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ABSTRACT The problem of dealing with noisy data in neural network-based models has been receiving
more attention by researchers with the aim of mitigating possible consequences on learning. Several methods
have been applied by some researchers to enhance data as a pre-process of training while other researchers
have attempted to make models of learning aware of noise and thus able to deal with noisy instances.
We propose a simple and efficient method that we call Error-Based Filtering (EBF) that is used during
training as a filtration technique for supervised learning in neural network-based models. EBF is independent
of the model architecture and can therefore be involved in any neural network-based model. Our approach
is based on monitoring and analyzing the distribution of values of the loss (error) function for each instance
during training. In addition, EBF can be integrated with semi-supervised learning to take advantage of
the identified noisy instances and improve classification. An advantage of EBF is to achieve competitive
performance comparedwith other state-of-the-art methodswithmany fewer additional tasks in a procedure of
training. Our evaluation of the efficacy of our method on three well-known benchmark datasets demonstrates
an improvement on classification accuracy in the presence of noise.

INDEX TERMS Neural networks, convolutional neural networks, noisy data, semi-supervised learning.

I. INTRODUCTION
During the past few years, deep learning has received wide-
ranging attention and development at all levels. This attention
has been increasing as a consequence of the ability they
offer in making precise decisions and in demonstrating some
human-like intelligence in various domains.

In general, models of deep learning depend on the avail-
ability of sufficient data. The data are expected to be clean
and correct in order to achieve good performance. However,
obtaining a clean dataset in the real world is often diffi-
cult, expensive, and time-consuming [1], [2], especially in
domains with multiple classes. There is a positive correlation
between the probability of noise and the quantity of data
[3]. In other words, the larger the dataset is, the higher the
chance is that it contains noise. Consequently, noisy data
are a drawback for many domains. Real-world datasets are
susceptible to having noisy instances, leading to an adverse
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impact on learning algorithms and decreasing the reliability
of classifiers.

Noise can appear in a dataset in various forms. The most
common forms of noise are feature noise and label noise.
Potential consequences of noise affect various aspects of
learning, such as the amount of data and time required for
training a model in order to achieve an acceptable level of
performance; in addition, label noise represents one of the
most common causes of overfitting in machine learning and
in deep learning methods in particular [4].

The presence of noisy instances in any dataset raises the
demand for techniques to address potential negative conse-
quences. For instance, various studies [5]–[11] have been
conducted to develop models for discovering noisy instances,
while other studies have developed methods for handling
these noisy instances to make use of them instead of just
eliminating them [4].

In this paper, we propose Error-Based Filtering (EBF), a
simple and easy-to-implement method for supervised learn-
ing to monitor and analyze the distribution of values of
a loss function for each instance during training in neural
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network-based methods. The principal idea of this technique
is to analyze the loss (training error) for each instance to
determine outliers. During training, the technique attempts
to determine a threshold for training losses and eliminates
the instances that continue to have a loss above the threshold.
Our empirical results show that the proposed EBF is effective
at reducing the consequences of noise particularly in domains
with a large ratio of noise.

The remainder of this paper is organized as follows.
Section two sheds light on some of the related work that has
been conducted to mitigate negative impacts of noise. EBF
is discussed and explained in Section 3, and the empirical
results are presented in Section 4. Section 5 concludes the
paper.

II. RELATED WORK
Several studies have been conducted to mitigate the con-
sequences of noise on learning. Some perform filtering
as pre-processing for data cleansing [2], [7], [12]. Oth-
ers develop model-based filtering techniques for mitigat-
ing the impact of noise during the training procedure
[5], [6], [8], [9], [13]–[16].

In terms of model-based filtering methods, various
approaches have achieved state-of-the-art results in mitigat-
ing the negative impact of noise. Reed and Lee [17] proposed
a bootstrapping technique for fixing noisy labels by using
labels predicted by a neural network and the consistency
of prediction as a weighted measure for correct labels, then
back-propagating the model accordingly. Patrini et al. [18]
proposed the use of F-correction to correct a network’s pre-
diction using a noise transition matrix estimated using a stan-
dard network trained initially. Goldberger and Ben-Reuven
[19] presented S-model based on the constitution of a noise
transition matrix used by an additional softmax layer.

Another promising direction for handling noisy data is
training on a selected part of instances that have small loss
during training. Technically, neural network-based models
tend to learn simple instances first, then learning all samples
gradually [20]. Thus, these selected instances with small loss
are potentially the clean ones. In other words, this direction
is based on investigating whether a training instance is noisy
based on tracking its loss (error) values during training. How-
ever, only a limited number of studies have been conducted
in this direction.

Malach and Shalev-Shwartz [21] proposed a method they
called Decoupling based on using two classifiers and updat-
ing the parameters based on samples that make different
predictions from the two classifiers. Jiang et al. [22] proposed
MentorNet based on training two networks, a teacher and
a student. The teacher network is pre-trained to filter out
noisy instances. Then, the filtered data are fed into the student
network for training to be used later for classification.

Another method called Co-teaching was proposed by
Han et al. [23] based on instance selection during training.
Two networks are trained simultaneously to identify clean
instances and teach each other. This differs from Decoupling

through the procedure of updating, in which each network in
Co-teaching feeds its peer network with the identified clean
instances to be used for training. Clean instances are identi-
fied after every mini-batch processing because it is assumed
that those instances with small loss represent clean instances.

Wei et al. [24] introduced a method they called JoCoR
that also uses two networks to identify small-loss instances as
clean instances. In particular, two networks are trained simul-
taneously with one joint loss that involves a regularization
term to reduce the diversity between the two networks.

Our approach is motived by the idea of specifying noisy
labels during training in an effortless manner. Methods based
on the selection of instances during training such as Decou-
pling,MentorNet, Co-teaching, and JoCoR use two networks.
In contrast, EBF does not use any additional network or
change the network architecture. In other words, EBF does
not rely on particular network architecture, and it can be
implemented regardless of a model’s peculiarities.

In addition, the methods based on instance selection
(Decoupling, MentorNet, Co-teaching, and JoCoR) share the
key idea of identifying clean instances based on having small
loss during training. In contrast, our method deals with iden-
tifying noisy instances and thus is based on having extremely
large loss. Technically, neural network models can cope with
a limited number of noisy instances in the training data.
It is shown in [23] that the standard convolutional neural
network (CNN ) model can cope with small ratio of noisy
data. Consequently, EBF aims to reduce the amount of noise
in the training data instead of selecting small-loss instances
as clean.

EBF is simple and easy to implement and also offers
an opportunity to make use of identified noisy instances to
improve learning by using a semi-supervised technique.

III. ERROR-BASED FILTERING
In the early stage of training epochs, noisy instances tend to
have larger loss values than clean instances until the classifier
overfits those noisy instances [20]. We assume that it is pos-
sible to determine outliers statistically by observing the loss
values for every instance during training steps (iterations).

Our approach is based on the hypothesis that the values
that are normally distributed lie within a number of standard
deviations, σ , from the mean µ. In particular, 68% of values
are within one σ distance from µ, and 95% of values are
within 2σ distances from µ [25] (see Figure 1). Therefore,
if a set of data is noise free, then around 2.5% of the values
will be greater than µ + 2σ and will fall in the red region
in Figure 1. For instance, if we have a set of 200 data points,
it is expected that five of them (2.5% of the data) will have
values greater than µ + 2σ . However, if the count of values
that are greater than µ+2σ is greater than 2.5% of the entire
data set, then we potentially have outliers.

Similarly, we assume that the average losses for all training
instances over a number of training epochs constitutes a
normally distributed set of values, and thus 95% of them lie
within two standard deviations of the mean. Therefore, if the
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FIGURE 1. Standard normal distribution.

FIGURE 2. Distribution of data with and without outliers.

number of values in the red region exceeds 2.5% of the total
number of instances, then those values are assumed to be
outliers. It is worth noting that there are some statistical tests
can be used to check if a set of values are normally distributed,
such as the Shapiro-Wilk test, the Kolmogorov-Smirnov test,
and the Anderson-Darling test [26].

However, since a large quantity of noise would cause a
growth in the loss values and shifts the curve (distribution of
values) to the right, thenwe consider the 2.5% of the instances
with average loss above µ + σ instead of µ + 2σ , as shown
in Figure 2. In other words, 2.5% of the instances are expected
to have average loss values that are greater than µ+ σ while
any extra instances are expected to be outliers and should,
therefore, be eliminated.

Moreover, because the loss value for each instance changes
over time as the training process progresses, and to assign
more weight to the most recent loss values, we compute
the exponential moving average (EMA) [27], [28] for each
instance during m steps of training (iterations), as

V0 = 0 Vt = β0Vt−1 + β1θt (1)

where Vt is the EMA at time period t (training step number),
the parameters β0 and β1 are set as 0.9 and 0.1, respectively
as was determined empirically in our experiments. θt is the
loss value of an instance a time period t.

Each instance will have its own EMA value, as shown
in Figure 3. Then, we use the EMA of each instance to
determine the average EMA value of all instances, µ, and the
standard deviation, σ .

FIGURE 3. Each instance, χı , is represented by an EMA value obtained by
implementing Equation (1) on ten loss values. Every loss value of (x) is
collected after 16 steps of training.

Letting n be the total number of training instances and k the
number of instances with an EMA value greater than µ+ σ ,
we eliminate d instances, where d = k − 0.025n.
Recall that the d instances are determined based on their

EMA values. To determine the instances that will be removed
as outliers, we sort the elements that are greater than µ + σ
(k instances) in ascending order and remove the d instances
with greater EMA values.

For efficiency and flexibility, EBF is not performed in
every iteration but rather it is performed periodically every
round where a round consists of a number of training steps
(iterations). The number of rounds inwhich EBF is performed
depends on the type and rate of noise in the training dataset.
EBF is performed in the early stages of training; so that,
noisy instances are discarded before affecting parameters of
the training model. To reduce the overhead on the training
time, we determine the d noisy instances during every round
of EBF (not every epoch). In particular, EBF is performed for
a number of rounds as described in Algorithm 1. During each
round, ten loss values for each instance are collected and then
the EMA of the losses is calculated, using Equation (1). The
loss values are taken every 16 steps of training (iterations),
as seen in Figure 3, thereby giving the learning model an
opportunity to learn and update its parameters before EBF is
performed. As a result, each training instance has an EMA
value. Hence, from the values of EMA, the mean and the
standard deviation are computed and used to determine the
threshold and the number of outliers to eliminate. At the end
of each round the outliers are determined and discarded from
the training set.

IV. EXPERIMENTS
In this study, we follow the experimental methodology used
in [23], thereby enabling a comparison of our results with the
methods and results reported there. Han et al. [23] provides
a comparison of six methods, Bootstrap [17], S-model [19],
F-correction [18], Decoupling [21], MentorNet [22], and
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Algorithm 1 EBF Algorithm

1: Input: parameter rounds, losses are collected every 16 training steps, training data X , and batch size is 512 during
EBF process;

2: for each round r do:
3: Create a two dimensional array ‘losses’ whose dimensions have lengths ‘length of X’ and 10
4: for m = 1..160 do: //m : number of the training step
5: Train network(mini-batch(X) )
6: if m % 16 = 0 then: // losses are collected every 16 steps of training
7: for each instance i do:
8: Let erri = the losss value for i
9: lossesi = lossesi∪ erri
10: end for
11: end if
12: end for
13: for each instance i do
14: let emai= the EMA for lossesi
15: end for
16: Let µ be the average of all emai
17: Let σ be the standard deviation of all emai
18: Let k be the number of instances with EMA above µ+ σ
19: Let d = k − 0.025n, where n is the number of training instances
20: Remove d instances, with the largest EMA, from X
21: end for
22: Output Xclean labeled and Xnoisy labeled

Co-teaching [23] (all of these were discussed in Section II).
Technically, the methods were implemented using one model
architecture and against various rates and types of noise.
Hence, to conduct a fair comparison of EBFwith the methods
reported in [23], we use the same datasets, model architecture,
and procedure for corrupting data with noise.

Model Architecture. Following [23], a nine-layer CNN
model is used in the implementation, as shown in Table 1.
The model is implemented with a Leaky-ReLU (LReLU)
activation function [29]. The Adam optimizer [27] is used
with an initial learning rate of 0.001. The model is trained for
200 epochs with a batch size of 512 during the rounds of EBF,
while the batch size is set to 128 after EBF is accomplished.
Dropout [30] and batch normalization [31] are also used.
Batch normalization is a technique for stabilizing the learning
process as it works on standardizing the inputs to each layer
of the model [31]. All of the experiments were conducted on
AWS GPU 61GiB RAM.

Datasets used for evaluation. As in [23], three bench-
mark datasets were used to evaluate the effectiveness of
EBF. These datasets include Digits RecognitionMNIST [32],
object recognition of ten classes CIFAR10 [33], and object
recognition of one hundred classes CIFAR100 [33]. A brief
description of the datasets is provided in Table 2.

Labels of training sets are corrupted deliberately while
testing sets are kept clean to measure the efficacy of the
proposed method in mitigating the effect of noise. To add
noise, we follow the same procedure implemented in [23]
in which two types of noise transition matrices were used,

symmetry flipping and pair flipping. In symmetry flipping
[34], some of the labels of each class are flipped to the labels
of the other classes with the same ratio as defined in the
transition matrix Figure 4(b), where in pair flipping [23],
some of the labels of each class are flipped to the labels of
another specified class as defined in the transition matrix
Figure 4(a). As in [23], the ratios of noise were 20% and
50% for symmetry type ε = {0.2, 0.5}; and 45% for pair
type ε = 0.45. Hence, we conducted several experiments
with different noise ratios to measure the actual impact of
noise and the potential mitigation of EBF on classification
accuracy. The percentages of corrupted labels used were 20%
and 50% of noise in the symmetry type and 45% of noise in
the pair type.

A. PERFORMANCE OF EBF IN NOISE IDENTIFICATION
In this section, we evaluate EBF in terms of its ability to
identify noisy instances, in addition to the precision that
measures the true positives in EBF. Precision represents the
number of instances that are correctly identified by EBF
as noisy (true positive) divided by the number of instances
identified by EBF as noisy (true positive + false positive)
multiplied by 100.

EBF begins working as the first epoch of training is
completed to guarantee that all training instances have been
passed to the model at least once. The number of EBF rounds
is a hyper-parameter specified in advance; thus, it is change-
able according to the type (symmetry or pair) and rate of
noise in a dataset. For symmetry noise, EBF was repeated for
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FIGURE 4. Definition of noise transition matrix for five classes as an
example. ε stands for noise ratio, and C is the number of classes.
(a) Transition matrix of pair flipping. (b) Transition matrix of symmetry
flipping.

TABLE 1. Model architecture used in our experiments following [23].

three and six rounds for 20% and 50% noise, respectively.
However, for 45% pair noise, which turned-out to be the
more challenging type of noise, we performed EBF for eight
rounds. As shown in Table 3, EBF was extremely effective
in identifying noisy instances in MNIST. EBF was able to
identify more than 98% of the outliers (the recall value) of the
symmetry type with 20% and 50% noise. However, with 45%
pair noise, EBF detected 94.01% of the noisy instances. The

TABLE 2. Overview of the datasets used in this paper.

rate of false positives in noise identification was extremely
low for the symmetry type of noise, as can be seen from the
high precision values. In the case of pair noise, the precision
was 82.1%, indicating that the number of false positives were
relatively high.

Regarding CIFAR10, which includes RGB images of three
levels, EBF showed a remarkable performance in identifying
outliers of the symmetry type. In particular, with 20% of
symmetry noise, EBF identified outliers with 96.89% recall
value; however, with a relatively low precision value 56.85%,
indicating a high ratio of false positives. While with 50% of
symmetry noise, EBF identified outliers with 94.42% recall
value and with a lower ratio of false positives, as reflected by
the higher precision value of 79.57%. It stands to reason to
have a better precision in identifying outliers when the noise
ratio is high, because the ratio of false positives is likely to
go down as the noise ratio goes up. However, with the 45%
pair noise, outliers were identified at 82.7% accuracy and
59.22% precision, indicating a high ratio of false positives;
see Table 3.

EBFworks with CIFAR100 almost as with CIFAR10.With
50% symmetry noise, it was able to identify outliers with
90.94% recall value and a relatively high precision (a low
ratio of false positives). At 20% symmetry noise, it identi-
fied outliers at 94.79% recall but at relatively low precision
of 53.79%, indicating that it mistakenly identified a large
percentage of genuine instances as outliers. With 45% pair
noise, the recall is 73.69% and the precision is 50.10%,
which reveals that this type of noise is more challenging than
symmetry noise.

In general, we can notice that EBF is able to detect most
of the noisy labels in our experiments. However, although the
precision values are good in case of MNIST, they degraded
in case of CIFAR10 and CIFAR100. This can be attributed
to the fact that MNIST includes gray images of one level;
while CIFAR10 and CIFAR100 include colored images of
three levels, which may make identifying all outliers a more
challenging task for EBF.

B. CLASSIFICATION RESULTS
In this section, we present the results of classification accu-
racy to evaluate the performance of the model before and
after implementing EBF. Recall that EBF is performed during
the early stages of training which implies that outliers are
discarded early before overfitting occurs.
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TABLE 3. Results of EBF in noise detection.

TABLE 4. Average test accuracy on MNIST over the last ten epochs. The top part presents the results adopted from [23], and the bottom part presents the
results achieved by our implementation. The asterisk (∗) indicates the methods based on selected instances during training.

TABLE 5. Average test accuracy on CIFAR10 over the last ten epochs. The top part shows the results in [23], and the bottom part shows the results
achieved by our implementation. The asterisk (∗) indicates the methods based on selected instances during training.

TABLE 6. Average test accuracy for CIFAR100 over the last ten epochs. The top part shows the results in [23], and the bottom part shows the results
achieved using our implementation. The asterisk (∗) indicates the methods based on selected instances during training.

Since EBF is implemented regardless of the model archi-
tecture, those noisy instances identified by EBF can be
useful for improving the performance if used through semi-
supervised learning (SSL) methods. In other words, SSL can
be applied as EBF is finished to take advantage of those
identified noisy instances and thus learn from both clean
instances (labeled) and noisy instances (unlabeled). To eval-
uate the efficacy of this approach, we first implemented EBF
individually and then implemented it again using a semi-
supervised method.

Virtual adversarial training (VAT) [35] is a regulariza-
tion method for SSL that is used together with EBF. Our
choice of VAT was based on the evaluation study [36], which
revealed that VAT outperformed various other SSL methods.
Furthermore, similar to EBF, VAT can be used regardless of
the model architecture, thereby making VAT a compatible
method for use with EBF.

1) RESULTS ON MNIST
The MNIST test set, which is totally clean of noise, was
used for evaluating the performance of the selected methods.

The test accuracy achieved for each method is shown
in Table 4. It is clear from the table that with 20% noise,
all methods including the standard method, which does not
eliminate noisy, gave reasonable results. The standardmethod
was able to achieve 94.05% accuracy in classifying digits.
However, EBF gave the second-best result of 98.75%, next
to the F-correction method which achieved 98.80% accuracy.
Moreover, when EBF was coupled with VAT, it outperformed
all of the other methods with 99.34% accuracy.

With 50% noise, the performance of all methods substan-
tially degraded except EBF and EBF+VAT methods, which
achieved excellent accuracies of 98.27% and 98.97%, respec-
tively. It is worth noting here that the methods that identify
outliers on the basis of selected instances during training
(marked with an asterisk ∗), which include in addition to EBF,
Decoupling, MentorNet, and Co-teaching, achieved better
results than all other methods, with classification accuracy
above 80%. EBF also outperformed all of the other methods
by achieving 98.27%, approximately 7% greater than the sec-
ond best result. EBF coupled with VAT obtained the best
accuracy of 98.97%.
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FIGURE 5. Model test accuracy with different number of EBF rounds on MNIST, r denotes to the number of rounds that EBF is implemented.

FIGURE 6. Model test accuracy with different number of EBF rounds on CIFAR10, r denotes to the number of rounds that EBF is implemented.

Similarly, in the more challenging case of 45% pair noise
EBF and EBF+VAT achieved the best accuracy results
of 88.91% and 96.19%, respectively. Once again, themethods
that identify noise based on selected instances during training
achieved better results than all other methods.

2) RESULTS ON CIFAR10
We applied ZCA whitening on training and testing data of
CIFAR10 as a pre-process of the conducted experiment.
Whitening is a common technique implemented to normalize
inputs such as images, which accelerates training. Techni-
cally, it linearly transforms the input variables to equate their
covariance with the identity matrix.

Classification accuracies on the test dataset obtained by
the different methods are shown in Table 5. The table reveals
that EBF and EBF+VAT achieve the best and second-best
results of 85.58% and 85.27%, respectively. When the noise
rate increases to 50%, performance of all methods degrade as
can be expected. However, once again EBF and EBF+VAT
achieve the best results of 74.30% and 82.66%, respectively.
The large difference between the performance of EBF and
EBF+VAT once again indicates that VAT made good use
of the outliers. As for the 45% pair noise, the accuracy of
most methods, including EBF, fell below 60%. The only
exceptions were Co-teaching and EVF+VATwhich achieved
comparable results of 72.62% and 72.21%, respectively.

3) RESULTS ON CIFAR100
We also applied ZCA whitening on training and testing data
of CIFAR100 as a pre-process of the conducted experiment.

Since neural network-based models tend to learn to classify
simple instances first, then gradually learn the more diffi-
cult instances [20] and because CIFAR100 presents a more
difficult challenge than MINST and CIFER10 in terms of
the number of classes, EBF begins after the second epoch
instead of the first, thereby providing the model with a better
opportunity to learn the genuine instances before starting to
eliminate noise. Table 6 summarizes the accuracy results of
all methods.

The table reveals that at 20% symmetry noise F-correction
and EBF achieve the best and second best results of 61.87%
and 59.90%, respectively. With 50% symmetry noise, EBF
and EBF+VAT achieved the best and second-best results
of 48.51% and 47.05%, respectively. With 45% pair noise,
the hardest case, F-correction totally fails, while Co-teaching
and EBF+VAT achieving the best and second-best results
of 34.81% and 33.52%, respectively. The poor results
achieved by all methods in the case of CIFAR100 can be
attributed to the fact that the dataset contains 100 classes
which make it a challenging problem and adding a large
amount of noise makes it even an extremely difficult problem
for all methods.

EBF is performed periodically as multiple rounds during
training according to the type (symmetry or pair) and rate
of noise in the training dataset. From Figures 5, 6 and 7,
when EBF is not performed (r = 0), it is clear that after a
set of training epochs the classification accuracy decreases
dramatically as a result of noise. Hence, rounds of EBF are
performed in the early stages of training; therefore, noisy
instances are discarded before affecting parameters of the
training model.
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FIGURE 7. Model test accuracy with different number of EBF rounds on CIFAR100, r denotes to the number of rounds that EBF is implemented.

Throughout our experiments, we set the rounds of EBF
as 3 rounds with 20% noise, 6 rounds with 50% noise and
8 rounds with 45% noise of pair type. However, Figures 5, 6
and 7 show that the performance with more or less rounds of
EBF still show some improvements compared with not using
EBF at all.

We can also notice that with 20% of symmetry noise, three
rounds of EBF were sufficient for mitigating the effect of
noise. Furthermore, although we implemented six rounds of
EBF with 50% of symmetry noise throughout our experi-
ments in Table 4, 5 and 6; ten rounds of EBF on MNIST
and eight rounds of EBF on CIFAR10 achieved better results.
Also with 45% of pair noise on CIFAR10, ten rounds per-
formed slightly better showing a stable performance. This can
be attributed to the fact that after a few rounds the EMA of
instances get closer to the mean with very few instances with
EMA above the threshold. Therefore, very few instances get
identified as outliers.

The performance of EBF on CIFAR100 with 45% pair
noise was not very good. This the most challenging case
because of the large number of classes in CIFAR100
(100 classes) and the type of noise, pair noise, where the
classes of randomly selected pairs of instances were swapped.

V. CONCLUSION
Noise in data can appear in various forms resulting in negative
consequences on learning such as increasing the required
number of training instances, increasing the required number
of training epochs, and overfitting. In this paper, we intro-
duced the EBF method for noise detection and elimination
during training. EBF eliminates a set of instances that are
assumed to be outliers by monitoring the loss values of the
training instances and identifies noisy instances statistically
during the training procedure. Eliminating those instances
revealed that classification accuracy increased, as shown
empirically. The empirical results of EBF have shown a
positive impact on training models that are based on artificial
neural networks, especially with large noise ratios. Further-
more, we also used EBF with SSL which again showed
promising results.

In the future, we intend to investigate further techniques
that maximize loss values for noisy labels to assist EBF in
catching outliers and reducing the ratio of false positives.
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