algorithm.

Since the algorithm mutates, crosses, and reverses
sequence codes in this algorithm process, there will be
illegal solutions after the operation. For example, support

c = 1, 1 represents the quayside location, 5 and 4 represent
unloading locations, 3 and 6 represent the loading location,
the sequence is [1 5 3 1 4 6 1] meaning that an AGV loads
a container from the quayside and unload at the location 5 in
the yard, then loads another container from the location 3 and
returns to the quayside. The operation of locations 4 and 6
is the same as described above. In the mutation operation,
it selects the 2 and 3 positions in a sequence and the sequence
after mutation is [1 3 5 1 4 6 1]. At this time, the sequence
[1 3 5 1] is illegal, because it is illegal to load the container
first and then unload the container when the load is full.
In order to solve the above problems, we adopt a CDC
strategy to fix the operation of each position in the sequence.
In fact, in the case of c = 1, the operation of each position
in the sequence is fixed, but the location corresponding to
this position is uncertain. In other words, position 2 in the
example can only be an unloading operation, but the location
of position 2 may be 5 or 4. First, the unloading sequence
[5 4] and loading sequence [3 6] are separated according to
the sequence. Then, mutation and reversal operations were
performed on the two sequences respectively. We assume
that the two sequences after the operation are [4 5] and
[3 6], we can get a sequence [1 4 3 1 5 6 1]. The above
operation solves the problem of generating illegal solutions
during mutation or reversal.

In the case that c = 2, there are two situations in one
carriage: (UL)2 and U2L2. At this point, the sequence will
also produce a solution that does not conform to LILO when
performing cross operations. For example, there are two
sequences [1 2 3 4 5 1][1] and [1 2 5 3 4 1][2]. The first
section represents the scheduling sequence of the AGV, while
the second section 1 represents the transport strategy of the
car in this transportation as U2L2, 2 means that the trans-
portation strategy is (UL)2. 1 represents quayside location,
2 and 3 represent unloading locations in the yard, 4 and
5 represent loading locations. During the crossover operation,
it is assumed that we select the 3rd position in the sequence,
and the sequence after the crossover is [1 2 5 4 5 1][1] and
[1 2 3 3 4 1][2]. [1 2 5 4 3 1][1] and [1 2 3 5 4 1][2] are
generated after the conflict is eliminated by means of partial
mapping. Now the first sequence produces an illegal sequence
of ULLU. To solve the above situation, we still adopt the CDC
strategy. According to the sequence, the unloading sequence
[2 3][2 3] and loading [4 5][5 4] were separated, and then the
crossover operation was performed for each set of sequences.
Assuming that the two sets of sequences after the operation
are [2 3][2 3] and [5 4][4 5], then new solutions [1 2 3 5
4 1][1] and [1 2 4 3 5 1][2] are combined according to the
transport strategy in the sequence. The above operation solves
the problem of illegal solutions when crossing.

IV. SIMULATIONS
The parameters of the simulation, including the size of the
AGV transportation area, and the number of storage yards
according to the Qingdao New Qianwan Container Terminal,
China. The tool used in the simulations is MATLAB R2019a.
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To measure the optimization ability of the model, we set
c = 1, 2, and the initial values m = 2, tmax = 100,
T0 = 1000, Tend = 100, Tv = 0.9, and L = 100. The results
are shown in Tables 1-4. Within the scope of small-scale
locations, an optimization precision of simulated annealing
algorithm (SA) can reach 100%. With the increase of prob-
lem scale, SA can significantly reduce the time required for
solving problems. When the scale of locations continues to
increase, the results cannot be obtained by exhaustive search
(EA) within an acceptable time. At this time, SA algorithm
can find a good solution to realize LILO in a very short time,
which reflects the good optimization ability of the algorithm.

TABLE 1. Comparison of algorithm results (c = 1).

TABLE 2. Algorithm running time comparison (sec) (c = 1).

TABLE 3. Comparison of algorithm results (c = 2).

TABLE 4. Algorithm running time comparison (sec) (c = 2).

According to the LILO mode and algorithm optimization
process in this paper, we made a comparison with the other
two popular algorithms, i.e., genetic algorithm and mixed
particle swarm optimization. When |X |, |Y | = 16 and 20,
we set the initial parameters as m = 3, c = 2, Tmax =
300, T0 = 2000, Tend = 0.001, Tv = 0.95, L = 100.
After running the algorithm multiple times, we adopt the best
of them as a final result. The simulated results are shown
in Figs. 6. SA has the best effect in finding the optimal
solution although the convergence speed is a little bit slower
than that of a genetic algorithm.

In order to measure the influence of the increasing num-
ber of task points on the convergence performance of the
algorithm, the evolutionary process of the three algorithms
is compared and analyzed when |X | and |Y | = 8, 12, 16,
and 20. We set the initial value of parameters as: m = 2,
c = 2, Tmax = 300, T0 = 2000, Tend = 0.001, Tv = 0.95,
L = 100. Simulated results as shown in Tables 5 and 6 and

FIGURE 6. Comparison of the three optimization algorithms. The figure
(a) is the result of the simulations at X and Y = 16. The figure (b) is the
result of the simulations at X and Y = 20.

TABLE 5. Comparison of simulation results.

TABLE 6. Running time (sec).

Fig. 7, the genetic algorithm converges on 12th, 34th, 75th
and 124th generations (Fig. 7 (a)), hybrid particle swarm
optimization converges on 63th, 115th, 220th and 203rd
generation (Fig. 7 (b)), simulated annealing algorithm
converges on 88th, 212th, 219th and 229th generations
(Fig. 7 (c)). It can be seen from the simulations that as
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FIGURE 7. Iteration of the algorithm under different tasks.

the number of locations increases, the convergent number
of iterations of the three algorithms also increases, but the
algorithm can still solve the problem in a short time, which
shows the applicability of the algorithm in this problem.

The scenario in this paper concerns a single ship, so the
number of containers is not very large. For small-scale
problems, we can get the exact optimal solution; and for
medium-scale problems, we have compared with classical
intelligent algorithms, and get good solutions.

V. CONCLUSION
To improve the working efficiency of port transportation,
we propose a new AGV scheduling strategy – load in load out
mode. We construct the mathematical model of the mode of

LILO and solve the problem based on the simulated annealing
algorithm. According to the simulated results, the improved
algorithm is effective in solving the problem. To the best
of our knowledge this is the first study a load-in-load-
out AGV route planning mode providing two-way loading
between the dock and the container yard. It can improve
the energy-efficiency of AGVs as well as of efficiency of
container terminals. The proposed algorithms can be used
in automated container ports. A necessary condition is that
the numbers of imported and exported containers are simi-
lar. With further exploration of the model, we will consider
multiple ships, the specific design of the quayside buffer
and use a time window to study the task scheduling process.
At the same time, when the problem scale becomes very
large, the simulated annealing algorithm may not find the
optimal results due to the blind search issue, which is also
a problem to be solved in our future work. We can also use
some novel heuristic algorithms to solve themodel to improve
the accuracy of the problem. To improve the applicability of
the model, we will also consider detecting path conflicts in
AGV scheduling.
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