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ABSTRACT The early fault impulses of rolling bearing are often submerged by harmonic interferences
and background noise. In this paper, a fault diagnosis scheme called probabilistic principal component
analysis assisted optimal scale average of erosion and dilation hat filter (OSAEDH-PPCA) is presented
for the fault detection of rolling bearing. Based on morphological erosion operator and morphological
dilation operator, a new morphological top-hat operator, namely average of erosion and dilation hat (AEDH)
operator is firstly proposed to extract the fault impulses in the vibration signal. Simulation analysis shows
the filter characteristics of proposed AEDH operator. Comparative analyses demonstrate that the feature
extraction property of the AEDH operator is superior to existing top-hat operators. Then, the probabilistic
principal component analysis is introduced to enhance the filter property of AEDH for highlighting the
fault feature information of rolling bearing further. Experimental signals collected from the test rig and the
engineering are employed to validate the availability of proposed method. Experimental results show that
the OSAEDH-PPCA can effectively extract the early fault impulses from vibration signal of rolling bearing.
Comparison results verify that the OSAEDH-PPCA has advantage in early fault detection of rolling bearing
than other morphological filters in existence.

INDEX TERMS Rolling bearing, morphological filter, morphological operator, probabilistic principal
component analysis, fault diagnosis.

NOMENCLATURE
Acronyms
MM mathematical morphology
MF morphological filter
AVG average of opening and closing
CMF average of opening-closing and

closing-opening
MG gradient of dilation and erosion
DIF gradient of opening and closing
AVGH average of opening and closing hat
CMFH average of opening-closing and

closing-opening hat
SE structure element
WTH white top-hat
AED average of erosion and dilation

The associate editor coordinating the review of this manuscript and
approving it for publication was Ruqiang Yan.

AEDH average of erosion and dilation hat
OSAEDH optimal scale average of erosion and dilation

hat filter
PPCA probabilistic principal component analysis
CC correlation coefficient
FEF feature energy factor
SNR signal-to-noise ratio
AMCMFH adaptive multiscale CMFH transform
AMAVGH adaptive multiscale AVGH transform
AMMGDE averaged multiscale MG filter
AMMGCO averaged multiscale DIF filter
ACDIF average combination difference morpholog-

ical filter

I. INTRODUCTION
As an important part of rotating machinery, the failure of
rolling bearings is one of the common causes of mechanical
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fault [1], [2]. When a rolling bearing has local defects, peri-
odic impulses will be generated during the rotation. Hence,
timely detection of those impulses can reduce the loss caused
by failure. However, the fault impulses in the vibration signal
are always overwhelmed by a large amount of background
noise and complex interferences. Therefore, an effective fault
feature extraction method may be very important for fault
diagnosis of rolling bearings [3], [4].

Recently, many signal processing methods have been suc-
cessfully applied to fault diagnosis of the rolling bearings,
such as WT [5], SK [6], EMD [7], VMD [8], etc. How-
ever, these signal analysis methods have their own short-
comings. WT analysis needs to select a suitable wavelet
basis in advance, which may lead to limitations for applica-
tion [9]. The feature extraction capability of SK method will
be affected by the noise in vibration signal [10]. As a recur-
sive decomposition method, EMD may encounter the end
effects, mode mixing, overshoot and undershoot problems
during signal processing [11]. Compared with EMD, VMD
may be more suitable for the feature extraction of vibration
signals [12]. When the VMD method is selected for fault
diagnosis, two important parameters (the decomposed modes
K and the balance parameter α) need to be given in advance.
Unfortunately, how to determine the two parameters lack of
the corresponding theoretical support [13].

Different from traditional fault diagnosis methods, math-
ematical morphology (MM) is a novel signal processing
method for extracting the fault information of rolling bear-
ing [14], [15]. Originally, MM is introduced into image
processing by Serra [16] as an image analysis method.
In recent years, some scholars have gradually applied MM to
one-dimensional signal processing. When MM is applied to
signal processing, it is often called morphological filter (MF).
In the basic theory of MF, feature extraction and noise reduc-
tion are achieved by morphological operation of structure
element and original signal. The performance of MF mainly
depends on two important parameters, namely morphological
operator and structure element [17].

There are four basic morphological operators in the mor-
phological filter, including dilation, erosion, opening and
closing [18]. In order to filter the noise or extract the feature,
some scholars proposed a series of cascade operators based
on four basic operators. Dong et al. [19] proposed the average
of opening and closing (AVG) operator and validated its
capability of high level noise suppression. Wang et al. [20]
and Costa et al. [21] adopted the average of opening-closing
and closing-opening operator (CMF) to extract impulses and
filter noise. However, Hu et al. [22] showed that the average
operators could be regarded as a kind of low pass filter,
which was not good enough in feature extraction. In order
to extract the features in the signal, Li et al. [23] and
Raj A et al. [24] proposed the gradient of dilation and ero-
sion (MG) operator. Li et al. [25] and Zhang et al. [26]
successfully detected the local defect of the rolling bearing
by using the gradient of opening and closing (DIF) opera-
tor. Although the gradient operators could extract the fault

information in the signal, some details of the information
would be lost [27]. In order to extract more fault feature
information, some scholars proposed morphological top-hat
operators. Yan et al. [28] employed average of opening and
closing hat (AVGH) operator to extract fault impulses from
the vibration signal of rolling bearing. After analyzing the
characteristics of CMF operator, Hu et al. [22] proposed the
CMF-hat (CMFH) operator and applied it in fault diagnosis
of rolling bearing. However, these morphological top-hat
operators based on the opening and closing operator still have
the deficiency of losing the fault information.

Structure element (SE) has two important attributes,
including shape and scale. For different signals, scholars have
designed some SEs with different shapes and applied them to
the fault diagnosis of rolling bearings [20], [29]–[31]. How-
ever, most scholars have shown that the shape of SE has little
influence on the filter property of MF [19], [27], [32], [33].
In addition, the scale of SE has a great influence on the
filtered results [23]. In order to obtain the optimal fil-
tered result, single scale MF [19], [34], [35] and multiscale
MF [29], [36] have been proposed by some scholars. Nev-
ertheless, the fault information distributed in other SE scales
will not be extracted by the single scale MF [37]. Multiscale
MF can extract fault information distributed in different SE
scales. Unfortunately, too large or too small SE scales will
bring the interferences into the filtered result [25]. The exis-
tence of these interferences will affect the filter property of
multiscale MF instead. Therefore, the selection of reasonable
SE scale is still a hot topic in the study of MFs.

In view of the fault impulses are often overwhelmed by
noise and interferences, the probabilistic principal component
analysis assisted optimal scale average of erosion and dilation
hat filter (OSAEDH-PPCA) is proposed for the fault detec-
tion of rolling bearing. Firstly, a new morphological top-hat
operator called average of erosion and dilation hat (AEDH)
is proposed according to basic erosion and dilation operator.
Different simulation results show that the feature extraction
capability of AEDH operator is better than the existing top-
hat operators. In the next, an enhancement method is adopted
for further improving the filtered performance of AEDH.

Considering that the morphological top-hat operators are
interfered by noise inevitably, which will affect the filter
property of AEDH. When the fault impulses in vibration
signal are very weak, traditional de-noisingmethodmay filter
the fault information by mistake. Different from traditional
noise reduction method, probabilistic principal component
analysis (PPCA) can decompose the feature information and
the noise information into unrelated components [38]. In the
PPCA model, it can assume that the feature information
and the noise information exist in the orthogonal compo-
nents respectively [39]. Then, the decomposed components
can be obtained by iterating the PPCA model through the
expectation maximization algorithm [40]. Finally, compar-
ing the eigenvalues of the covariance matrix, the princi-
pal feature component mainly containing fault information
can be obtained, while other orthogonal components mainly
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contain noise. Through the PPCA analysis, feature informa-
tion and noise will be stored in different components. There-
fore, by employing PPCA to enhance the filter capability of
AEDH, the OSAEDH-PPCA can be obtained to highlight the
fault information in vibration signal.

In the following, Section 2 introduces the basic theory
of mathematical morphology and proposes the AEDH oper-
ator. Section 3 studies the filter property of AEDH oper-
ator and compares the feature extraction ability of AEDH
with other morphological top-hat operators. Section 4 pro-
poses the OSAEDH-PPCA based on AEDH and PPCA, and
the extraction performance of OSAEDH-PPCA is demon-
strated by a simulated signal. Section 5 verifies the proposed
OSAEDH-PPCA by two experimental signals. Section 6 are
the conclusions of this paper.

II. THEORIES OF THE MORPHOLOGICAL FILTERS
A. MORPHOLOGICAL OPERATOR
In fact, the fault detection mechanism of MF is to employ
morphological operations between the original signal and the
structure element. In the morphological filter, different kinds
of morphological operations can be collectively called mor-
phological operators. Therefore, a brief review of the existing
morphological operators is introduced in the following part.

Assuming that the original signal f (n) is a group of one-
dimensional discrete arrayF (0, 1, 2, . . .,N−1). The structure
element g(m) is defined as another one-dimensional discrete
array G (0, 1, 2, . . .,M − 1) and satisfies N ≥ M . Then, four
basic morphological operators can be expressed as:

Dilation:

(f ⊕ g)(n) = max[f (n− m)+ g(m)] (1)

Erosion:

(f2g)(n) = min[f (n+ m)− g(m)] (2)

Opening:

(f ◦ g)(n) = (f2g⊕ g)(n) (3)

Closing:

(f · g)(n) = (f ⊕ g2g)(n) (4)

where ⊕, 2, ◦, · represent the dilation, erosion, opening
and closing operation, respectively. Next, the closing-opening
operator and the opening-closing operator can be given as:

Opening-closing:

FOC (f (n)) = (f ◦ g · g)(n) (5)

Closing-opening:

FCO(f (n)) = (f · g ◦ g)(n) (6)

Two basic morphological top-hat operators, namely white
top-hat (WTH) and black top-hat (BTH), can be represented
by Eq. (7) and Eq. (8) respectively. Both the WTH operator
and the BTH operator can extract the impulses in the vibration
signal.

White top-hat (WTH):

WTH (f (n)) = f (n)− (f ◦ g)(n) (7)

Black top-hat (BTH):

BTH (f (n)) = (f · g)(n)− f (n) (8)

Morphological gradient operator [36] and morphological
difference operator [32] can be defined as:

Morphological gradient operator (MG):

MG(f (n)) = (f ⊕ g)(n)− (f2g)(n) (9)

Morphological difference operator (DIF):

DIF(f (n)) = (f · g)(n)− (f ◦ g)(n) (10)

Moreover, the AVG [19] and the AVGH [28] operator can
be expressed as:

Average of opening and closing (AVG):

AVG(f (n)) =
(f ◦ g)(n)+ (f · g)(n)

2
(11)

Average of opening and closing hat (AVGH):

AVGH (f (n)) = f (n)−
(f ◦ g)(n)+ (f · g)(n)

2
(12)

Furthermore, the CMF [20] and the CMFH [22] operator
can be given as:

Average of opening-closing and closing-opening (CMF):

CMF(f (n)) =
FCO(f (n))+ FOC (f (n))

2
(13)

Average of opening-closing and closing-opening hat
(CMFH):

CMFH (f (n)) = f (n)−
FCO(f (n))+ FOC (f (n))

2
(14)

B. STRUCTURE ELEMENT
When a morphological operator is determined in the morpho-
logical filter, the next step is to select an appropriate structure
element. There are different shapes of structure element,
such as flat, triangle and semicircle, etc. Many scholars have
shown that there is no obvious difference between the flat SE
and other shapes of SE in the fault feature extraction. In addi-
tion, complex SE shapes will increase the computational load
and reduce the computational efficiency. Therefore, the flat
SE is adopted in the following research of this paper.

For the flat SE, the relationship between the scale ε and the
length L is L = ε + 2. Previous studies have shown that the
maximum length of the SE (Lmax) can be determined as bfs /
f0c (fs is the sample frequency, f0 is the fault frequency, and
b·c represents the rounding operation) to cover most of the
fault information [27], [41].
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C. AVERAGE OF EROSION AND DILATION HAT OPERATOR
For the four basic morphological operators, the erosion oper-
ator can smooth the valleys of the signal and reduce the
peaks of the signal, while the dilation operator can smooth
the peaks and improve the valleys [35]. Meanwhile, the clos-
ing operator can retain the peaks and remove the valleys in
signal, while the opening operator has the opposite effect on
signals as the closing operator. Previous study has shown
that a single morphological operator can only extract the
unidirectional impulses in signal [19]. However, the fault
signal of rolling bearing is usually regard as bidirectional
periodic impulses. Therefore, in Dong’s [19] study, the open-
ing and closing operators were employed to propose the AVG
operator (Eq. (11)) for removing the harmonic interferences
and noise in signal. Furthermore, Yu’s [35] study showed that
the four basic morphological operators can be divided into
two categories. That is to say, dilation and closing operators
had similar filter characteristics, while erosion and opening
operators had similar filter characteristics. Hence, inspired by
previous studies [19], [35], the erosion and dilation operators
are applied to propose a new average operator called average
of erosion and dilation (AED) for the vibration signal pro-
cessing of rolling bearings. AED operator can be defined as
Eq. (15).

Average of erosion and dilation (AED):

AED(f (n)) =
(f2g)(n)+ (f ⊕ g)(n)

2
(15)

Then, Hu’s [22] study indicated that the average opera-
tors such as AVG (Eq. (11)) and CMF (Eq. (13)) can be
regarded as a low-pass filter. Furthermore, the low-pass filter
was inadequate in fault feature extraction. On the contrary,
morphological top-hat operators could be regarded as a high-
pass filter. Therefore, combined the characteristics of top-
hat operators and average operators, Hu [22] proposed the
CMFH operator (Eq. (14)) for extracting the fault features.
Similarly, a new combined morphological top-hat operator,
namely average of erosion and dilation hat (AEDH), can be
proposed to extract the fault impulses in vibration signal.
AEDH operator can be expressed as:

Average of erosion and dilation hat (AEDH):

AEDH (f (n)) = f (n)−
(f2g)(n)+ (f ⊕ g)(n)

2
(16)

III. PROPERTY OF THE AEDH OPERATOR
In this section, the property of AEDH operator is demon-
strated by introducing a series of simulation analyses.
Because theMF does not have a definite transfer function, it is
difficult to directly derive its filter characteristics. However,
the frequency response characteristics of MF can be approxi-
mately demonstrated by the amplitude response of sinusoidal
excitation input signal. The sinusoidal excitation input signal

can be defined in Eq. (17).

k(n) = sin(2π f ·
m
fs
+ 2π

f
fs
·
i
10

)

m = 0, 1, . . . ,M − 1
i = 0, 1, . . . , 9

f =
fs
M
,
2fs
M
,
3fs
M
, . . . , (

M
2
− 1)

fs
M

(17)

where fs is the sampling frequency, and M is the sampling
number.More details of Eq. (17) are shown in [22]. By chang-
ing the frequency f of the sinusoidal excitation signal, the fre-
quency response of the AEDH at different frequencies can be
obtained. In the following, the influences of SE scale ε and
sampling frequency fs on the frequency response characteris-
tics of AEDH are studied.

Fig. 1 shows the amplitude response of AEDH operator
when the f changes. According to the frequency response
characteristics, the AEDH operator can be regarded as a high
pass filter. In Fig. 1(a), set fs = 1 Hz, M = 1024. It can be
concluded that the change of SE scale will have effect on the
filter characteristics of AEDH operator. With the increase of
SE scale, the cutoff frequency of AEDH will decrease and
the passband range will become larger. Within the passband
of the filter, the amplitude response fluctuation will decrease
as the SE scale increases. In addition, the transition band of
the filter will become steeper with the increase of SE scale.
In Fig. 1(b), set ε = 8, M = 1024. It can be obtained that a
higher sampling frequency will correspond to a higher cutoff
frequency and the transition band will be more gentle.

FIGURE 1. Frequency response of the AEDH operator.
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Since the principle of MF is to extract the feature infor-
mation by changing the shape of the signal, the property
of AEDH operator cannot be fully demonstrated through
the frequency response characteristics. Hence, in order to
make the research close to the application of rolling bearing
fault diagnosis, a simulation signal is established to assess
the extraction performance of AEDH operator. When local
defects occur in the rolling bearing, it can generate a series
of low frequency impulses. Moreover, the low frequency
impulses will excite the inherent vibration near the defect site.
That is to say, the fault signal of the rolling bearing can be rep-
resented as an impulse modulated signal [25]. In modulated
signal, the carrier frequency is the inherent frequency near
the defect site, and the modulation frequency is the bearing
fault frequency. Furthermore, in the signal collected from real
site, the fault impulses are often submerged by harmonics
and noise. Therefore, according to [25], a simulation signal
including harmonics can be expressed as:

x(t) = x1(t)+ x2(t) (18)

where simulated fault impulses x1(t) can be defined by
4·exp(−ω · t)·sin(2π · fn · t). ω = 100 is the decay parameter
of exponential decaying impulsive signal, and fn = 200
represents the inherent frequency. The periodical frequency f0
of simulated fault impulses is 16 Hz. x2(t) = 1.2 · sin(2π · f1 ·
t)+1.1·cos(2π ·f2 ·t) (f1 = 30 Hz, f2 = 40 Hz) represents the
harmonic interferences in the signal. The sampling frequency
is 1024 Hz and the length of signal is 1024.

FIGURE 2. Time domain waveforms: (a) x1(t) and x2(t), (b) x(t).

Fig. 2 shows the time domain waveforms of the x1(t), x2(t),
and x(t). It can be concluded that the simulated impulses
x1(t) cannot be observed in Fig. 2(b) clearly because of the
influence of x2(t). In order to extract the simulated impulses,
AEDH is employed to process the x(t). For comparison, three
existing morphological top-hat operators (WTH, AVGH, and
CMFH) are also employed to process the x(t). The analysis
results of four operators are shown in Fig. 3. Meanwhile,

FIGURE 3. Analysis results of different top-hat operators.

in order to quantitative compare the extraction capability of
four operators under the same circumstances, the correlation
coefficient (CC) is introduced for analyzing the similarity
between the filtered results and simulated impulses x1(t). The
correlation coefficient (CC) [42] can be expressed in Eq. (19):

CC =
E[(y1 − ȳ1)(y2 − ȳ2)]√

E[(y1 − ȳ1)2]E[(y2 − ȳ2)2]
(19)

where E[ •] represents the mathematical expectation, and y1,
y2 represent two sets of signals. According to [33], CCmeets
|CC| ≤ 1. In addition, if the |CC| is larger, the two sets of
signals y1 and y2 will be more similar. Therefore, a larger CC
between the filtered result and x1(t) means the morphological
top-hat operator can extract more simulated fault impulses.
The CCs between the filtered results of four operators and
simulated impulses x1(t) are shown in Table 1.

According to Fig. 3(a)-(d), all the four top-hat operators
can extract the periodic impulses in signal x(t). However,
when the WTH (Fig. 3(b)) is adopted, it is obvious that the
negative peaks in the filtered result are completely eliminated.
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TABLE 1. The CCs of different morphological top-hat operators.

According to the discussions in Section 2.3, the reason for
this phenomenon is that only a single morphological operator
(opening) is adopted in WTH. Additionally, the CC of WTH
(0.74) is the lowest among four operators. AEDH (Fig. 3(a)),
AVGH (Fig. 3(c)) and CMFH (Fig. 3(d)) can suppress the
harmonic interferences and extract the bidirectional peaks in
the signal. Nevertheless, theCCs of AVGH (0.90) and CMFH
(0.87) are less than AEDH (0.93), which means part of the
feature information is filtered out wrongly. In the application
of fault diagnosis, usingAVGHorCMFHmay lose some fault
features, which will affect the feature extraction capability of
MF. Compared with other top-hat operators, AEDH obtains
the largest CC among the four operators. It means that using
AEDH operator can extract the fault impulses more com-
pletely. Therefore, AEDH has obvious advantages over other
morphological top-hat operators in the extraction of feature
information.

In practical application, the vibration signal of rolling bear-
ing contains not only harmonic interferences, but also much
noise. The noise will have effect on the fault detection of
rolling bearing. For further discussing the property of AEDH
operator, the gauss white noise δ(t) is added to the simulation
signal x(t). Another simulation signal y(t) composed of x(t)
and δ(t) can be defined as:

y(t) = x(t)+ δ(t) = x1(t)+ x2(t)+ δ(t) (20)

Meanwhile, an evaluation indicator called feature energy fac-
tor (FEF) [43] is adopted to evaluate the feature extraction
capability of the above four top-hat operators. The FEF can
be expressed in Eq. (21):

FEF =

m∑
i=1

Y 2(i)∑
Y 2 (21)

where Y (i) represents the amplitude of fault frequency and its
harmonics. Them is selected as 5. Y represents the amplitude
of all frequency components in the envelope spectrum. The
definition of FEF denotes the energy ratio of fault information
in the envelope spectrum. When the FEF value of the signal
is large, it will be more fault information in the signal.

Then, when the signal-to-noise ratio (SNR) of y(t) changes
from −10 to 0, AEDH, AVGH, CMFH, and WTH operator
are adopted to process the different simulation signals y(t).
At the same time, FEF values of the filtered results under dif-
ferent SNR can be calculated. Fig. 4 shows the FEF curves of

FIGURE 4. FEF curve of different top-hat operators.

the analysis results, when the SNR of y(t) changes. In Fig. 4,
the feature extraction capability of proposed AEDH operator
is superior to other morphological top-hat operators under
different SNR conditions. When there is high level noise in
the simulation signal y(t), it is obvious that AEDH operator
can extract more simulated impulses than other top-hat oper-
ators. When y(t) mainly contains noise, the feature extraction
capability of AEDH will be weaken, but it is still better
than other top-hat operators. When the noise in the signal is
weak, all the four top-hat operators can effectively extract the
simulated impulses. Meanwhile, the AEDH operator is still
superior to other top-hat operators. The extraction capability
of AVGH and CMFH is similar when there is high level
noise in the signal. Moreover, when the noise level in the
signal gradually decreased, the AVGH operator performed
slightly better than the CMFH operator. Furthermore, there
is no obvious difference between the filtered result of WTH
and the original signal y(t) under low SNR. That indicates
the WTH cannot effectively detect the fault when there is
high level noise in the signal. Therefore, the comparison
studies further verify the superiority of AEDH operator in
fault feature extraction.

IV. THE PROPOSED OSAEDH-PPCA
A. BRIEF INTRODUCTION OF PPCA
According to the discussion in Section 3, when the SNR
increases, the extraction capability of AEDH operator will
decrease. This phenomenon is mainly caused by the theory
of the morphological top-hat operation. The original signal
participates in the morphological top-hat operation for retain-
ing the details of feature information. However, if the original
signal contains overmuch noise, the extraction capability of
the top-hat operators will be weakened. Therefore, in order to
extract the fault feature information of rolling bearing under
high level noise, probabilistic principal component analysis is
introduced to enhance the extraction performance of AEDH
operator. In the following, the principle of the probabilistic
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principal component analysis in one-dimensional signal is
reviewed briefly.

Probabilistic principal component analysis (PPCA) can
decompose high-dimensional data into some unrelated
low-dimensional data [38]. Based on the principle of PPCA,
an appropriate probability model will be firstly built for each
variable. Then, through orthogonal projection of the original
variable data on the principal component matrix, the decom-
posed components can be obtained. The principal feature
component is usually determined by the direction with the
largest variance. For the feature extraction, it can be assumed
that the fault feature information mainly exists in the prin-
cipal feature component and noise information exists in the
orthogonal direction of the principal feature component [39].
After PPCA analysis, the fault information and the noise
information will store in unrelated components respectively,
which can remove the noise in the signal [44].

Assuming that the filtered result of AEDH is y(N ) (N =
1, 2, 3, . . ., N ). In order to separate the fault information
component and noise component, y(N ) can be constructed as
a n-dimensional Hankel matrix X [45].

X =


y(1) y(2) . . . y(m)
y(2) y(3) . . . y(m+ 1)
. . . . . . . . . . . .

y(n) y(n+ 1) . . . y(N )

 (22)

where m = N -n + 1. In the principle of PPCA, it assumes
that the n-dimensional variable data X can be composed of
the following model.

X = P · u+ E+ µ (23)

where X = {x1, x2, · · · xm} ∈ Rn×m is the Hankel
matrix composed of the filtered result of AEDH. P =

{p1,p2, · · · pm} ∈ Rn×k represents the linear transformation
(principal component matrix) from the latent variable space
to the original variable space and satisfies k < n. u =
{u1,u2, · · · um} ∈ Rk×m represents m-dimensional gauss
latent variable. E is the zero mean gauss noise matrix. u and
E satisfy u ∼ N (0, I), E ∼ N (0, σ 2I). I and σ 2 represent the
unit matrix and the variance of the noise respectively. The µ
is the mean value of original variable X. In order to simplify
the calculation, Eq. (24) can be obtained by mean-subtraction
of the original variable X.

X = P · u+ E (24)

According to PPCA’s assumption, X obeys the following
gauss distribution:

X ∼ N (0,PPT + σ 2I) (25)

Meanwhile, the probability distribution of the latent vari-
able u can be defined as:

p(u) = (2π )−k/2e(−
1

2σ 2
XTX) (26)

Since X is composed by the latent variable u, the probability
distribution of X under the condition of u is p(X|u). The

p(X|u) can be expressed as:

p(x|u) = (2π )−n/2e(−
1

2σ2
‖X−P·u‖2) (27)

According to Eq. (26) and Eq. (27), the probability distri-
bution of X can be expressed as:

p(x) =
∫
p(x|u)p(u)dx

= (2π )−n/2 |C|−1/2 e
(−
1
2
XTC−1X)

C = PPT + σ 2I

(28)

where C is the covariance matrix determined by P and σ 2.
The estimation values of P and σ 2 (P̃ and σ̃ 2) can be cal-
culated by utilizing the EM algorithm. The P̃ and σ̃ 2 can be
given as: 

P̃ = SP(σ 2I+M−1PTSP)−1

σ̃ 2
=

1
n
tr(S− SPM−1P̃T )

S =
1
m

∑m

i=1
xixTi

(29)

where S is the covariance matrix of X, tr(·) is the trace of the
matrix.When the iteration converges, the estimation values of
P and σ 2 can be obtained. Finally, a complete PPCA model
can be established.

In the output of PPCA, the principal feature component
(fault feature information) is stored in the direction with
the largest variance (the maximum eigenvalue of S matrix),
and its orthogonal directions mainly contain noise. Hence,
the filtered results of PPCA assisted AEDH can be obtained
by Eq. (30).

V = pTj X (30)

where pj is one of the column vectors in the principal com-
ponent matrix P, and that column vector corresponds to the
maximum eigenvalue of the S matrix. In summary, through
employing the PPCA to process the filtered results of AEDH
at different SE scales, an enhanced AEDH analysis can be
obtained, and the fault feature information can be further
highlighted.

B. PROCEDURES OF THE PROPOSED
OSAEDH-PPCA METHOD
Combining the advantages of AEDH and PPCA, the
OSAEDH-PPCA is proposed for the early fault detection of
rolling bearings. The flowchart of OSAEDH-PPCA method
is shown in Fig. 5. The detailed process of OSAEDH-PPCA
mainly include the following parts:

(1) Collect the early fault vibration signal of rolling
bearing.

(2) The flat SE is selected in this paper. The maximum
length of SE is bfs / f0c. The original signal is filtered by
the AEDH operator, and the results at different SE scales are
obtained.

(3) Construct the variableX at different SE scales based on
the filtered results of AEDH. Then, PPCA is applied toX, and
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FIGURE 5. Flowchart of the proposed OSAEDH-PPCA.

the filtered results of the AEDH-PPCA at different SE scales
are obtained.

(4) Calculate FEF values of the AEDH-PPCA results at
different SE scales.

(5) Select the SE scale corresponding to the largest FEF
value as the optimal SE scale. The final output is the filtered
result of the AEDH-PPCA at optimal scale.

(6) Detect the bearing fault based on the envelope spectrum
of the final output.

C. SIMULATED STUDY
In order to demonstrate the performance of the proposed
OSAEDH-PPCA clearly, a simulated signal (SNR = −5)
based on Eq. (20) is introduced for analysis. The simulated
signal is shown in Fig. 6.

It can be observed from the envelope spectrum that the
simulated fault frequency f0 cannot be detected, and the
dominant peak is 10 Hz (f2 - f1). Meanwhile, there is a lot of
noise exists in the envelope spectrum. Then, AEDH, PPCA,
and OSAEDH-PPCA are used to process the simulated signal
respectively. Figs. 7-9 show the filtered results of AEDH,
PPCA, and OSAEDH-PPCA.

It can be observed from the envelope spectrum that the
simulated fault frequency f0 cannot be detected, and the
dominant peak is 10 Hz (f2 - f1). Meanwhile, there is a lot of
noise exists in the envelope spectrum. Then, AEDH, PPCA,
and OSAEDH-PPCA are used to process the simulated signal

FIGURE 6. Simulated fault signal: (a) time domain waveform,
(b) envelope spectrum.

respectively. Figs. 7-9 show the filtered results of AEDH,
PPCA, and OSAEDH-PPCA.

In the AEDH analysis, the scale with maximum FEF
value is selected as the optimal scale (scale 5, FEF = 0.26).
According to Fig. 7(b), AEDH operator can extract the fault
frequency f0 and its harmonics (2f0, 3f0, 4f0, 5f0) effectively,
and suppresses the interference frequency 10 Hz. However,
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FIGURE 7. The simulated result of AEDH: (a) time domain waveform,
(b) envelope spectrum.

FIGURE 8. The simulated result of PPCA: (a) time domain waveform,
(b) envelope spectrum.

some noise is still existing in the envelope spectrum. In Fig. 8,
PPCA shows excellent noise reduction ability. It can be
observed that most noise is filtered out in the envelope spec-
trum. Unfortunately, due to excessive noise in the original
signal, some fault information is also filtered by PPCA.
Hence, compared to Fig. 7(b), PPCA is distinctly inferior to
AEDH in the capability of extracting the fault impulses. In the
proposed OSAEDH-PPCA, after employing PPCA to further
process the AEDH results under different scales, the scale
corresponding to the maximum FEF value is selected as the
final output (scale 5, FEF= 0.44). Then, in the filtered result
of OSAEDH-PPCA (Fig. 9), f0 and its harmonics (2f0 ∼ 6f0)
can be detected clearly in the envelope spectrum. In addition,
the noise in the original signal is also effectively suppressed.
By comparing the filtered results shown in Figs. 7-9, it can

FIGURE 9. The simulated result of proposed OSAEDH-PPCA: (a) time
domain waveform, (b) envelope spectrum.

be concluded that the proposed OSAEDH-PPCA has both
superior feature extraction capability and noise reduction
capability. It means that OSAEDH-PPCA can combine the
advantages of AEDH and PPCA and circumvent their respec-
tive deficiencies. Therefore, simulated results show that the
proposed OSAEDH-PPCA has excellent ability in detecting
the fault impulses.

V. APPLICATIONS IN THE FAULT DIAGNOSIS OF
ROLLING BEARING
In this section, the effectiveness of proposedOSAEDH-PPCA
is verified by the experiment of rolling bearing and the
engineering application in wind turbine. In addition, for
demonstrating the superiority of OSAEDH-PPCA, several
existing MFs [27], [35], [36] are also selected to process the
signal.

A. EXPERIMENTAL SIGNAL FROM THE IMS
The experimental signal is acquired from the Intelligent
Maintenance Systems (IMS), University of Cincinnati. The
schematic diagram of the test rig is shown in Fig. 10. There
are four rolling bearings in the test rig and driven by an
AC motor. More detailed information of the test rig can be
obtained in [46]. The rotation speed of the shaft is 2000rpm.
The sampling frequency is 20000 Hz. The related parameters
of the rolling bearing are given in Table 2. According to
Table 2, it can be calculated that the fault frequency of outer
race (fo) is 236.4 Hz, and the fault frequency of inner race (fi)
is 296.9 Hz.

All the test data divides into three sets, and the 2nd set data
is selected for the analysis. In the 2nd set data, the vibration
signal is collected every 10 minutes. After continuous opera-
tion over 7 days, 984 data files can be obtained. In addition,
the outer race failure of bearing No. 1 in Fig. 10 has emerged.
Meanwhile, the state change of bearing No. 1 in the whole
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FIGURE 10. The schematic diagram of bearing fault test rig.

TABLE 2. The parameters of rolling bearing.

FIGURE 11. The RMS value curve of bearing No. 1.

life cycle can be obtained. Fig. 11 shows the variation of
RMS value about bearing No. 1 during the whole life cycle.
According to the conclusions in [46], the life cycle of the
bearing No. 1 can be divided into three stages (state 1, state 2,

FIGURE 12. Early fault signals of bearing No. 1 in different files: (a) the
time domain waveform of file A, (b) the time domain waveform of file B,
(c) the time domain waveform of file C.

FIGURE 13. Envelope spectrums of bearing No. 1 in different files:
(a) file A, (b) file B, (c) file C.

state 3). These three stages correspond to the early defect,
middle defect and the last failure of the bearing No. 1. In prac-
tical application, it is very significant to detect the early
fault of rolling bearings. In the early stage, three sets of data
are chosen for the next analysis. The selected experimental
data files (file A, B and C) are shown in Fig. 11. The time
domain waveforms and envelope spectrums of the selected
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FIGURE 14. The analysis result of OSAEDH-PPCA: (a) envelope spectrums
at different scales after AEDH, (b) envelope spectrums at different scales
after AEDH-PPCA, (c) FEF curve of AEDH-PPCA, (d) envelope spectrum of
the optimal scale.

experimental signals are shown in Figs. 12-13. By comparing
the envelope spectrums of file A, B and C, the fault frequency
fo in file A is significantly more difficult to be detected.

FIGURE 15. The analysis result of AMCMFH-PPCA: (a) FEF curve of
AMCMFH, (b) the envelope spectrum of AMCMFH, (c) the time domain
waveform of AMCMFH-PPCA, (d) the envelope spectrum of
AMCMFH-PPCA.

Moreover, there are a large number of interference frequen-
cies existing in the envelope spectrum of file A. Meanwhile,
the collection time of file A is earlier than the other two files.
Hence, according to above conclusions, the experimental
signal of bearing No. 1 in the file A is selected to verify the
effectiveness of OSAEDH-PPCA.

In order to extract the fault feature, proposed method is
applied to process the experimental signal. Fig. 14 shows
the filtered result of OSAEDH-PPCA. The envelope spec-
trums of the AEDH results at different SE scales are shown
in Fig. 14(a). It can be observed that there is still some
noise in the filtered results of AEDH, and that may still
have effect on the accuracy of fault diagnosis. According to
Fig. 14(b), the noise has been separated by PPCA effectively,
and the fault features have been highlighted. Fig. 14(c) shows
the FEF values of the AEDH-PPCA filtered results. When
the SE scale is 12, the maximum of FEF is obtained (FEF =
0.1115). Therefore, the filtered result of AEDH-PPCA at
scale 12 is used as the final output. The envelope spectrum
of the final output is shown in Fig. 14(d). It can be observed
that the fault frequency fo of outer race and its harmonic
frequencies (2fo, 3fo) can be detected clearly. Meanwhile,
compared with Fig. 13(a), the noise in the experimental signal
is also significantly suppressed. It means that the early fault of
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FIGURE 16. The analysis result of AMAVGH-PPCA: (a) FEF curve of
AMAVGH, (b) the envelope spectrum of AMAVGH, (c) the time domain
waveform of AMAVGH-PPCA, (d) the envelope spectrum of
AMAVGH-PPCA.

rolling bearing can be detected by proposed OSAEDH-PPCA
effectively.

For comparison, several existing MFs are introduced to
process the experimental signal. In Yan’s adaptive multi-
scale CMFH transform (AMCMFH) [27], CMFH opera-
tor was employed to construct a multiscale morphological
filter, and the FEF value was also selected to determine
the optimal scale. Similarly, replacing the CMFH operator
in Yan’s method with the AVGH operator can constitute
a new MF, namely adaptive multiscale AVGH transform
(AMAVGH). The researchers in [36] adopted the MG oper-
ator and DIF operator to propose two averaged multiscale
MFs, namely averaged multiscale MG filter (AMMGDE)
and averaged multiscale DIF filter (AMMGCO). Meanwhile,
in Li’s method, the characteristic frequency intensity coef-
ficient (CFIC) was employed to selected the final output.
Yu et al. [35] proposed an average combination difference
morphological filter (ACDIF) to extract the fault features in
the vibration signal. In Yu’s method, the Teager energy kurto-
sis (TEK) was applied to decide the optimal scale. According
to the studies of above scholars, FEF, CFIC and TEK have
been proved to be able to optimize the SE scale of MF.
Therefore, in the following discussions, we only use FEF to
optimize the SE scale of other existing MFs for the confor-
mity. In view of proposed method uses PPCA to process the
filtered results of AEDH while other existing MFs do not.

FIGURE 17. The analysis result of AMMGDE -PPCA: (a) FEF curve of
AMMGDE , (b) the envelope spectrum of AMMGDE , (c) the time domain
waveform of AMMGDE -PPCA, (d) the envelope spectrum of
AMMGDE -PPCA.

For the fairness of comparisons, PPCA is also introduced into
other existing MFs to further process their filtered results.

The filtered results of existing MFs (AMCMFM,
AMAVGH, AMMGDE, AMMGCO and ACDIF)
and MFs-PPCA (AMCMFH-PPCA, AMAVGH-PPCA,
AMMGDE-PPCA, AMMGCO-PPCA and ACDIF-PPCA) are
shown in Figs. 15-19. In the analysis result of AMCMFH
(Fig. 15(a)), when the SE scale is 5, the maximum FEF
value can be obtained (FEF = 0.0577). Meanwhile, the anal-
ysis result of AMAVGH (Fig. 16(a)) shows the maximum
FEF value can be obtained at scale 7 (FEF = 0.0613).
It can be observed in the envelope spectrums of AMCMFH
(Fig. 15(b)) and AMAVGH (Fig. 16(b)) that the fault fre-
quency fo can be detected. Furthermore, after processed
by PPCA, the noise in the envelope spectrum has been
suppressed effectively. However, compared with Fig. 14,
the harmonics of characteristic frequency can be detected
reluctantly (2fo), and more harmonic frequencies cannot be
detected. According to the discussions in Section 3, the fea-
ture extraction capability of AEDH is superior to CMFH
and AVGH. In view of the insufficient feature extraction
capability of the MFs based on CMFH and AVGH, it is
difficult to detect more harmonics of fault frequency even
if PPCA is further applied for noise reduction.
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FIGURE 18. The analysis result of AMMGCO-PPCA: (a) FEF curve of
AMMGCO, (b) the envelope spectrum of AMMGCO, (c) the time domain
waveform of AMMGCO-PPCA, (d) the envelope spectrum of
AMMGCO-PPCA.

In Figs. 17-18, when the SE scale is 30 and 21 respec-
tively, AMMGDE (FEF = 0.0586) and AMMGCO (FEF =
0.0576) obtain the maximum FEF values. Moreover, it can
be indicated that AMMGDE and AMMGCO can suppress the
noise in original signal effectively. Unfortunately, because
many details of fault information are filtered out, the har-
monic frequencies of fo cannot be detected in the envelope
spectrum. Furthermore, it can be observed in Fig. 17(d) and
Fig. 18(d) that the introduction of PPCA has little effect on
the final results. Since a lot of feature information in the
previous results have been filtered, the post-processing can
only remove the noise again. The loss of a large amount of
fault feature information will make it difficult to further study
the fault mechanism, and increases the difficulties of fault
diagnosis. In Fig. 19, similar to AMMGDE and AMMGCO,
although ACDIF at the optimal SE scale (scale 8, FEF =
0.0569) shows excellent noise suppression capability, the har-
monic frequencies of the fault frequency fo cannot be detected
either. In addition, PPCA also has little effect on the final
result due to the loss of fault feature information in ACDIF
result. To sum up, the analysis results of Figs. 15-19 show
that it is difficult for existing MFs to effectively extract fault
information even if PPCA is employed as a post-processing
tool. Therefore, compared with existing MFs, the proposed
OSAEDH-PPCA can accurately detect the early defect of
rolling bearing.

FIGURE 19. The analysis result of ACDIF-PPCA: (a) FEF curve of ACDIF,
(b) the envelope spectrum of ACDIF, (c) the time domain waveform of
ACDIF-PPCA, (d) the envelope spectrum of ACDIF-PPCA.

TABLE 3. The parameters of rolling bearing.

B. ENGINEERING APPLICATION IN WIND TURBINE
As a kind of clean energy, wind energy has been paid
more and more attention to the power generation industry
of various countries in the world. At the same time, wind
energy resources are widely distributed in most countries and
regions, which greatly facilitates the widespread application
of wind power generation technology. However, since the
wind turbines often work in extreme environments, the trans-
mission system will be prone to failure. Serious failures of
key components such as bearings in the transmission system
may cause the shutdown of wind turbine and huge economic
losses. Hence, it is significant to extract the feature sig-
nal in the early stage of failure for the fault diagnosis of

156786 VOLUME 8, 2020



S. Zhao et al.: Probabilistic Principal Component Analysis Assisted New Optimal Scale Morphological Top-Hat Filter

FIGURE 20. Vibration signal collection of the abnormal bearing.

FIGURE 21. Test signal of abnormal bearing: (a) time domain waveform,
(b) FFT spectrum, (c) envelope spectrum.

wind turbines. In the following, the effectiveness of proposed
OSAEDH-PPCA is validated by employing the vibration
signal collected from the wind farm.

FIGURE 22. The filtered result of OSAEDH-PPCA: (a) envelope spectrums
at different scales after AEDH, (b) envelope spectrums at different scales
after AEDH-PPCA, (c) FEF curve of AEDH-PPCA, (d) envelope spectrum of
the optimal scale.

After monitoring the No. 16 wind turbine (the rated
power is 1.5 MW) in the Tuoshan Wind Farm, it can
be found that the abnormal vibration of the generator
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FIGURE 23. The filtered result of AMCMFH-PPCA: (a) FEF curve of
AMCMFH, (b) the envelope spectrum of AMCMFH, (c) the time domain
waveform of AMCMFH-PPCA, (d) the envelope spectrum of
AMCMFH-PPCA.

FIGURE 24. The filtered result of AMAVGH-PPCA: (a) FEF curve of
AMAVGH, (b) the envelope spectrum of AMAVGH, (c) the time domain
waveform of AMAVGH-PPCA, (d) the envelope spectrum of
AMAVGH-PPCA.

front bearing appeared. The type of the abnormal bear-
ing is NU1030, and its related parameters are shown
in Table 3.

FIGURE 25. The filtered result of AMMGDE -PPCA: (a) FEF curve of
AMMGDE , (b) the envelope spectrum of AMMGDE , (c) the time domain
waveform of AMMGDE -PPCA, (d) the envelope spectrum of
AMMGDE -PPCA.

FIGURE 26. The filtered result of AMMGCO-PPCA: (a) FEF curve of
AMMGCO, (b) the envelope spectrum of AMMGCO, (c) the time domain
waveform of AMMGCO-PPCA, (d) the envelope spectrum of
AMMGCO-PPCA.

The rotation speed of the generator is 1680rpm (the rota-
tion frequency fr = 28 Hz). It can be calculated that the
fault frequency of the outer race in the abnormal bearing
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FIGURE 27. The filtered result of ACDIF-PPCA: (a) FEF curve of ACDIF,
(b) the envelope spectrum of ACDIF, (c) the time domain waveform of
ACDIF-PPCA, (d) the envelope spectrum of ACDIF-PPCA.

fo = 303.74 Hz, and the fault frequency of the inner race
in the abnormal bearing fi = 368.26 Hz. The test vibration
signal can be obtained by the data collection of abnormal
bearing. The data collection site in the wind turbine is shown
in Fig. 20. The sampling frequency is 16384 Hz. The time
domain waveform, FFT spectrum, and envelope spectrum of
the collected test signal are shown in Fig. 21. In the envelope
spectrum, it can be observed that only the rotation frequency
and its harmonic frequency (fr, 2fr) can be clearly detected.

In order to investigate the cause of bearing anomaly,
the proposed OSAEDH-PPCA is employed to process the
test signal. Fig. 22 shows the analysis result of proposed
method. It can be observed that scale 7 obtains the maxi-
mum FEF value (FEF = 0.0894). Thus, the filtered result
of AEDH-PPCA at scale 7 is used as the final output.
In Fig. 22(d), It can be obviously observed that two peaks
can be detected in the envelope spectrum, and the frequencies
corresponding to these two peaks are 304 Hz and 608 Hz.
Those two frequencies are very close to the fault frequency of
the outer race in the abnormal bearing (fo = 303.74 Hz and
2fo = 607.49 Hz). Hence, the analysis result indicates that
the outer race defect occurs in the generator front bearing.
The conclusion can also explain why the abnormal vibration
of the generator front bearing occurs. Then, in order to avoid
economic losses, it is necessary to continue collecting the
vibration data of abnormal bearing and determine the appro-
priate maintenance time.

Figs. 23-27 show the analysis results of existing
MFs (AMCMFM, AMAVGH, AMMGDE, AMMGCO and
ACDIF) and MFs-PPCA (AMCMFH-PPCA, AMAVGH-
PPCA, AMMGDE-PPCA, AMMGCO-PPCA and ACDIF-
PPCA), respectively. The maximum FEF values of
AMCMFM (scale 7, FEF = 0.0537), AMAVGH (scale 4,
FEF = 0.0552), AMMGDE (scale 4, FEF = 0.0505),
AMMGCO (scale 8, FEF = 0.0515) and ACDIF (scale 4,
FEF = 0.0517) can be obtained in Fig. 23(a), Fig. 24(a),
Fig. 25(a), Fig. 26(a) and Fig. 27(a). In Figs 23-24, the fault
frequency and its harmonics cannot be detected clearly in
the envelope spectrums of AMCMFH-PPCA and AMAVGH-
PPCA. In other words, for the diagnosis in this test, the accu-
racy of AMCMFH-PPCA and AMAVGH-PPCA is relatively
insufficient. The results of AMMGDE-PPCA, AMMGCO-
PPCA, and ACDIF-PPCA (Figs. 25-27) show that three MFs
have certain noise suppression capability. Unfortunately, a lot
of frequencies information related to the fault is also filtered
out. Meanwhile, the final results of PPCA post-processing
show that there is no obvious difference compared to before.
Moreover, it can be observed that the peaks of interference
frequencies around the fault frequency are still prominent.
Those peaks may mislead the diagnosis of abnormal bearing.
According to the comparison results, it can be found that the
proposed OSAEDH-PPCA is able to detect bearing fault in
the early state more effectively.

VI. CONCLUSION
In this paper, a new OSAEDH-PPCA method is presented
for detecting the defect of rolling bearings from vibration
signals. Firstly, a new morphological top-hat operator AEDH
is proposed based on the morphological erosion and dila-
tion operators. Simulation analyses demonstrate the filter
characteristics of AEDH operator and verify that the fault
feature extraction capability of AEDH operator is superior
to the existing morphological top-hat operators. Then, con-
sidering that the noise may have effect on the filter prop-
erty of AEDH operator, PPCA is introduced to construct
OSAEDH-PPCA for highlighting the fault feature informa-
tion further. In order to verify the availability of proposed
method, OSAEDH-PPCA is used to process the experimental
signals acquired from the test rig and practical engineering.
The results of experiment and engineering application show
that the early defect of rolling bearing can be detected by
OSAEDH-PPCA successfully. Comparison results indicate
that the proposed OSAEDH-PPCA is superior to existing
MFs in the fault diagnosis of rolling bearing. In the future
works, proposed method will be further applied in more
working conditions, such as the gear faults in the planetary
gearbox of a wind turbine.
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