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ABSTRACT Generally, accurate hydrological forecasting information plays an increasingly important role
in promoting the comprehensive benefit of hydropower reservoirs. With satisfying generalization ability and
search rate, the extreme learning machine (ELM), a famous single-layer feedforward neural network, has
been widely used to address regression and classification problem. However, the standard ELM method often
falls into second-best solutions with a high probability due to the random assignments of network parameters.
In order to overcome this problem, this article aims at developing a hybrid model for monthly runoff
time series forecasting. In the hybrid method, an effective swarm intelligence method, grey wolf optimizer
(GWO), is adopted to optimize the input-hidden weights and hidden biases of the ELM method; and then the
Moore-Penrose generalized inverse method is adopted to determine the hidden-output weights. The world’s
largest hydropower reservoir, Three Gorges, is chosen to compare the performances of various forecasting
methods. Based on the simulation results, the presented method outperforms several traditional forecasting
methods (like artificial neural network and support vector machine) in several quantitative indexes. Thus,
a novel alternative is presented to predict the nonlinear hydrological time series in China.

INDEX TERMS Hydrologic forecasting, grey wolf optimizer, extreme learning machine, artificial neural

network.

I. INTRODUCTION

Accurate monthly runoff forecasting plays an important
role in promoting the scientific management of water
resource, like flood control [1], power generation [2]-[4],
environmental protection [5]-[7], operational rule [8]-[10],
peak shaving [11] and multi-energy complement scheduling
[12]-[14]. In the past decades, a variety of streamflow fore-
casting methods have been successfully proposed by schol-
ars all over the world [15]-[18]. From the viewpoint of
model mechanism, the existing runoff forecasting methods
can be roughly divided into two different kinds of groups:
theory-based method and data-based method [19]-[21].
Generally, the theory-based method uses some well-designed
equations to reflect the complex runoff formation process
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in nature, but may fail to accurately mimic the nonlinear
streamflow in some cases, especially as the observed runoff
data is not available [22]-[24]. Besides, without knowing the
exact priori input-output formula of the target problems, the
data-based method can provide satisfying runoff forecasting
results by iteratively learning implicit knowledge from a large
number of data samples, promoting its widespread appli-
cations in various engineering problems [25]-[28]. Based
on these considerations, this article focuses on the develop-
ment of the data-based methods for monthly runoff series
forecasting.

As one of the most classical data-based methods, artificial
neural network based on gradient training technique has been
widely used in hydrologic forecasting due to its unique advan-
tages of strong flexibility and mapping ability [29]-[31].
However, the applications of the traditional gradient training
methods are often limited by some defects, like local optima
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and slow convergence [32]-[34]. To alleviate this problem,
the novel extreme learning machine (ELM) is proposed in
recent years [35]-[37]. In ELM, the weight vectors linking
input layer and hidden layer and bias of hidden layer are
randomly placed in the preset state space, and then the
Moore-Penrose generalized inverse method is employed to
analytically solve the weight vectors linking hidden layer and
output layer. Without the time-consuming iterative search,
the ELM method can immediately finish its parameter learn-
ing process and produce satisfying performance. In other
words, the ELM method has the merits of faster learning
speed, stronger generalization capability and less execution
parameters compared with the standard gradient-based train-
ing methods. As a result, the applications of the ELM-based
models are becoming an increasingly popular research topic
in a variety of engineering problems [37]-[39].

Nevertheless, it was found that the standard ELM method
easily falls into local minimum, and there are certain rooms
to improve the ELM performance in practice [40]. Based on
the existing literatures, the swarm intelligence method proves
to be an effective tool to optimize the model parameters
of the artificial neural network [41], [42]. Inspired by the
hunting behavior and coordination mechanism of the grey
wolves, a novel swarm intelligence method called grey wolf
optimizer (GWO) is developed in recent years [43]-[45].
With satisfying search ability, GWO has been successfully
used in many research fields, like reservoir operation, imag-
ine recognition and multi-energy complementation. However,
up to this day, there are few publications about using the
GWO method to optimize the ELM parameters in monthly
runoff forecasting. For the sake of refilling this gap, this
study proposes a practical hybrid ELM-GWO model based on
the ELM and GWO method for monthly runoff forecasting.
Specially, in the presented method, the GWO method
is adopted to search for satisfying parameters of the
ELM method, while the Moore-Penrose generalized inverse
method is used to solve the hidden-output weights in an ana-
lytical way. The results from the world’s largest hydropower
project demonstrate that the GWO method can effectively
improve the predetermined parameters of the ELM method,
while the ELM-GWO method can produce better forecasting
results than several traditional methods in terms of all the
statistical indexes. Thus, this article provides an effective
alternative for monthly runoff prediction under the changing
environment.

The rest of this article is organized as below: the details
of the hybrid method are given in Section II; in Section III,
the proposed method is used to forecast the monthly runoff
of a real-world reservoir and the conclusions are given in the
end.

Il. METHODS

A. EXTREME LEARNING MACHINE (ELM)

As a typical single-layer feedforward neural network,
the extreme learning machine (ELM) is a novel learning tool

VOLUME 8, 2020

developed to solve the defects of gradient-based method, like
slow convergence and parameter tuning [40]. In theory, it has
been successfully proved that when the input-hidden weights
and hidden biases are randomly assigned while the mapping
functions of all the hidden neurons are infinitely continuously
differentiable, the ELM model will become a typical linear
system where the hidden-output weight vectors are directly
deduced by using the generalized inverse method. Then, the
ELM method is able to possess good generalization ability
while avoiding stopping condition and training epochs.
Without loss of generality, it is assumed that the standard
ELM model in Fig. 1 contains three layers: one n-node input
layer, one L-node hidden layer, and one m-node output layer.
Then, the ELM method can approximate N data samples with
zero error, which can be mathematically described as below

L
(=Y Brgtwgitb), i=1.2- N ()
=1

where ¢; and ¢; are the input vector and output vector in the ith
training sample. B, is the weight vector linking the /th hidden
nodes and the output layer. o; is the weight vector linking the
[th hidden node and the input layer. ; and g (-) denote the
threshold and nonlinear mapping function of the /th hidden
nodes.
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FIGURE 1. Sketch map of the ELM method.

By this time, the above equation can be rewritten as below:

HB =T (2)
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where H denotes the output matrix of the hidden layer.
B denotes the weight matrix linking the hidden layer and
output layer in ELM. T is the matrix of all samples’ output.
When H and T are respectively seen as the independent
variables and dependent variables, B is equivalent to the
coefficients to be optimized and then the problem in Eq. (2)
will be converted to a typical linear system. Thus, the weight
matrix linking the hidden layer and the output layer can be
directly obtained by seeking out the least-square solution of
the above linear system, which can be expresses as below:

B=H'T (6)

where H' is the Moore—Penrose generalized inverse matrix
with respect to H.

B. GREY WOLF OPTIMIZER (GWO)

Grey wolf optimizer (GWO) based on the leadership and
hunting mechanism of grey wolves is a novel meta-heuristic
method for solving global optimization problems [46]-[48].
As illustrated in Fig. 2, a number of grey wolves living
together obey the strict social hierarchy. To effectively hunt
the preys, the wolves in the pack are usually divided into
four different classes. The first class only contains a leader
called alpha wolf (a) which is in charge of making decisions
of the pack. The second class contains the coleader called
beta wolf that helps alpha wolf make decision and deliver
the information to other wolves. The third class contains the
henchman called delta wolf (§) who is under the guidance
of both alpha and beta wolves. The remaining wolves at the
lowest level in the population are called omegas wolves (w)
that take charge of some important tasks (like detection,
protection and feeding).
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FIGURE 2. The leadership structure of grey wolf.

Based on the above analysis about social behaviors of grey
wolves, three elite solutions having the best, second-best and
third-best performances are considered as the alpha, beta and
delta wolves, while the remaining solutions are considered
as omega wolves. All the wolves iteratively improve their
performances by obeying the orders of three leader wolves.

Firstly, the wolves’ encircling behavior around the prey can
be expressed as below:

Xl =xf—1-D @)
D= |Coxf—Xx* (8)
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where o is the entry wise product of two vectors. D is the
absolute value between two vectors. X I’j is the position vector
of the prey at the kth cycle. X is the position vector of the
wolf at the kth cycle. A and C are two coefficient vectors.
ri and rp are two random vectors whose elements are ran-
domly distributed in the range of 0 and 1. a is the coefficient
vector whose jth element (a;) is linearly reduced by the
following equation

a;=a (l—k) (11
j = a0 - f

where ag is the initial value. k is the maximum iteration.

Secondly, the hunting behavior of grey wolves is executed
by gradually approximating the prey positions under the lead-
ership of three elite solutions. Then, the position of each wolf
is dynamically updated by the following equation:

| =Xq—A; 0D, (12)
Xé:Xﬂ—AzoDﬂ (13)
X, = X5 — A3 0 D; (14)

Yk — X "‘X;z"‘Xé) (15)

where X, Xg and X; denotes the position vectors of the
alpha, beta and delta wolves.

From the above analysis, it can be obviously found that the
wolf pack will lead off an attack and finish the hunting task
when the prey comes to rest. In the search process, all wolves
will enhance the global exploration in the entire state space at
the early evolutionary stage, while the local exploitation will
be improved with the increasing number of iterations. In this
way, the swarm can gradually converge to promising areas of
the complex global optimization problem [49]-[51].

C. THE HYBRID ELM-GWO METHOD FOR MONTHLY
RUNOFF SERIES FORECASTING

Different from the gradient-based method, the ELM model
can maintain the generalization ability while sharply reduce
the execution efficiency by avoiding the iterative search
and parameter setting, promoting its wide applications in
many engineering problems. However, because the preset
network parameters often remain unchanged during the train-
ing stage, some superfluous or inapposite hidden biases and
input-hidden weights may produce negative influences on the
forecasting accuracy of the ELM model in practice. In order
to improve the ELM performance, this article presents a
hybrid forecasting method called extreme learning machine
based on grey wolf optimizer (ELM-GWO for short). In the
ELM-GWO method, the GWO approached is employed to
determine the optimal parameters at the learning stage, while
the deduced ELM method is employed for operational fore-
casting. In this way, the dynamic combinations of parameter
optimization and analytic optimization can help produce an
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ELM model with more compact network structure than its
original version.

Generally, a common way is to forecast 1-step-ahead
monthly runoff with the aid of » input variables. In other
words, only 1 output node and # input nodes should be consid-
ered. As the number of hidden nodes is set as L, the structure
of the ELM model will become n-L-1. It should be pointed
out that all the input data should be normalized into the range
of 0 and 1 before starting the simulations, while the outputs
of the ELM model should be renormalized to the original
range of the monthly runoff time series. Then, the execution
procedures of the ELM model are given as below:

Step 1: Set the calculating parameters of the ELM-GWO
approach, including the number of iterations K and wolves /
in GWO, and the nonlinear mapping functions of the hidden
nodes in ELM. Here, the classical sigmoid function is chosen
as the transfer function, which is given as below:

glx] = (16)

14+e™*
Step 2: All the samples in the training and testing datasets
are normalized to the range of [0,1] by:

X = X

i = i
Xl_max _ Xl_mm

a7

where X"** and Xl.min are the maximum and minimum of the
ith attribute data. X/ and X; are the normalized and original
values of the ith attribute data.

Step 3: Set the counter k = 1. Then, / wolves are randomly
assigned in the feasible state space and each wolf defined
in Eq. (18) represents one possible network structure that is
composed of the input-hidden weights and hidden biases.

T T T
0; (k)= I:wl'(i'k)’ s Wik T s WL GLk) b],(i,k),

b)) (18)

where wlT’(l.’ 6 is the weight vector linking the /th hidden node
and the input layer. b; is the bias of the /th hidden nodes.

Step 4: Set k = k + 1, and then calculate the fitness value
of all the wolves in the pack by the following equation:

F[6;(k)]

L L 2
1 ~
= |y Z <S—Z Bi.ixng Wik ~qs+b1,(i,k))> (19)

s=1 =1

by,

Bk
_ gt
=H T (20
H i
gWi iy q1+biGk) - 8WL. (k) q1+bL.G k)

8W1 Gk gn+b1G k) - 8WL Gk qn + DL o) Ny p
(21)

where #, is the sth output value in the training dataset. N is
the size of training dataset. H ; ) is the output matrix of the
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hidden-layer associated with the ith wolf, and H ;ri’ K is the
Moore-Penrose generalized inverse of H (; ).

Step 5: Update the positions of three leader wolves to
calculate the position of all the particles by Eqgs. (12)~(15).

Step 6: If k < K, go to Step 4 for the next cycle;
otherwise, stop the calculation. The alpha wolf is seen as
the final preset parameters of the ELM model, and then
the Moore-Penrose generalized inverse method is used to
determine the hidden-output weights.

Ill. CASE STUDIES
A. STDUY AREA AND DATASETS
Here, the monthly runoff time series of Three Gorges project
located on the mainstream of Yangtze River is used to test
the feasibility of the ELM-GWO method. As the world’s
largest hydropower project, Three Gorges has the installed
capacity of 22.5GW and storage volume of 393 x 108 m®. The
catchment area of Three Gorges is about 10000 km? and the
multi-year average runoff is about 15000 m>/s. Three Gorges
plays an important role in promoting the healthy economic
development of China by providing multiple benefits, like
flood control, power generation, ecological protection. As a
multi-purpose reservoir, in the flood season, the flood control
is the main function of Three Gorges; in the dry season,
the power generation and shipping become the main function.
The studied monthly streamflow data collected from Three
Gorges is from January 1890 to December 2015. According
to the previous research results [26], [38], there is no unifying
principle to split the training and testing data. In order to
ensure the forecasting ability, the representative dataset is
often chosen to train the model so that the testing samples
can be well considered in the learning process. Then, the pro-
portions of model training in the entire monthly runoff data
are about 70%, while the left for testing. From the data
in Fig. 3, it can be found that the monthly runoff varies
in a relatively large range, demonstrating the complexity of
operational predication; while the training data can basically
cover the variation amplitude of the testing data, which can
effectively guarantee the feasibility of the obtained data.

60000

40000

Runoff (m¥/s)

0
1890/01 1910/1 1930/1 1950/1 1970/1 1990/1 2010/1
Time

FIGURE 3. Monthly streamflow data from the Three Gorge.

B. EVALUATION INDEXES

In this section, four statistical indexes are introduced to
fully compare the performances of various forecasting mod-
els, including Coefficient of correlation (R) and Nash-
Sutcliffe efficiency (CE), Root mean squared error (RMSE),
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and Mean absolute percentage error (MAPE). The R index is
able to effectively reflect the incidence relation between the
original and forecasted data; the CE index can evaluate the
model’s performance keeping away from the mean value;
the RMSE index can reflect the performance of the forecast-
ing model in large data values; the MAPE index is used to
evaluate the relative error of the forecasting model. Generally,
the larger the values of R and CE while the smaller the values
of the values of RMSE and MAPE, the better the forecasting
model. Then, the detailed computational formulas of four
evaluation indexes are given as below:

1 « .
RMSE = - 21: i — ) (22)
=
1 <5 — s
MAPE = =Y |22 5 100% (23)
n- Yi
—1
i i -
> i =)
CE=1- rl,:] (24)
2
Z (yi - Yavg)
i=1
n ~ ~
Z [(yi _yavg) (yi - yavg)]
R="! 25)

\/i (yi - yavg)2 (571 _Sjavg)z

where yae and Y, are the average of all the observed and
predicted value. y; and y; are the ith observed and predicted
data.

C. INPUT VARIALBE SELECTION

The set of input variables often have a great influence on
the model performance. Up to this day, there is no widely
accepted methods for input variable determination. In order
to produce satisfying forecasting model, 10 different input
variable combinations in Table 1 are designed, where the
x(t-d) denotes the 7-dth value in the target time series, while
S; denotes the set of input variable considered in the ith case.
Besides, considering the hidden layer has a direct influence
on the model performance, three different model structure
with various number of hidden nodes (2d-1, 2d and 2d + 1)
are designed. Obviously, 30 models will be developed for the
ANN-based forecasting methods, demonstrating the amount
of workload in selecting the suitable forecasting model.

D. FORECASTING MODEL DEVELOPEMT

1) ELM MODEL

For the ELM model, the input-hidden weights and hidden
biases are randomly determined while the Moore-Penrose
generalized inverse method is used to find the hidden-output
weights. The famous sigmoid function is set as the transfer
function of the hidden nodes, while the best model is chosen
from all the developed ELM models.

157350

TABLE 1. Different models for the three gorge project.

Model name Input variables Output Input number
Ml Si={x(t-1), x(t-2)} x(1) 2
M2 $:=81 U x(t-3) x(1) 3
M3 $:=8: U x(t-4) x() 4
M4 8= 83 U x(t-5) x(1) 5
M5 Ss= 84 U x(t-6) x(f) 6
M6 Se=Ss U x(t-7) x(1) 7
M7 S=Ss U x(t-8) x(1) 8
M8 Ss=S7 U x(t-9) x(1) 9
M9 So=Ss U x(-10) x(1) 10
M10 S10=89 U x(z-11) x(1) 11

The statistical indexes of the forecasting results obtained
by the ELM method are listed in Table 2. It can be found
that for a model with the same input variables and output
variable, the results will change with the varying number of
hidden nodes. For instance, the model M2 with 2d + 1 hidden
nodes achieves the best performances at both training and
testing phases; for the mode M7 (the name of the 7th model
in Table 1), the best values of four indexes at the training
phase is achieved by the model with 2d hidden nodes, while
the testing phase is achieved by the model with 2d + 1 hidden
nodes. Besides, the performance of model M1 is inferior
to other models, which means that the forecasting results
may be unsatisfying due to the unsuitable selections of input
variables. To guarantee the ELM performance, the statistical
indexes of all the models are fully compared. Based on the
comprehensive analysis, the model M8 with the 9-19-1 struc-
ture is chosen to forecast the monthly runoff of Three Gorge
Project due to its satisfying performances at both training and
testing phases.

2) ELM-GWO MODEL

For the ELM-GWO model, the grey wolf optimizer and
Moore-Penrose generalized inverse method are used to find
the suitable model parameters. In the training process, the sig-
moid function is chosen as the transfer function of hidden
layer, while the number of wolves and iterations are set as
50 and 1000, respectively.

The statistical indexes of the forecasting results obtained
by the ELM-GWO method are listed in Table 3. It is also
showed that the model structure has a great influence on
the performance of the ELM-GWO method. For instance,
the model M8 with 2d + 1 hidden nodes can produce the
best performance at the training phase while the best values
of MAPE and CE at the testing phase; the model M9 with 2d
hidden nodes also achieve the best performance at the training
phase while the best R value at the testing phase. Besides, like
the ELM model, the ELM-GWO model tends to yield unsat-
isfying forecasting results, demonstrating the importance
of input variables and model parameters; the ELM-GWO
method under the same input variables often is better than
the standard ELM method, demonstrating the effectiveness
of the GWO method in optimizing model parameters. Then,
to ensure the ELM-GWO performance, the statistical indexes
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TABLE 2. Results of various ELM models for the three gorge project.

No. Structure Model Training Testing
RMSE MAPE R CE RMSE MAPE R CE

1 2-3-1 M1 7742.0259 64.2650 0.7812 0.4386 7099.8627 61.8648 0.7660 0.4398
2 2-4-1 6532.1009 40.8274 0.7768 0.6004 6191.3238 38.9686 0.7579 0.5740
3 2-5-1 6474.4799 39.9000 0.7811 0.6074 6122.1270 38.1225 0.7642 0.5835
4 3-5-1 M2 5923.4207 36.0589 0.8251 0.6714 5730.8022 35.9796 0.7980 0.6350
5 3-6-1 6026.5539 36.1139 0.8160 0.6598 5813.6755 35.7132 0.7907 0.6244
6 3-7-1 5619.5868 30.1111 0.8428 0.7042 5389.6786 30.2391 0.8231 0.6772
7 4-7-1 M3 6017.0272 38.2357 0.8278 0.6609 5604.6067 38.5444 0.8170 0.6509
8 4-8-1 5458.3671 28.1482 0.8536 0.7209 5205.6135 28.6205 0.8364 0.6989
9 4-9-1 5541.7865 30.1934 0.8488 0.7124 5343.8418 30.8288 0.8268 0.6827
10 5-9-1 M4 5810.4113 37.7552 0.8409 0.6838 5617.7499 38.2230 0.8116 0.6493
11 5-10-1 5180.0363 27.5522 0.8707 0.7487 49448358 27.5779 0.8544 0.7283
12 5-11-1 5106.2783 26.0365 0.8749 0.7558 4871.4665 26.6528 0.8593 0.7363
13 6-11-1 M5 5436.4350 28.0625 0.8560 0.7232 5264.6900 30.0070 0.8333 0.6920
14 6-12-1 5071.5692 26.0906 0.8770 0.7591 4942.0930 26.8657 0.8543 0.7286
15 6-13-1 5007.6970 25.2155 0.8805 0.7651 4859.5344 25.3074 0.8595 0.7376
16 7-13-1 M6 5468.6856 32.5433 0.8558 0.7199 5236.7257 34.4540 0.8370 0.6953
17 7-14-1 5154.5654 27.5199 0.8723 0.7511 4961.7259 28.3769 0.8536 0.7264
18 7-15-1 5002.4813 25.8900 0.8808 0.7656 4793.5920 25.2661 0.8639 0.7447
19 8-15-1 M7 5314.4124 30.9617 0.8643 0.7355 5147.1378 32.0266 0.8432 0.7056
20 8-16-1 5035.6956 26.0458 0.8791 0.7625 4858.1017 26.1027 0.8600 0.7377
21 8-17-1 5046.2822 26.2607 0.8784 0.7615 4785.5583 25.5375 0.8648 0.7455
22 9-17-1 M8 5337.8533 30.9642 0.8621 0.7331 5012.3992 31.9468 0.8532 0.7208
23 9-18-1 5137.5735 27.4728 0.8734 0.7528 4872.3754 28.0109 0.8601 0.7362
24 9-19-1 4984.3275 26.1877 0.8819 0.7673 4785.4143 25.7889 0.8645 0.7455
25 10-19-1 M9 5202.4272 28.3787 0.8698 0.7465 4902.4738 28.9888 0.8593 0.7329
26 10-20-1 5016.3642 26.6114 0.8803 0.7643 4820.1503 26.3813 0.8629 0.7418
27 10-21-1 4983.4339 26.2571 0.8823 0.7674 4810.1408 25.7830 0.8633 0.7429
28 11-21-1 M10 5148.1188 27.0045 0.8730 0.7518 4983.0512 28.6666 0.8529 0.7241
29 11-22-1 4998.1675 26.1875 0.8815 0.7660 4876.6580 26.2432 0.8594 0.7357
30 11-23-1 4939.1440 25.7312 0.8846 0.7715 4789.3600 25.2862 0.8650 0.7451

Note: Bold denote the selected ELM model.

of all the models at both training and testing phase are
compared. Based on the comprehensive analysis, due to its
satisfying performance, the model M6 with the structure of
7-15-1 is chosen to forecast the monthly runoff of the Three
Gorge Project.

3) ANN MODEL

For the ANN model, the trial-and-error method is used to
choose the best one from 30 forecasting models, while the
classical back-propagation method is chosen to optimize the
network parameters. Besides, the famous sigmoid function
is chosen as the transfer function of hidden nodes. Based on
four statistical indexes, 30 different ANN models are used to
select the suitable model for operational forecasting in Three
Gorge Project.

4) SVM MODEL

For the SVM model, the kernel function is set as the
famous radial basis function, while the grid search strategy is
used to find feasible parameters. After comparative analysis,
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the SVM model obtained in the 8" run is selected as the best
one for monthly runoff forecasting of Three Gorge Project.

E. RESULTS COMPARISON

Table 4 lists the statistical results of four developed fore-
casting modes during the training and testing stages. It can
be found that the traditional ANN model provides the worst
results among all the considered models, which proves the
modeling difficulty of nonlinear monthly streamflow time
series. Besides, three other methods produce different results
while the results of the standard ELM and SVM model are
obviously inferior to the proposed ELM-GWO model at both
training and testing stage, demonstrating the feasibility of
swarm intelligence in optimizing the model parameters. For
instance, compared with the ANN, ELM and SVM models
at the training phase, the ELM-GWO method can make
about 25.6%, 20.1% and 19.8% improvements in the RMSE
value, and about 37.9%, 33.7% and 37.7% improvements
in the MAPE value; at the testing phase, the improvements
in the R value are close to about 7.4%, 5.9% and 6.4%
while the improvements in the CE value are about 15.0%,
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TABLE 3. Results of various ELM-GWO models for the three gorge project.

No. Structure Model Training Testing
RMSE MAPE R CE RMSE MAPE R CE
1 2-3-1 Ml 6525.7713 38.3958 0.7812 0.6011 6131.4397 36.6127 0.7651 0.5822
2 2-4-1 6452.3759 41.9975 0.7811 0.6101 6143.9463 40.3853 0.7639 0.5805
3 2-5-1 6450.7057 42.0594 0.7812 0.6103 6129.4885 40.5049 0.7652 0.5825
4 3-5-1 M2 5315.1367 27.4637 0.8576 0.7354 5385.6269 29.8771 0.8285 0.6777
5 3-6-1 5148.2898 25.5510 0.8670 0.7518 5093.0513 28.0260 0.8474 0.7118
6 3-7-1 5093.3992 25.9293 0.8701 0.7570 5204.5377 28.8328 0.8402 0.6990
7 4-7-1 M3 4663.7456 24.5832 0.8923 0.7963 4510.6809 26.6789 0.8834 0.7739
8 4-8-1 4554.0802 22.4873 0.8976 0.8058 4392.5150 25.0398 0.8896 0.7856
9 4-9-1 4511.5822 21.7802 0.8996 0.8094 4472.9404 24.7045 0.8856 0.7777
10 5-9-1 M4 4365.2000 22.5944 0.9064 0.8215 4326.9608 24.4761 0.8953 0.7919
11 5-10-1 4181.9580 19.4763 0.9144 0.8362 4047.4582 20.9361 0.9085 0.8180
12 5-11-1 4113.6991 19.4312 0.9173 0.8415 4149.9531 23.2052 0.9051 0.8086
13 6-11-1 M5 41459612 19.7035 0.9160 0.8390 4156.0809 22.0796 0.9050 0.8081
14 6-12-1 4061.0897 18.5193 0.9195 0.8455 4067.7997 20.8259 0.9087 0.8161
15 6-13-1 4019.6021 17.4471 0.9212 0.8487 4077.4066 20.7363 0.9083 0.8153
16 7-13-1 M6 4161.2520 19.2345 0.9153 0.8378 4153.5186 21.9620 0.9051 0.8083
17 7-14-1 4020.4882 17.4240 0.9212 0.8486 4068.2482 20.1581 0.9089 0.8161
18 7-15-1 3980.8747 17.3576 0.9228 0.8516 3938.7247 21.3592 0.9157 0.8276
19 8-15-1 M7 4186.0318 20.0413 0.9143 0.8359 4119.3425 22.6764 0.9070 0.8114
20 8-16-1 4075.9760 18.5290 0.9189 0.8444 4065.1854 20.4455 0.9095 0.8164
21 8-17-1 4002.5047 17.0931 0.9219 0.8500 4115.2876 20.9720 0.9067 0.8118
22 9-17-1 M8 4248.6113 20.3044 0.9116 0.8309 4137.8368 23.2303 0.9065 0.8097
23 9-18-1 4344.9631 20.6032 0.9076 0.8232 4069.7717 23.5754 0.9095 0.8159
24 9-19-1 4228.5578 19.6285 0.9126 0.8325 4074.4737 22.2998 0.9101 0.8155
25 10-19-1 M9 4163.6486 20.3390 0.9153 0.8376 4118.1690 23.2269 0.9055 0.8115
26 10-20-1 4051.6939 18.3642 0.9199 0.8462 4126.7553 21.7332 0.9057 0.8108
27 10-21-1 4413.4717 19.2477 0.9049 0.8176 41222413 21.1917 0.9048 0.8112
28 11-21-1 M10 4078.4736 18.8730 0.9188 0.8442 4079.6262 21.1575 0.9059 0.8151
29 11-22-1 3889.9697 17.4514 0.9264 0.8583 4096.7249 21.1372 0.9062 0.8135
30 11-23-1 4024.6053 18.3488 0.9211 0.8483 4131.4912 21.3073 0.9044 0.8103
Note: Bold denote the selected ELM-GWO model.
TABLE 4. Results of various forecasting models for the three gorge project.
No. Model Training Testing
RMSE MAPE R CE RMSE MAPE R CE

1 ANN 5349.3581 27.9727 0.8698 0.7320 5020.5173 27.5668 0.8527 0.7199
2 ELM 4984.3275 26.1877 0.8819 0.7673 4785.4143 25.7889 0.8645 0.7455
3 SVM 4961.6625 27.8436 0.8810 0.7694 4856.8091 30.0002 0.8609 0.7379
4 ELM-GWO 3980.8747 17.3576 0.9228 0.8516 3938.7247 21.3592 0.9157 0.8276

11.0% and 12.2%. Thus, the proposed method proves to be
an effective method for the monthly hydrological forecasting.

Then, Fig. 4 draws the observed and predicted stream-
flow data produced by various methods at the testing stage.
It can be seen that four forecasting models can produce
valid results in capturing the changing tendency of monthly
streamflow time series in the Three Gorge, demonstrating
the feasibility of the artificial intelligence algorithm. Besides,
the developed model is obviously better than three other
control models since its tested line is close to the ideal line,
demonstrating the superiority of the developed hybrid fore-
casting model. Thus, the combinations of two effective tools,
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i.e. ELM and GWO, are capable of producing satisfying fore-
casting results as used to model the complex runoff process
of Three Gorge.

Next, the peak value of the observed and predicted runoff
series produced by various methods at the testing stage are
drawn in Fig. 5. It can be observed that the ELM-GWO
method can generate better results than the control methods.
For instance, the proportions of four forecasting models in
the mean peak flows are about 33.1%, 29.0%, 28.7% and
14.2%; besides, the ANN, ELM, SVM and hybrid methods
make about 46.0%, 41.1%, 41.1% and 24.5% improvements
in the maximum peak flow. Thus, it can be concluded that

VOLUME 8, 2020



X. Cheng et al.: Forecasting Monthly Runoff Time Series

IEEE Access

60000

Original e ANN

1 51 101 151 201
60000 60000
y=0.662 x +4164.352 y=0.712 x + 3967.356

> R>=0.727 a R?=0.747
- -
£ 40000 £ 40000
=1 =
= = °
] ° e
2 2
= 20000 = 20000
< 5]
= =
R A

0 g
0 20000

ELM e SVM

e ELM-GWO

i TIELE 14
ths ki tfi fit 'a f‘v !
VYVYY VUV VY EbV& "wii
251 301 351

Period

60000 60000

y=0.705 x +4297.091 y=0.897x+2159.138
R2=0.741 R>=0.838
40000 40000 o

20000 20000

Predicted (m%/s)
Predicted (m3/s)

0

40000 60000 0 20000 40000 60000 0 20000 40000 60000 0 20000 40000 60000
Observed (m%/s) Observed (m¥/s) Observed (m?/s) Observed (m3/s)
(a) ANN (b) ELM (¢) SVM (d) ELM-GWO
FIGURE 4. Detailed results of various forecasting models for the Three Gorges Project at the testing phase.
60,000
B Original EANN ELM ESVM EELM-GWO
g 40,000
2
&
=
E
. ““ ““ ‘“ H‘ H‘ H‘ |“ H‘ ”H|“ ||‘ ‘“ m “ | ‘“ ‘HH‘“ “ ‘ |“ ‘“ ‘”‘ H‘ ||HH‘ th |“ ““““ ||‘|H‘ ||‘ |“ ‘“ ‘|||
0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Peak number
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the hybrid method can effectively track the variation trend of
extreme streamflow data of the Three Gorge Project.

F. DISCUSSIONS

From the above experiments, it can be clearly seen that the
hybrid model is better than several control methods. The
superior performance of the developed ELM-GWO model is
contributed by the dynamic integration of swarm intelligence
and artificial neural network. Firstly, the GWO method is
employed to determine the suitable input-hidden weights
and hidden biases in the ELM network, which can help
the model avoid falling into local optima; secondary, the
famous Moore—Penrose generalized inverse method is used
to seek out the least-squared solution for the linear sys-
tem, which can determine satisfying hidden-output weights
at an express speed. In this way, the computation parame-
ters of the special artificial neural network can be improved
by iteratively searching in the problem space. As a result,
the carefully-designed ELM model will have a better net-
work structure and then produce higher forecasting preci-
sions in comparison with the randomly determined model,
providing a novel alternative tool for the monthly streamflow
prediction under the rapidly changing environment. On the
other hand, the developed method can provide high-quality
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prediction results than three traditional forecasting methods,
several promising research directions can be considered in the
future: one is to test the feasibility of the recent modified
GWO versions where the algorithm’s swarm diversity and
global search ability are enhanced by some hybrid strategies,
like parallel computing, local search and chaotic mutations;
besides, the other is to design more effective initial modules
that can enhance the network compactness of the extreme
leaning machine; while the last one is to explore the feasibility
of ELM-GWO method in various time-scaled hydrologic
forecasting for Three Gorges and other reservoirs around the
world.

IV. CONCLUSION

In recent years, growing attention is paid to develop effective
methods for accurate hydrologic forecasting. In order to meet
the practical necessity, this article successfully develops a
hybrid ELM-GWO method to forecast monthly streamflow
time series, where the famous grey wolf optimizer (GWO) is
employed to determine the optimal parameters combinations
(like input-hidden weights and hidden biases) of the classical
extreme learning machine (ELM) network. In order to accu-
rately forecast the runoff collected from the world’s largest
hydropower reservoir, Three Gorges, the proposed method
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is executed dozens of times to select the best model struc-
ture. The simulations show that the presented ELM-GWO
method can produce superior results compared with several
traditional forecasting methods. For instance, the values of
correlation coefficient during the testing period are improved
by 7.4%, 5.9% and 6.4% in comparison with the standard
artificial neural network, extreme learning machine as well
as support vector machine, respectively. To sum up, by using
GWO to explore the ELM model parameters, an effective
tool is provided to make significant improvements in the
forecasting accuracy of long and mid- term runoff.
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