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ABSTRACT Automatic segmentation of the cancerous esophagus in computed tomography (CT) images
is a computer-assisted method that can improve the efficiency of the diagnosis and treatment. Due to
the diversity of the cancer stage and location, the anatomical structure of the cancerous esophagus is
various. Moreover, the low contrast against surrounding tissues leads to a blurry boundary of the cancerous
esophagus. Therefore, existing segmentation networks cannot achieve satisfactory results in automatic
segmentation of the cancerous esophagus. In this article, we propose a novel 2.5D segmentation network
named Eso-Net for the cancerous esophagus based on an encoder-decoder architecture. A 3D enhancement
filter calledMulti-Structure Response Filter (MSRF) is designed to extract 3D structural information as prior
knowledge. Furthermore, dilated convolutions and residual connections are employed in the convolutional
blocks of Eso-Net for multi-scale feature learning. With 3D structural priors, Prior Attention Modules
(PAM) are incorporated into the network to facilitate the transmission of relevant spatial information. The
experiments are conducted on the dataset from 30 esophageal cancer patients, and we report an 84.839% dice
similarity coefficient, an 85.955% precision, an 83.752% sensitivity, and a 2.583mm Hausdorff distance.
The experimental results demonstrate that the proposed method outperforms other existing segmentation
networks in this task and can effectively assist doctors in the diagnosis and treatment of esophageal cancer.

INDEX TERMS Esophageal cancer, medical image segmentation, deep learning, attention mechanism,
enhancement filter.

I. INTRODUCTION
Esophageal cancer is a common cancer with a high
mortality [1], and becomes a major public health prob-
lem worldwide since its incidence has been increasing in
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recent years [2]. Therefore, the diagnosis and treatment of
esophageal cancer is particularly critical. Medical imaging is
a technique for the diagnosis and clinical analysis of diseases
since it can reveal internal structures of a body. Among many
imaging methods, Computed Tomography (CT) is widely
used for the diagnosis of esophageal cancer, since it can create
visual representations of body cross-sections to assist doctors
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FIGURE 1. Some typical CT slices. The esophagus regions are indicated in red.

to observe and evaluate the esophageal lesions [3]. However,
manual segmentation of the cancerous esophagus is tedious
and time-consuming due to the large number of CT slices.
Limited by professional abilities of doctors, some segmen-
tation results may be subjective or even inaccurate, which
has serious consequences. Therefore, automatic methods are
developed for the accurate and effective segmentation of the
cancerous esophagus, which can assist doctors to diagnose
esophageal cancer. However, automatic segmentation of the
cancerous esophagus in CT images is still a difficult task.
As shown in Fig. 1, the size and shape of the cancerous esoph-
agus is complex and variable due to the diversity of the cancer
stage and location. Moreover, the boundary of the esophagus
is irregular and blurry in CT images since the esophagus
is a non-rigid structure with low contrast against surround-
ing tissues. Furthermore, air bubbles randomly appear in
the esophagus, which further increases the difficulty of
segmentation.

Using traditional image processing, many methods have
been proposed for this task. Rousson et al. described a
probabilistic shortest path approach combined with spatial
prior knowledge [4]. This method models spatial dependency
between the esophagus and the aorta and left atrium to obtain
the esophagus outer boundary. However, this method requires
the two extreme points of the esophagus centerline and a seg-
mentation of the aorta and left atrium as input. Feulner et al.
proposed a multi-step method to extract the esophagus from
CT images [5]. A classifier for discriminating appearances
is combined with an explicit model of the respiratory and
esophageal air distribution, followed by a Markov chain
model to estimate the approximate esophagus shape. Then
the approximate surface performs non-rigid deformation to
obtain a better fitting boundary. In [6], Damien et al. intro-
duced a skeleton-shaped model to guide the segmentation.
This method performs a 3D segmentation with the prior
knowledge of the skeleton. Then over-segmented slices are
detected and a 2D propagation by graph cut is used to improve
segmentation results. Yang et al. proposed an online atlas

selection approach for multi-atlas segmentation [7]. Based
on local anatomical similarity, the atlases of the esophagus
are ranked and the optimal atlases are selected. The final
segmentation is obtained by fusing the deformed contours
of the optimal atlases. Since most methods using traditional
image processing are proposed for specific scenarios with
pre-defined hypotheses, the generalization capabilities of the
algorithms are restricted. Moreover, the feature extractors of
the esophagus are artificially designed with complex param-
eters, which reduces the robustness and requires tedious
parameter tuning.

Recently, deep learning has been widely used in image
segmentation. Shelhamer et al. proposed a pixels-to-pixels
model called Fully Convolutional Networks (FCN) [8], based
on an encoder-decoder architecture without any fully con-
nected layers. Fechter et al. proposed a random walker
approach driven by a 3D FCN [9], which is believed as the
first work to apply deep learning in the segmentation of the
esophagus. This method is not end-to-end since the 3D FCN
is just used to generate a rough probability map of the esoph-
agus. Trullo et al. utilized two improved FCN to perform
and refine the segmentation of the esophagus [10]. However,
a multi-organ segmentation is required to locate the esopha-
gus, which complicates the model training and data labeling.
Furthermore, some novel segmentation networks are devel-
oped based on FCN. U-Net combines a U-shaped network
with skip connections to fuse features and recover lost spatial
information [11]. To achieve less memory requirement and
inference time overhead, SegNet uses max-pooling indices
to perform non-linear up-sampling [12]. LinkNet connects
each encoder input to the corresponding decoder output for
recovering lost spatial information [13]. Due to the compact
but efficient network topology, U-Net becomes the focus of
biomedical image segmentation. Çiçek et al. employed 3D
convolutions to construct 3D U-Net with a large number
of trainable parameters that can easily lead to the model
overfitting without a large amount of data [14]. Chen et al.
proposed U-Net plus to segment the cancerous esophagus
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on a single CT slice [15]. However, this method requires a
manually placed point to start segment the entire esophagus.

Even using deep learning, automatic segmentation of the
cancerous esophagus remains a challenging problem. The
networks mentioned above also failed to achieve satisfactory
results, which can be described in three aspects. First, limited
by GPU memory, 3D segmentation can just process a small
patch of the CT scan, which is not conducive to learning
the complete esophagus structure. Whereas 2D segmentation
cannot utilize 3D structural information. Second, various
tumor sizes lead to various scales of the cancerous esoph-
agus. It is difficult to achieve multi-scale feature learning
in this task simply by using down-sampling to enable con-
volutions to extract multi-scale features. Third, the loss of
spatial information in the encoding phase is one of the major
factors that limit segmentation accuracy. Skip connections
of U-Net is a solution by simply concatenating the feature
maps from decoder layers and encoder layers. However, it is
not well enough to recover and fuse lost spatial informa-
tion of the cancerous esophagus that has an irregular and
blurry boundary. To solve the above problems, we propose
a novel segmentation network named Eso-Net that consists
of different convolutional blocks. Eso-Net performs channel-
wise 2.5D segmentation with 3D structural priors extracted
by a 3D enhancement filter, which is a trade-off between
2D and 3D segmentation. In medical image tasks, the term
‘‘2.5D’’ means that the network utilizes only 2D convolutions
to extract features from multiple images in different planes
or different views. In the convolutional blocks, dilated con-
volutions and residual connections are applied to extract and
combine features in different receptive fields. Furthermore,
the encoder blocks and decoder blocks are connected and an
attention mechanism is introduced to make skip connections
more effective.

The contributions of our work are summarized as follows:
1) We design a robust 3D enhancement filter called

Multi-Structure Response Filter (MSRF) to extract 3D
structural information that can instruct the network to
distinguish the cancerous esophagus. For the balance
between the model size and segmentation accuracy,
channel-wise 2.5D segmentation is performed with the
assistance of 3D structural priors.

2) We propose Eso-Net for automatic and efficient seg-
mentation of the cancerous esophagus. Dilated con-
volutions and residual connections are employed to
construct the convolutional blocks of Eso-Net, which is
conducive to multi-scale feature extraction and fusion
without requiring complex architecture.

3) To emphasize the esophagus and suppress irrelevant
tissues and organs, we design the Prior Attention Mod-
ule (PAM) embedded in the connection paths between
the encoder blocks and decoder blocks. Moreover, 3D
structural priors are utilized to supervise the transmis-
sion of spatial information in skip connections.

4) According to the experiments, the proposed method
obtains the best performance in this task with the

highest dice similarity coefficient (84.839%), precision
(85.955%), sensitivity (83.752%), and the lowest Haus-
dorff distance (2.583mm). The segmentation results
achieve the accuracy needed in practical clinical appli-
cations.

II. RELATED WORKS
A. ENHANCEMENT FILTERS FOR MEDICAL IMAGES
Enhancement filters, which are used to detect the tissues with
a given structure, have been a research hotspot in the medi-
cal image field. Based on the Hessian matrix, Frangi et al.
designed a vessel enhancement filter called Frangi filter and
achieved a good effect [16]. Sato et al. proposed a series
of 3D local structure filters based on a multi-dimensional
opacity function [17]. To avoid false positives results, Li et al.
developed three selective enhancement filters for the dot, line,
and plane [18]. Furthermore, some variants of the Frangi
filter are employed in the detection of different tissues.
Jimenez-Carretero et al. proposed a lung vessel filter and
applied a penalty function to decrease the filter response
in airways [19]. Shahzad et al. used the Frangi filter to
detect the centerline of subcutaneous veins [20]. Shahid et al.
proposed a robust method for retinal vessel segmentation
combined with the Frangi filter [21]. In deep learning, image
enhancement can be considered as a preprocessing approach.
Jiang et al. used the Frangi filter to enhance the patches of the
lung images followed by a four-channel convolution neural
network to detect nodules of four levels [22]. Blaiech et al.
employed the multi-scale technique with the Frangi filter to
improves the segmentation performance in the presence of
noise [23].

These methods utilized to directly enhance the target tis-
sues are not applicable to the cancerous esophagus since it
has various anatomical structures. Anatomical structure is an
important property to distinguish different tissues and organs.
Inspired by [16], we design a filter to enhance the surrounding
tissues and organs of the esophagus, and the enhanced images
are used to improve the segmentation accuracy.

B. MULTI-SCALE FEATURE EXTRACTION AND FUSION FOR
IMAGE SEGMENTATION
The features extracted from different layers contain different
information. The low-level features contain more detail infor-
mation, whereas the high-level features contain more seman-
tic information. The reason is that down-sampling operations
in the network gradually reduces the size of feature maps
and convolution kernels can scan at larger scales. In image
segmentation, some attempts at multi-scale feature learning
have achieved effective results. Yu et al. firstly employed
dilated convolutions to aggregate multi-scale features without
losing resolution [24]. PSPNet uses the pyramid pooling
module to extract and concatenate the features of different
sizes [25]. Fu et al. constructed multi-scale input layers
to combine information from multiple scales for accurate
segmentation of retinal vessels [26]. Wang et al. proposed
a hybrid dilated convolution (HDC) framework to alleviate
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FIGURE 2. The flow chart of the proposed method. The red cubes represent the cropped regions. The images with a blue border are the images to be
segmented.

the ‘‘gridding issue’’ caused by dilated convolutions [27].
Chen et al. proposed Atrous Spatial Pyramid Pooling (ASPP)
to capture multi-scale features with dilated convolutions at
multiple sampling rates [28]. Zhao et al. developed the image
cascade network for real-time semantic segmentation by effi-
ciently utilizing information from images with different res-
olutions [29]. U-Net++ integrates U-Nets of varying depths
to extract and aggregate features of varying scales with skip
connections [30].

The various scale of the cancerous esophagus requires
an effective method for capturing contextual information.
Limited by the small size of the cancerous esophagus dataset,
the model with a large number of trainable parameters can
easily cause overfitting. Excessively employing various net-
work components for feature extraction and fusion is not
applicable to this task. Therefore, we subtly combine dilated
convolutions and residual connections in the convolutional
blocks of our Eso-Net to achieve multi-scale feature learning.

C. ATTENTION MECHANISMS IN MEDICAL IMAGE TASKS
Attention mechanisms were initially proposed for machine
translation, and are widely used in the computer vision
field [31]–[33]. Attention mechanisms can make the model
more focused on key information relevant to the foreground,
and has found applications in medical image tasks recently.
Attention U-Net combines attention gates with U-Net to
emphasize useful features with minimal computational over-
head [34]. Roy et al. proposed three attention modules
modified from the squeeze-and-excitation module and
embedded them in different segmentation network to perform
multi-organ segmentation [35]. Wang et al. proposed global
aggregation blocks with a spatial attention mechanism to
extract global information of feature maps [36].

All the above are self-attention mechanisms without super-
vision by prior knowledge. In medical image segmentation,
3D structural information can be used as prior knowledge.
Therefore, we utilize 3D structural priors to explicitly guide

the execution of a spatial attention mechanism in Prior Atten-
tion Modules (PAM), which contributes to the recovery and
fusion of key spatial information. Our PAMs can efficiently
model the importance of different regions on a CT image
instead of self-learning from feature maps, which facilitates
the transmission of features relevant to the esophagus.

III. PROPOSED METHOD
A. OVERVIEW
The proposed method comprises two stages, which are
illustrated in Fig. 2. In the first stage, pre-processing is
performed on the input CT slices. Firstly, the window level
(WL) and window width (WW) of the CT slices are set
to 40 and 200 respectively to increase the contrast between
the esophagus and other tissues and organs. Intensity values
between −160 and 240 are linearly normalized into [0,1] to
accelerate the model convergence during training. Intensities
less than −160 are set to 0 and those greater than 240 are set
to 1. Then, the Multi-Structure Response Filter (MSRF) is
used to enhance tissues and organs with specific geometrical
structures at multiple scales on CT images, which can provide
the segmentation network with additional prior knowledge.
Finally, the 144×144 pixels regions in the centers of the orig-
inal images and the enhanced images are cropped to obtain
the Regions of Interest (ROI) that are large enough to contain
the entire esophagus. Furthermore, the cropping operation
also decreases the interference from irrelevant tissues and
organs and speeds up model training and inferencing. In the
second stage, channel-wise 2.5D segmentation is performed
by Eso-Net. The CT image to be segmented is performed
channel-wise concatenation with two adjacent images as one
of the network inputs, which is conducive to efficiently uti-
lize z-axis information without a significant increase in the
number of parameters. If the image to be segmented is the
first or last image of the CT scan, unavailable adjacent images
are replaced by the image to be segmented itself. Moreover,
another input is the corresponding enhanced images that are
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TABLE 1. The Relations between Local Geometrical Structures and the Eigenvalues of the Hessian Matrix.

concatenated in the same way. Finally, the network outputs
the segmentationmap for the CT image in themiddle channel.

In the following, the proposed method is described in
detail. In Section III.B., we illustrate the Multi-Structure
Response Filter (MSRF). In Section III.C., we introduce
Eso-Net that comprises different convolutional blocks and the
Prior Attention Module (PAM).

B. MULTI-STRUCTURE RESPONSE FILTER
In medical image segmentation, image enhancement con-
tributes to improve segmentation performance. A common
approach to performing image enhancement on CT images is
utilizing 3D structural information. Since the size and shape
of the esophageal tumor are various, the anatomical structure
of the cancerous esophagus is irregular. Therefore, direct
enhancement of the cancerous esophagus cannot achieve a
satisfactory result. However, other tissues and organs sur-
rounding the esophagus are regular geometrical structures.
Inspired by this insight, we propose the Multi-Structure
Response Filter (MSRF) based on the Hessian matrix. In con-
trast to traditional approaches, MSRF is designed to enhance
other tissues and organs with specific geometrical structures
instead of the esophagus. Thus, the enhanced regions in a
CT image should be predicted as the background by the
segmentation network. The enhanced images can instruct the
segmentation network to distinguish the cancerous esophagus
from similar tissues and organs in CT images.

Since the Hessian matrix are related to local geometrical
structures [16], we can detect specific structures by using
the eigenvalues of the Hessian matrix. Firstly, we combine
consecutive CT images into a 3D volume data. The Hessian
matrix of each voxel in the 3D volume data comprises second
order derivatives in different directions. Let I (x) denotes
the intensity of the 3D volume data at coordinate x =
[x1, x2, x3]T . For analyzing structures of multiple scales, dif-
ferentiation is performed on a Gaussian scale space. There-
fore, using the linear scale-space theory [37], the elements in
the Hessian matrix of x at scale σ is defined as:

Hij(x, σ ) = σ γ I (x) ∗
∂2

∂xi∂xj
G(x, σ ) (1)

where i, j = 1, 2, 3 indicate the positions of the elements
and ∗ denotes the convolution operation. The parameter γ is
introduced to rescale the response of differential operation at

multiple scales [38] and is set to 2. The Gaussian function
G(x, σ ) is defined as:

G(x, σ ) =
1

(2πσ 2)3/2
exp(−

xT x
2σ 2 ) (2)

The second derivative of a Gaussian kernel at scale σ can be
considered as a probe kernel that can capture the difference
between the regions inside and outside the range (−σ, σ ) in
the direction of the derivative. Moreover, the half-width of
the kernel is set to the integer closest to 3σ . when performing
the image convolution. Each voxel in the 3D volume data
corresponds to a 3× 3 Hessian matrix.

The eigenvalue λ1, λ2, and λ3 are obtained by using eigen-
value decomposition of the Hessian matrix and are sorted in
order of absolute values, which means |λ1| ≤ |λ2| ≤ |λ3|.
Their magnitudes represent the curvature in the direction
pointed by the corresponding eigenvectors since the Hessian
matrix describes second order structural characteristics. For
a local structure at a specific scale, eigenvalue decomposi-
tion extract three representative and orthogonal eigenvectors.
Therefore, local geometrical structures can be interpreted by
analyzing the signs and magnitudes of λ1, λ2 and λ3, which
is shown in Table 1. For example, in a tube-like structure,
the eigenvector corresponding to λ1 points in the axial direc-
tion that is the direction of minimal curvature (|λ1| ≈ 0)
and the other two eigenvectors point in the radial direction
that is the direction of larger curvature (|λ2| ≈ |λ3| � 0).
Whereas the curvature is large in all directions in a blob-like
structure (|λ1| , |λ2| , |λ3| � 0).

For our purpose, not all evident structures need to be
enhanced. MSRF should enhance surrounding tissues and
organs with the plate-like, tube-like, and blob-like structure.
Moreover, it should avoid enhancing the esophagus and the
background. Hence, the enhancement function Eσ (x) at scale
σ is defined as:

Eσ (x) =



0, if λ2 > 0 or λ3 > 0,

exp(−
R2t
2α2

)(1− exp(−
R2s
2δ2

)),

if λ2, λ3 < 0 and σ ∈ So,

exp(−
R2p
2β2

) exp(−
R2b
2γ 2 )(1− exp(−

R2s
2δ2

)),

ifλ2, λ3 < 0 and σ ∈ St .

(3)
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FIGURE 3. Some examples of enhancement results. In the original images, blue ellipses indicate the esophagus and yellow ellipses indicate those
regions with similar features to the esophagus, such as size, shape, or texture. In the overlapping images, the enhanced regions are shown in red with
different intensities.

Since the structures expected to enhanced are brighter than
the background that is black in CT images, the filter response
in all the darker structures is set to 0.Rt ,Rp, andRb denote the
similarity measures of the tube-like, plate-like, and blob-like
structure, respectively. They are defined as follows:

Rt =
|λ2| − |λ1|

|λ3|
(4)

Rp =
|λ3| − |λ2|

|λ3|
(5)

Rb =
|λ1|
√
|λ2λ3|

(6)

where their values are proportional to the similarity.
Rs denotes the similarity measure of evident structures, which
is defined as:

Rs =
√
λ21 + λ

2
2 + λ

2
3 (7)

where Rs is small in the background and is large in an evi-
dent structure since one of the eigenvalues is large at least.
Moreover, α, β, γ , and δ control the sensitivity of MSRF for
Rt ,Rp,Rb, and Rs, respectively. St and So denote different
scale ranges. St matches the size of the tube-like structure
except the esophagus, and So matches the size of the other
structures (plate-like and blob-like structures). Therefore,
MSRF can enhance other tissues and organs with evident
structures at multiple scales and avoid enhancing the esoph-
agus by setting appropriate St and So. According to anatom-
ical information of the esophagus and lots of experiments,
an optimal parameter combination of MSRF is finally found.

α, β, γ , and δ are set to 0.8, 1, 1.5, and 200. St and So are set
to [5], [10] and [11], [15] respectively, and the step size is set
to 1 when choosing scales.

MSRF has non-negative responses between 0 and 1 in each
voxel. For each voxel, we integrate the filter responses at
multiple scales and take the maximum as the output response:

E(x) = max
σ∈So,Se

Eσ (x) (8)

Finally, the enhanced 3D volume data is decomposed to con-
secutive 2D images that are cropped as the input of the seg-
mentation network. The MSRF can enhance the surrounding
tissues and organs to extract prior knowledge from anatomi-
cal structures, which can assist the segmentation network in
channel-wise 2.5D segmentation and strengthen the robust-
ness of the network. Some examples of enhancement results
are shown in Fig. 3.

C. NETWORK ARCHITECTURE OF ESO-NET
The basic structure of our 2.5D segmentation network is
improved from U-Net [11] that is widely used in medi-
cal image segmentation. The symmetrical encoder-decoder
architecture with skip connections can extract and combine
low-level detail information and high-level semantic infor-
mation. As shown in Fig. 4, Eso-Net is comprised of different
convolutional blocks, and the Prior Attention Module (PAM)
is embedded in each connection path between the encoder
block and the corresponding decoder block. The concatenated
CT images are the input of the network, and the enhanced
images are utilized in PAMs. In the last decoder block,
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FIGURE 4. The architecture of Eso-Net. H , W , and N represent the height, width and the number of channels of feature maps
produced by the convolutional layers, respectively.

a 1 × 1 convolution is employed at the end to reduce the
number of channels to 2, followed by a softmax function to
produce two probability maps of the foreground and back-
ground. The regions with a higher foreground probability are
predicted as the cancerous esophagus. Finally, the segmenta-
tion map is generated by the network.

1) CONVOLUTIONAL BLOCKS FOR MULTI-SCALE FEATURE
LEARNING
Accurate segmentation of the cancerous esophagus with var-
ious scales requires an effective capability of multi-scale
feature learning. In the encoding phase, a common approach
to extract features of different scales is using standard convo-
lutions in gradually down-sampled feature maps. By contrast,
we employ extra dilated convolutions in each encoder block
to sufficiently capture contextual information. As shown
in Fig. 5(a), a 3 × 3 convolution is used in the left branch
of the encoder block to perform normal feature extraction.
In the right branch, three 3 × 3 dilated convolutions with
dilated rates of 2-4 are parallelly employed to extract features
in larger receipt fields. Then, the produced feature maps are
concatenated, followed by a 1 × 1 convolution to learn the
weights of these extracted features and reduce the number of
channels. Next, the featuremaps from two branches are added
up for feature fusion. Finally, the added-up feature maps
are transmitted to the PAM of the same level. Meanwhile,
a subsequent max-pooling reduces the size of the added-up
feature maps by half.

The bottom block is designed for further feature extraction,
which as shown in Fig. 5(b). We employ a 3× 3 convolution
and four 3×3 dilated convolutions with dilated rates of 2-5 to

capture multi-scale information, and the produced feature
maps are added up to aggregate information. In contrast to
deepening the network with more down-sampling operations,
using the combination of dilated convolutions is an efficient
method to achieve multi-scale feature learning with fewer
parameters, and avoids reconstructing small objects from
excessively small feature maps.

In the decoding phase, the feature maps are gradually
restored to the size of the input images. The structure of the
decoder blocks is shown in Fig. 5(c). Using deconvolution,
the input feature maps are up-sampled by a factor of 2. Then,
they are concatenated with the feature maps transmitted from
the corresponding PAM, and two consecutive convolutional
layers are employed behind. Furthermore, the transmitted
feature maps are added to the output of the second convo-
lutional layers. Since the transmitted feature maps contain a
wealth of contextual information, it is important to make full
use of these feature maps. The residual connection helps the
network retain this information and passes it on to the next
encoder block or the last 1× 1 convolutional layer. Note that
each convolutional layer in convolutional blocks is followed
by a batch normalization and a rectified linear unit (ReLU) as
the activation function unless otherwise stated.

2) PRIOR ATTENTION MODULE
In this task, the segmentation accuracy is limited by the loss
of spatial information in the encoding phase. Skip connec-
tions can facilitate the recovery of spatial information by
concatenating the feature maps from the encoder and decoder
blocks. However, not all the activations of the feature maps in
skip connections are relevant to the esophagus. To emphasize
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FIGURE 5. The illustrations of convolutional blocks and the Prior Attention Module in Eso-Net: (a) the encoder block; (b) the bottom block; (c) the
decoder block; (d) the Prior Attention Module. All convolutions and dilated convolutions are with a stride of 1, and use zero-padding to remain the
size of feature maps. The deconvolutions are with a kernel size of 3 and a stride of 2, and use zero-padding to remain the size as well. The
max-pooling operations are with a kernel size and a stride of 2. The average-pooling operations are with a kernel size and a stride of 144/H , where
H =W . Moreover, H , W , and N have the same meanings as in Figure 4. Note that there is a 1× 1 convolution followed by a softmax function at the
end of the last decoder block, which is not shown in the illustration for the sake of simplicity.

the esophagus and suppress irrelevant regions, we propose
PAM that utilizes the enhanced images to recalibrate the
feature maps passed through skip connections. The inputs
of PAM include two parts: the enhanced images and the
feature map produced by the encoder block of the same
level. As shown in Fig. 5(d), the enhanced images are down-
sampled to the same size as the input feature maps firstly.
Since they cannot be directly considered as the attention map,
we employ a 3 × 3 convolution to capture implicit informa-
tion of the enhanced images. Then, a 1 × 1 convolution is
employed to reduce the number of channels to 1, followed
by a sigmoid function to rescale the activations into [0,1].
Hence, the attention map q ∈ RH×W is transformed from the
enhanced images by two consecutive convolutional layers.
Let M = [m1,m2, · · · ,mi, · · · ,mN ] represents the input
feature maps, where mi ∈ RH×W denotes the feature map in
channel i, andN is the number of channels. Finally, the output
feature maps M̂ are given by:

M̂ = M + [q�m1, q�m2, · · · , q�mi, · · · , q�mN ]

(9)

where � denotes an element-wise multiplication. Finally,
the recalibrated feature map is transmitted to the decoder
block of the same level. With a spatial attention mechanism,
the activation of each spatial location is recalibrated by the
corresponding scale factor of the attention map. PAMs can
learn to emphasize relevant activations and filter irrelevant
and noisy activations to make the concatenation operation
fuse only useful features. Furthermore, the attention mech-
anism also works in the back-propagation during training,
which allows model parameters in the encoder blocks to be
updated mostly based on relevant regions [34].

IV. EXPERIMENTS
A. DATASET DESCRIPTION
The dataset is provided by Sun Yat-sen University Cancer
Center and is from 30 esophageal cancer patients with dif-
ferent genders, ages, and cancer stages. The patients include
males and females between the ages of 44 and 85. In the
dataset, most of the patients are at stage II and III. 14 patients
are at stage II and 12 patients are at stage III. Moreover,
1 patient with stage I cancer and 3 patients with stage IV
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FIGURE 6. The process of our online data augmentation. The image sizes are shown on the top of the images. The operations in different steps are
shown above the arrows. The red dotted frames represent the cropped regions.

cancer are also contained in the dataset to increase the data
diversity. CT scan of the chest is performed for each patient
and then a total of 6362 CT slices are collected. The CT slices
have 512×512 pixels in-plane size with 2 mm slice thickness
and the pixel spacing varies from 0.625 mm to 0.923 mm
in the axial plane. Moreover, all the CT slices are labeled
manually by professional doctors.

In dataset division, the CT slices of 5 randomly selected
patients are utilized as our test set and the rest are utilized
as the training and validation set. Moreover, five-fold cross-
validation [39] is performed to evaluate the model training,
and 5 models are trained based on different training sets. The
CT slices of the remaining 25 patients are randomly split into
5 groups on average so that each group includes 5 patients.
In the training of each model, one of the groups is selected
as the validation set in turn and the remaining groups are as
the training set. We tune the hyper-parameters based on the
validation effects of 5 models. Finally, the model is trained on
all the CT slices of 5 groups with the optimal hyper-parameter
configuration and the performance is evaluated on the test set.

B. IMPLEMENTATION DETAILS
1) DATA AUGMENTATION
Data augmentation is a common approach to enhance model
robustness. During training, we perform online data augmen-
tation to increase the diversity of data available for training
models and alleviate storage requirements. The process is
shown in Fig. 6. Firstly, the 160 × 160 pixels region in the
center of the original 160× 160 CT image is cropped. Then,
the cropped image is randomly rotated −5◦ to 5◦ clockwise
and the size remains the same by zero-padding. Next, we ran-
domly crop the rotated image to obtain a random-size image.
The aspect ratio of the random-size image is randomly limited
within [0.8, 1.2]. The area ratio of the random-size image
to the rotated image is randomly limited within [0.85,0.95].
Finally, using bilinear interpolation, the random-size image
is resized to 144 × 144 pixels suitable for the segmentation
network. Furthermore, we perform the same processing on
the enhanced images and the label images.

2) MODEL TRAINING
We using deep learning technology to train the models
and then determine the model parameters of the segmen-
tation networks. The adaptive moment estimation (ADAM)

optimizer [40] with a weight decay of 0.002 is employed to
realize gradient descent, and the first and second moment
estimates are set to 0.9 and 0.999 respectively. We use an
initial learning rate of 0.00001 and employ a step-based decay
schedule that drops the learning rate by 40% every 20 epochs.
The batch size is set to 16 and the model parameters are
initialized using the method introduced in [11]. Moreover,
we select Dice loss [41] as the loss function. Using five-
fold cross-validation, we train the models for 100 epochs and
the performance is evaluated on the validation set after each
epoch. The best models of different networks are selected
for final evaluation on the test set. All the models are imple-
mented with Python 3.7 and PyTorch 1.3.1, and are trained
on an NVIDIA GTX 1080TI GPU.

C. EVALUATION METRICS
To measure the performance of the proposed method and
other existing methods, dice similarity coefficient (DSC),
precision (PRE), sensitivity (SEN) and Hausdorff dis-
tance (HD) are employed in our experiments. All of them
are usual pixel-level evaluation metrics for biomedical image
segmentation. DSC, PRE and SEN can be considered as
similarity metrics of two different sets, which are defined as
follows:

DSC =
2
∣∣∣Y ∩ Ŷ ∣∣∣
|Y | +

∣∣∣Ŷ ∣∣∣ (10)

PRE =

∣∣∣Y ∩ Ŷ ∣∣∣∣∣∣Ŷ ∣∣∣ (11)

SEN =

∣∣∣Y ∩ Ŷ ∣∣∣
|Y |

(12)

where Y denotes the pixel set of the target region (cancerous
esophagus) and Ŷ denotes the pixel set of the predicted region
segmented by the network. |·| means to count the number of
pixels in a set. All of them range between [0,1] and greater
DSC, PRE and SENmeans better segmentation performance.
HD measures the deviation degree of two sets in a metric
space, which is defined as:

HD = max(d(Y , Ŷ ), d(Ŷ ,Y )) (13)

155556 VOLUME 8, 2020



D. Zhou et al.: Eso-Net: A Novel 2.5D Segmentation Network With the MSRF

TABLE 2. Performance Comparisons of the Different Methods.

FIGURE 7. The box plots of performance of different methods: (a) the box plot of performance in DSC; (b) the box plot of performance
in HD.

where d(Y , Ŷ ) and d(Ŷ ,Y ) are defined as follows:

d(Y , Ŷ ) = max
y∈Y

(min
ŷ∈Ŷ

∥∥y− ŷ∥∥) (14)

d(Ŷ ,Y ) = max
ŷ∈Ŷ

(min
y∈Y

∥∥ŷ− y∥∥) (15)

where y and ŷ denote the pixel in Y and Ŷ respectively.
‖·‖ means to compute the euclidean distance. HD ranges
between 0 and +∞. As HD declines, segmentation perfor-
mance increases.

D. RESULTS AND ANALYSIS
1) COMPARISONS WITH OTHER METHODS
We compare the proposed method with several segmentation
networks including four popular baseline models including
FCN-8s [8], U-Net [11], SegNet [12] and LinkNet [13],
and four variants of U-Net including 3D U-Net [14], U-Net
plus [15], U-Net ++ [30] and Attention U-Net [34]. The
performance comparisons are reported in Table 2.

From the experimental results, LinkNet and SegNet
achieve poor performance in DSC and HD. One of the
reasons is that LinkNet and SegNet are proposed for scene
segmentation and are not applicable to segmenting the object
with a blurry boundary. Moreover, U-Net and its variants
obtain better segmentation results except U-Net plus. The
improvement of performance is credited with the correct
use of skip connections. Among them, 3D U-Net achieves
the best performance with 83.693% DSC, 84.274% PRE,

83.120% SEN, and 2.591mm HD, which reflects the supe-
riority of 3D convolutional networks in medical image seg-
mentation. Two 2D convolutional networks also achieve
competitive performance. U-Net++, which integrates
U-Nets of different depths, obtains 79.025% DSC, 74.992%
PRE, 83.516% SEN, and 2.875mm HD. Attention U-Net,
which uses a spatial attentionmechanism in skip connections,
obtains a higher DSC (82.425%), PRE (82.494%), and a
lower HD (2.751mm). Whereas both of them still do not
outperform 3D U-Net. The experimental results show that
no existing segmentation network can achieve the best per-
formance in all evaluation metrics, since they do not take into
account the particularity of the cancerous esophagus. By con-
trast, the proposed method can tackle this task fairly well.
From Table 2, it obtains the highest DSC (84.839%), PRE
(85.955%), SEN (83.752%), and the lowest HD (2.583mm),
which demonstrates that it outperforms other existing seg-
mentation networks in this task. Moreover, the experiments
based on our dataset also verify the strong generalization
capacity of the proposedmethod. As shown in Fig. 7, we draw
the box plots of performance in the two most important met-
rics (DSC and HD) for samples in the test set. We can observe
that the proposed method can obtain better performance and
relatively steady segmentation accuracy.

The visual examples of segmentation results from the test
set are shown in Fig. 8, where each row shows the same CT
image. From Fig. 8, we can observe that the size and shape
of the esophagus are various. Some segmentation network,
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FIGURE 8. The visual examples of segmentation results. The size of CT images is 144× 144. True positives, false positives and false negatives are
indicated in red, green, and blue, respectively.

such as FCN-8s, SegNet, LinkNet, and U-Net plus, cannot
obtain satisfactory segmentation results. For these networks,
some similar tissues and organs are wrongly predicted as
the cancerous esophagus. Since the region of the cancerous
esophagus in CT images is the key diagnostic basis, inac-
curate segmentation results can bring serious consequences.
By contrast, the proposed method can obtain high accurate
segmentation results. The last row in Fig. 8 shows a challeng-
ing case for segmentation, where the esophagus with a huge
tumor has a blurry boundary and low contrast against sur-
rounding tissues. In this case, the proposed method achieves
better segmentation performance than the other networks.
These visual examples show that the proposed methods can
provide reliable segmentation results for the diagnosis and
treatment of esophageal cancer.

2) ABLATION STUDY
We conduct an ablation study to show the effectiveness of
each improvement in the proposed method. The experimental
results are shown in Table 3. For simplicity, we useModel 1-4
to represent the models in Table 3 from top to bottom.
Model 1, which is indicated by ‘‘BS’’ in Table 3, accepts a
single CT image as input. It outperforms the original U-Net in
DSC, SEN, and HD. By contrast, Model 2 requires three CT
images as input to perform channel-wise 2.5D segmentation
that brings 1.828% DSC and 0.048mm HD improvement.

However, Model 2 still perform poorly than some existing
networks such as Attention U-Net and 3D U-Net. Model 3
embeds PAMs in skip connections and utilizes the origi-
nal CT images instead of the enhanced images to generate
attention maps. From Table 3, PAMs can bring 1.121% DSC
improvement due to the use of a spatial attention mecha-
nism in skip connections. At last, Model 4 represents the
proposed method. The experimental result of Model 4 shows
that MSRF brings a relatively huge improvement in PRE and
HD. This is because the enhanced images produced byMSRF
can guide the network to distinguish irrelevant tissues and
organs, which contributes to eliminate most false positives.

The convergence curves of Mode 1-4 are shown in Fig. 9.
Even with trainable parameters increased, the models with
PAMs have higher convergence efficiency than those models
without PAMs. The major reason is that PAMs can make the
encoder blocks of the network mostly focus on the empha-
sized region during the back-propagation. Moreover, MSRF
further facilitates the model convergence since the enhanced
images produced by it can provide additional prior knowledge
for the network.

V. DISCUSSION
The various anatomical structure and the blurry boundary
of the cancerous esophagus are the key problems limit-
ing the improvement of segmentation accuracy. Currently,
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TABLE 3. Quantitative comparisons of each improvement in the proposed method.

FIGURE 9. The convergence curves of Model 1-4. The loss in the y-axis
represents the average loss per sample during training.

the performance of existing segmentation networks is not sat-
isfactory in this task. In this study, we have proposed a novel
segmentation network named Eso-Net and a 3D enhance-
ment filter called Multi-Structure Response Filter (MSRF)
to address these problems. The experiments demonstrate that
the proposed method outperforms existing segmentation net-
works in this task.

The experimental results show that channel-wise 2.5D seg-
mentation is conducive to improve the performance, since it
can efficiently utilize z-axis information with fewer parame-
ters. Moreover, our experiments demonstrate that using only
standard convolutions for multi-scale feature extraction is not
enough to achieve highly accurate segmentation results in this
task. By contrast, we parallelly use multiple dilated convolu-
tions in the same feature maps, and residual connections are
employed for feature fusion and facilitating gradient propa-
gation. The validity of this approach is verified by our experi-
ments. Moreover, MSRFwas designed to enhance the regions
of irrelevant tissues and organs, and the enhanced images are
utilized in PAMs. The experimental results demonstrate that
the use of MSRF and PAMs takes a positive effect on the
improvement of the segmentation performance.

Generally, Doctors observe CT slices one by one to diag-
nose the stage and location of esophageal cancer. How-
ever, it is not convenient for diagnosis and clinical analysis
due to heavy workload and tiresome procedures. Automatic

segmentation based on deep learning can effectively assist
doctors. The proposed method can take the place of doctors
to accomplish this tedious and time-consuming work, since
it is automatic and achieves state-of-the-art performance in
this task. Verified by professional doctors, the segmentation
results of the proposed method achieve the accuracy needed
in practical clinical applications. As shown in Fig. 10, the out-
put segmentation maps can be used to generate a 3D model
that presents the entire esophagus of a patient. Doctors can
conveniently observe the shape and structure of the tumor at
the esophagus for further diagnosis and treatment. Moreover,
it is easier to measure the size of the esophageal tumor on a
3D model than on 2D CT images.

FIGURE 10. The 3D model generated from our segmentation results.
(a), (b), and (c) show esophageal 3D models of different patients in the
test set.

However, the proposed method also has its limitations.
Firstly, the generalization capacity of Eso-Net is limited by
the small size of the cancerous esophagus dataset. In this
case, Eso-Net may obtain poor results when segmenting some
extremely special samples. Secondly,MSRF is an untrainable
component independent of the network. When applying the
proposed method in other medical image tasks, we need
to tune its parameters manually before the model training.
Hence, our future goals are optimizing the architecture of
Eso-Net on a larger dataset and merging MSRF with the deep
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learning model, which can further facilitate the development
of medical image segmentation.

VI. CONCLUSION
In this article, we have proposed a novel 2.5D segmentation
network named Eso-Net for automatic segmentation of the
cancerous esophagus and designed a 3D enhancement filter
called Multi-Structure Response Filter (MSRF) to extract 3D
structural priors. Eso-Net is based on an encoder-decoder
architecture and consists of different convolutional blocks.
Dilated convolutions and residual connections are employed
in the convolutional blocks to facilitate multi-scale feature
extraction and fusion. Furthermore, the proposed Prior Atten-
tion Modules (PAM) are embedded in skip connections to
recalibrate the activations of feature maps with the assis-
tance of the enhanced images. In the experiments, the pro-
posed method reports the highest DSC (84.839%), PRE
(85.955%), SEN (83.752%), and the lowest HD (2.583mm),
which demonstrates the proposed method achieve the best
performance in automatic segmentation of the cancerous
esophagus. Moreover, the ablation study shows that each
improvement of the proposed method contributes to obtain
better segmentation performance. In the future, we are inter-
ested in optimizing the architecture of Eso-Net on a larger
dataset and merging MSRF with the deep learning model.
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