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ABSTRACT Free space optical (FSO) communication technology has become increasingly advanced with
capabilities of high speed, high capacity, and low power consumption. However, despite the great potential
of FSO, its performance is limited in a turbulent atmosphere. Atmospheric turbulence causes scintillation in
the FSO propagated signals, leading to an increase in the bit error rate (BER) performance of the recovered
signals at the receiver. In this paper, we demonstrate that the use of deep learning (DL) detection methods
could overcome these limitations. We present a new detection method of on-off keying (OOK) modulated
signals by using different models of DL over different strength FSO turbulent channels, without the need for
prior knowledge of the parameters of the channel. The demonstrated DL decoders improve the performance
of the FSO turbulent channel and decrease the power consumption. Moreover, the demonstrated DL models
also work faster than maximum likelihood (ML) methods with perfect channel estimation decoders, with
even slightly better performance because of the turbulence, thus enabling realization of FSO over turbulent
atmospheric channels.

INDEX TERMS Free space optical communication, deep learning, on-off keying modulation, amplitude
shift keying modulation, maximum likelihood, channel state information, fully convolutional neural network,
fully connected neural network, additive white gaussian noise, intensity modulation, direct detection,

photodetector, bit error rate.

I. INTRODUCTION

Free space optical (FSO) communication has gained sig-
nificant attention in recent years due to its high bandwidth
and data rate capabilities. FSO can provide promising wire-
less communication, which can support the rapid growth
of different cloud applications such as internet and cell
phones [1]-[4]. FSO could provide transmission with as high
data rates as in optical fibers. However, in FSO, the data is
transmitted via light over a FSO channel without cables (as
in optical fibers). Consequently, FSO can create more flexible
networks than optical fibers leading to a significant decrease
in power consumption. Moreover, it is easier and cheaper
to install new FSO networks than optical fiber networks.
In comparison to radio frequency (RF), FSO is better in many
ways and faster than RF systems. In FSO there is no need for a
spectrum license as in RF systems, and the data is transferred
over line of sight (LOS) so there is no need to use complicated
security systems as in RF. Consequently, FSO is more secure
than RF and is resistant to RF interference [5], [6]. However,
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in FSO, the data is often transmitted through a turbulent FSO
channel. In the turbulent channel there are random changes in
the refractive index resulting in random refractions [3], [4].
FSO transmitted signals are very sensitive to these fluctu-
ations that lead to changes in the amplitude and the phase
of the received signal. This can affect the performance of
FSO systems and lead to significant increases in the values of
the bit error rate (BER), which can limit the implementation
of FSO communication systems in real environments such
as in data centers. This is because recovering the transmit-
ted data at the receiver depends on prior knowledge of the
encoder and decoder, and accurate knowledge of the channel
state information (CSI). Using deep learning (DL) algorithms
for recovering the transmitted data in FSO communication
could be an efficient solution to employing FSO in turbulent
channels, and thus permit the use of FSO without the need
for any prior knowledge of the turbulent channel. The deep
neural network (DNN) is one of the most commonly used
algorithms in DL. DNN can optimize the performance of the
entire system and learn the relationship between the input
and the output of a system through training and learning
processes.
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Recently, researchers have widely demonstrated DL in
many areas, such as in computer vision and speech recog-
nition [7], [8]. They have also succeeded in applying DL
in different areas of wireless communication systems, for
encoding, decoding, modulation recognition, and channel
estimation [9]-[11]. In [12], researchers proposed the use
of a DL autoencoder to replace both the transmitter and the
receiver of the communication system. Also, in [13], the use
of DL to reduce the peak to average power ratio problem
in orthogonal frequency division multiplexing (OFDM) was
proposed. In [14], the authors succeed in implementing DL
signal detection and channel estimation for OFDM systems.
The use of DL in wireless communication systems could
increase their performance as DL has algorithms and tools
that enable learning different complicated models. These try
to optimize the performance of the entire communication sys-
tem by training and learning processes without the need to use
any prior knowledge of mathematical models or parameters
of the channel [15]. In addition, DL has been implemented for
different applications in optical communication systems [16],
such as reducing the computational complexity in different
optical communication tasks [17], atmospheric turbulence
detection and adaptive techniques for orbital angular momen-
tum based FSO communication [18], mitigating fiber induced
nonlinearity [19], modulation format identification in digital
coherent receivers [20], and optical performance monitor-
ing [21]. In [22], DL was used as a detection technique
in FSO communication. In [18], DL was demonstrated for
the detection and adaptive demodulation of orbital angular
momentum based FSO communication. In [23], sensor less
FSO communication was corrected using DL. In [24], the
researchers used DL as a solution for an imperfect channel
state information problem in correlated FSO communication
channels. In the case of weak atmospheric turbulence with
perfect channel state information, DL has been applied to
achieve the same performance as the maximum likelihood
detector. In channels without correlation, DL enabled bet-
ter performance compared to that of a maximum likelihood
detector. In [25], channel estimation in FSO communication
was carried out using DL. However, only a few works recently
suggested using DL in FSO communication.

In this paper, we suggest a new detection method for on-
off-keying (OOK) modulated signals in FSO communication
systems using DL models which can effectively replace the
maximum likelihood (ML) decoders. We propose doing so
over different FSO turbulent channels. We built two differ-
ent decoders using DL. In the first decoder, we used fully
connected (FC) layers. In the second decoder, we used fully
convolutional neural networks (FCNN) with concatenation of
memory from previous layers. In order to check our mod-
ules, we generated random data bits and OOK modulation.
We then transmitted the modulated data bits via light through
atmospheric turbulent channels. We used channels with weak,
moderate, and strong turbulence and we compare between
the performance of our models and the performance of the
ML detector with perfect CSI and with the performance of
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the traditional OOK decoder with a fixed threshold. The
results indicate that our DL decoders performed approx-
imately like the ML decoder with perfect CSI when the
channel is described by weak atmospheric turbulence. In the
case of moderate and strong turbulence our decoders offer
even slightly better performance, but the advantage of our
decoder in this case is that it can predict the data faster than
the ML decoder with perfect CSI, and with less computa-
tional complexity. When the channels are characterized by
strong or moderate turbulence, we obtained improvements
in the performance of the detection of OOK modulated sig-
nals compared to the OOK decoders with a fixed threshold.
Moreover, our decoders led to a significant decrease in the
power consumption of the detection method of OOK, and our
models can effectively replace the ML decoders with perfect
CSLI. In addition, we succeeded in recovering the transmitted
data irrespective of the strength of the turbulence. Even in
the case of strong turbulence we were able to improve the
performance and decrease the BER. We obtained low BER
with lower signal to noise ratio vales compared to the OOK
decoders with a fixed threshold. This leads to a decrease in the
power consumption of the system, because we can decrease
the signal to noise ratio of the transmitted signal and transmit
with less energy, while obtaining better BER. Consequently,
in our models a large amount of data was not generated, which
is a critical problem in different DL systems consuming time
and high computational power. It was sufficient to generate
a small number of training data with a size of 5000 vectors
of input/output data. The training time in the decoders was
therefore less than in the existing DL models. After the
training process, the weights of our DL system are saved, as a
result of which the online transmitted data can be predicted
according to the saved weights, which can recover faster
than the prediction time of a regular decoder. Accordingly,
the performance of detected OOK modulated signals through
different turbulence channels is improved.

The novelty of our work lies in the DL models enabling
the use of FSO wireless communication in data center envi-
ronments with turbulent channels where the turbulence is
unknown. Turbulence may arise in data centers themselves
because of heating, in addition to natural turbulence in the
atmosphere. We show that DL makes it possible to communi-
cate reliably through turbulence, including heavy turbulence,
using normal transmitter power without the need for previ-
ous knowledge about the communication channel. Also, our
decoders are efficient and thus can also be useful in channels
without turbulence, because our models succeed to exhibit
good performance and decreased power consumption. Our
DL decoders could replace the OOK decoders that use a fixed
threshold, which consume a lot of energy when the channels
are with moderate or strong turbulence. In addition, our DL
decoders can replace the state of the art ML with perfect CSI
decoders, because ML requires accurate CSI and for perfect
channel estimation the probability density function (PDF)
needs to be stationary over the window periods. However, this
requirement does not hold in non-stationary channels such
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as turbulent media. Thus, ML becomes essentially non-ideal
and non-optimal. On the other hand DL does not make any
prior assumption, and is data-driven so it is fully adaptive.
DL may adapt faster and thus may exceed ML in some cases
such as in strong turbulence. Consequently, our DL decoders
could replace the state of the art ML decoders and solve the
above problems, while at the same time succeeding to obtain
performance at least as good as ML decoders, especially
through turbulence.

The rest of the paper is organized as follows. In section I,
the FSO turbulent channel and the potential of using DL in
FSO atmospheric turbulent channels are described. In section
III, the DL detection models for OOK in FSO turbulent
channels are presented. Simulation results are provided in
section IV. In section V, we conclude and summarize the
study.

Il. FSO TURBULENCE CHANNEL

FSO communication is an optical communication technol-
ogy that transmits data via light through free space using
intensity modulation (IM). The transmitted data propagates
through a turbulent channel with additive white Gaussian
noise (AWGN) [3], [4]. At the receiver, the data is received
via a photodetector (PD) and is detected using direct detection
(DD), as in Fig. 1:

Input data Output data

Atmospheric

turbulence channel PD
+

Noise

FIGURE 1. Block diagram of IM/DD FSO communication system.

We assume that the channel is memoryless and stationary,
and exhibits slow fading. The received signal can be described
by the basic channel model [26], [27]:

yk = nhxg + noise (1)

where 7 is the responsivity of the PD (measured in V/W), h
is the channel state, which includes attenuation due to atmo-
spheric turbulence, and is equal to the channel intensity at
that time. It is affected by distortions due to atmospheric tur-
bulence generated by random changes in the temperature and
pressure of the atmosphere. Generally, turbulence is modelled
by a lognormal distribution or by Gamma-Gamma random
variables in the cases of weak or strong turbulence, respec-
tively. The intensity of the transmitted bit that is modulated
using OOK modulation is xx € {0, 1}, and noise is signal
independent AWGN with zero mean and variance No /2.
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In free space where the data propagates, there are random
fluctuations of refractive index, and scattering by fog, clouds,
etc. Equation 1 characterizes the received data affected by
distortions caused by turbulence. The fluctuations in the tur-
bulent channel can be described by the parameter C2. C? is
the refractive index structure coefficient that describes the
fluctuations and changes in air temperature through the chan-
nel, k = 27 /A is the wave number, A is the wavelength, and L
is the distance between the transmitter and the receiver. When
the transmitted FSO data propagates through the air, the
fluctuations can lead to signal fading and degradation in the
performance of the received signal. It is customary to divide
effects of turbulence on the received FSO signal [28] into two
types of fluctuations, weak and strong. Rytov variance, 01%,
is the parameter that determines the type of turbulence and it
can be calculated according to:

2 2 i 4
og = 1.23C;ksLe ()

When 01% <« 1, the turbulence is weak. Otherwise the turbu-
lence is strong. In the case of weak turbulence, the distribution
of the intensity of the received signal passing through the
weak-turbulence channel is lognormally distributed with a
PDF:

_ 2
)=~ exp [_(IH(D ln(Io)):| 3
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where I is the received signal intensity, 01% is the variance of
the log amplitude of the received signal, and In (Ip) is the
average log intensity of the received signal. For longer dis-
tances, or when the fluctuations are higher and the turbulence
is strong, the distribution of the received signal is Gamma-
Gamma with a PDF [29]:
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where I" (.) is the gamma function, k; is the order of the Bessel
function of the second kind, and « and B can be calculated
according to:
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OOK is a modulation technique that is widely used for
IM/DD in FSO communication systems due to its simplicity.
A schematic of a simple OOK transmitter/receiver system
using amplitude shift keying (ASK) modulation is displayed
in Fig. 2:

In this modulation technique, a bit “one” is modulated
by the carrier frequency and represented by an optical pulse.
When the bit is zero the transmitter is in mode ‘““off” and,
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OOK Transmitter

Input
data

Carrier signal

ASK 00K Receiver

Carrier signal

FIGURE 2. An IM/DD OOK transmitter/receiver system.

in this time interval, the transmitter is not active and does
not transmit any optical power. The transmitted signal is then
passed through atmospheric turbulent channel with AWGN
and detected at the receiver. At the receiver, a PD detects
the received power of the signal, and the signal from the PD
enters a demodulator. The demodulator multiplies it by the
same carrier frequency that was used in the transmitter and
filters it. At the exit from the receiver, a comparator converts
the analog signal to a digital signal according to a threshold
that decides if the detected bit is zero or one, depending
upon whether the value is less than the threshold or not. This
modulation is very susceptible to noise interference because
the noise affects the amplitude of the transmitted signal.

The BER calculation of IM/DD OOK modulation in FSO
communication that propagates through a turbulent channel
with AWGN is given by [20]:

Perror = P (on) .P (error | on, 1) 4+ P (off) .P (error | off, I)
(7

where 1 is the intensity of the transmitted signal,
P (on) /P (off) are the probabilities of transmitting bits one or
zero, and P (error | on, I) /P(error|off, I) are the conditional
error probabilities when the transmitting bit is one or zero.
We can assume that P (on) = P (off) = 0.5 and the noise
distribution is independent of the bit that is transmitted.
The conditional bit error probability of I can be calculated
according to:

P (error | on, I) = P (error | off, I) = Q (SNR.I) (8)

where SNR is the signal to noise ratio. The average BER
over the noisy channel can be calculated via the following
equation:

BER = / ” f; (I) .Q(SNR.I) )
0

where fi (I) is the PDF of the received signal at the receiver.
We mentioned above that weak turbulence is lognormally dis-
tributed and strong turbulence is Gamma-Gamma distributed.
In both cases, f1 (I) depends on the scintillation index parame-
ter and inversely affects the BER. When the scintillation index
parameter is increased according to equations 3 and 4, the
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BER increases. In order to achieve lower bounds of BER and
good performance in the case of higher values of the scintil-
lation index parameter, the SNR is increased and more power
is transmitted. Alternatively, other mitigation techniques can
be applied. In some cases, it is difficult to realize FSO com-
munication and to achieve these lower bounds of BER, or the
system may consume too much energy. In OOK modulation,
in order to achieve good performance one may employ ML
with perfect CSI. These decoders are complicated and the
receiver needs to have accurate knowledge of the instanta-
neous CSI. The receivers use thresholds in the detection of
the recovered data in order to achieve optimal performance.
The receiver also needs to know the accurate CSI to adjust
the threshold, while in practical systems this parameter is
unavailable. Hence, there is a significant demand to find
an efficient solution to these problems in order to benefit
from the advantages of FSO, and to enable the use of such
communication in turbulent channels. In the next section,
DL is proposed and demonstrated to be able to overcome the
above problems.

Ill. PROPOSED DL DETECTION MODELS FOR FSO

A. AN INTRODUCTION TO DL

DL is a neuron model type learning system like a black
box with an input and output. DL is used to improve the
performance of a system from the experience gained via
a training process, until minimum loss between the output
of the system and the original data is obtained. The input
to this system is corrupted data and the output data is the
original data before the corruption. At the entrance to the
system, the input data is mapped to a number of nodes called
the input layer. Values of these nodes propagate through a
graph which contains a number of layers, each of which
contains nodes. Values of the nodes in each layer are deter-
mined by a specific mapping function called an activation
function. At the beginning of the training process, DL sets
random values to the weights and the biases, and then tries
to change these values according to derivations in a number
of iterations until minimal loss between the output of the
system and the original data is obtained. In other words,
we try to recover the corrupted input data with minimum
loss. DL succeeds in maximizing the performance of a system
without prior programming. Because of these advantages,
in recent years researchers have widely used DL in many
fields, including computer vision, speech recognition, and
more. In these fields, DL succeeded in improving system
performance. There exists some similarity between wireless
communication and fields like speech recognition: in the two
systems data bits are generated, transmitted through a channel
and arrive at the receiver, which attempts to detect the original
data with minimum loss. Hence, researchers started to apply
DL in different fields of wireless communication systems,
as mentioned above. The authors of [12]-[14] suggested
using DL for signal detection in order to replace the receiver
in OFDM wireless communication systems. We believe that
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if researchers succeeded in using DL in signal detection and
successfully replaced the receiver in wireless communication
systems, then it is also possible to use DL for signal detection
in FSO communication systems.

B. PROPOSED DL DETECTION MODELS
In this section, we present a new DL detection method for
OOK with IM/DD modulation to enable the use of FSO
communication in different turbulent channels without the
need of prior channel. The aim of our DL detection models
is to replace the optimal ML with perfect CSI detection OOK
model and to replace the OOK decoders that use the fixed
threshold, in order to receive modulated OOK data, and to
recover the original data with minimum loss. The proposed
DL models work in two phases. The first phase is called the
training process. In this process, a data set enters the DL
system, and it trains and learns in a number of iterations
to recover the original data. When the system finishes this
process and manages to obtain minimum loss, it saves the
weights of the system. After the training process the system
starts an online process, where the DL system can receive
online OOK transmitted data with noise after passing through
the turbulent channel. The DL model makes predictions of
this data according to the weights saved at the end of the
training process. The online process is expected to run faster
because the weights have already been determined and saved.
In our work, we suggest two different DL detection models.
In the first model, we use FC networks. In the second model
we use FCNNs with concatenation of memory from previous
layers. Schemes of the different DL models that we built are
presented in Figs. 3 and 4.

E Output data
L 0,1,0,1..1,0

Cross entropy
loss

Softmax

1x1,Conv, 2

FIGURE 3. OOK decoder 1 using FC network.

In our DL models, we used a Relu activation function:
fren(Xi) = max(0, x;) after each internal layer and the last
layer is a convolutional layer with two filters of size 1 x 1.
This layer is followed by a softmax activation layer:

el
Z}(:l el
that converts the values of the output data from this layer to

probabilities from values 0 to 1. At the end, we used the cross-
entropy loss function given by equation 11 to measure the

(10)

fsofimax (Xi) =
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FIGURE 4. OOK decoder 2 using FCNN + concatenation of memory.

difference between two probabilities: the probability of the
original data bits p and the estimated output probability q of
our DL system. The distance between the output of the DL
system after the softmax at the last layer, and the original data
bits needs to be minimum by cross-entropy loss.

Hp @ =-> pxoloqx)) (11)

In the first model, we used one FC layer, which means that
all the input data are connected to all the nodes in this layer
(see Fig. 3). After the FC layer, a convolutional layer was
used with 2 filters, each one with a size 1 x 1. At the output
of this layer we used a softmax activation function, followed
by a binary cross-entropy loss function. In the second model,
FCNN with concatenation of memory from previous layers
was used. The concept of this model is taken from [31]-[33].
In [31], the authors suggested using FCNN for image seg-
mentation, which means the detection, for each pixel in the
image, if it is background or foreground. In [33], the authors
extended this work and improved system performance by
suggesting adding memory from previous layers to detect
more sophisticated features.

FCNN includes two processes, namely down sampling and
up sampling. The down sampling process comprises a num-
ber of convolution and pooling layers, and the up sampling
process performs the inverse processes, comprising a number
of up sampling and deconvolutional layers. The down sam-
pling process is used to detect high resolution information and
features in the image, in other words to extract the data. This
recovers the lost information due to the convolutional and
pooling layers and obtains the precise information and local-
ization of the extracted data by an up sampling process. In the
proposed model, we apply the same concept as in [31]-[33],
but we modify for our problem. The purpose of our mod-
els is to insert corrupted OOK modulated data and perform
semantic segmentation for each output bit to determine if it
is 0 or 1. The scheme of our FCNN model is presented in
Fig. 4. The input data to our DL system passes two processes
of down sampling and up sampling. In the down sampling
process, we used a convolutional layer with 8 filters, each
one with a size 3 x 1. Then we used another 2 convolutional
layers which duplicated the number of the filters to 16 and 32.
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After each convolution layer, we used pooling layers. In the
up sampling process, we used the inverse process that we used
before in the down sampling process. After the up-sampling
process, we used convolutional layers of two classes followed
by a softmax activation function. Then, the cross-entropy
loss function is used according to equation (11) to calculate
the minimum loss between the input and the detected data
bits. The two proposed models received the same modulated
OOK data after passing through turbulence channels with
AWGN, and the output of these models is a vector of data bits
recovered through the cross-entropy loss function. In the next
section, we present the simulation results that we perform by
our different DL models.

IV. SIMULATION RESULTS

In order to check the performance of our suggested DL mod-
els in this article, we need to generate sets of input and output
data, train and test our models, and then compare between
the performance of our models and the performance of the
ML with perfect CSI detection model and the OOK with
fixed threshold detection method. For this, using MATLAB
software we generate two datasets of 5,000 and 10,000 vec-
tors of random data bits, each one with a size of 512 bits.
We modulated each vector of data by OOK modulation
and transmitted it across different strength FSO turbulence
channels with AWGN. The receiver received the transmitted
data with the noise and recovered the original data bits by
two detection methods, OOK with fixed threshold and the
state of the art ML with the perfect channel estimation OOK
detection method. The input of our DL models is the received
modulated data with noise that arrived at the receiver, and the
output is the original data bits that we generated. We built
our DL decoders using Tensorflow software and we ran our
simulations on a computer with CPU: Intel core i7-7500 2,7
GHz. The proposed system of our DL models is shown in
Fig. 5.

Input data Output data

Atmospheric

turbulence channel PD
+

Noise

FIGURE 5. Proposed system model.

We performed simulations for different strengths of tur-
bulent channels; weak, moderate, and strong. The strength
values of the turbulent channels that we used are presented
in Table 1, and the hyperparameters of the DL models that
we used are presented in Table 2. These were chosen based
on our previous experience with DL.

155280

_ Fixed threshold
1-Weak turbulence

===2-Moderate turbulence

=+=3-Strong turbulence

_ ML with perfect CSI
1-Weak turbulence

==+2-Moderate turbulence

=4=3-Strong turbulence

0 10 20 30 40
SNR(dB)

FIGURE 6. BER performance against normalized SNR for OOK with fixed
threshold detection model and with ML with perfect channel estimation
detection method across all turbulence channels.

TABLE 1. Strength parameters for the different turbulent channels.

Turbulence regime 0%
Channel 1 Weak 0.1
Channel 2 Moderate 1.6, o=4, p=1.9
Channel 3 Strong 3.5, 0=4.2,p=14

TABLE 2. Hyperparameters of the DL.

Hyperparameter Value

Number of iterations 50

Activation function Relu

Batch size 10

Loss Softmax cross-entropy
Optimizer Adam

Learning rate 0.001

The BER performance of the data that we generated by
MATLAB are calculated by equation (12) and are presented
in Fig. 6.

Number of error bits
BER

"~ Number of total transmitted bits (12)

The detection of the received data bits in the first detection
method is calculated according to the threshold. If the value
is higher than the threshold then the detected bit is 1, and
otherwise it is 0. To adjust the optimum threshold, previous
knowledge of the CSI is required. However, recovering the
received data bits in the ML with perfect channel estimation
requires pilot transmission of data, which reduces the data
rate of the FSO transmission system.

In Fig. 6 we present performance against normalized SNR
for OOK with a fixed threshold (red curves), and with ML
with perfect CSI detection which (blue curves). However,
the blue curve for ML represents 3 situations which yield
essentially the same results; therefore, only one curve is
shown. We can see in Fig.6 that as the turbulence strength
increases, the BER for the detection method with a fixed
threshold of OOK also increases. Thus, for channels with
strong turbulence it is necessary to transmit the modulated
signal with more power than for a weak turbulence channel
or to use other mitigation techniques. For example, to achieve
a BER lower than 107 for channel 1 with weak turbulence,
it is necessary to transmit with a SNR = 13 dB. In order
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to achieve the same BER in channel 3 with strong turbu-
lence, it is necessary to transmit with SNR = 39 dB, which
is 26 dB greater than that required for the weak turbulence
channel. In addition, however, the performance of ML with
a perfect CSI decoder, is better than the performance of the
first decoder with the fixed threshold, but to achieve this
performance, the receiver needs to have previous knowledge
of the CSI obtained from the transmission of pilot data, which
decreases the efficiency of the bandwidth and leads to a
decreased data rate of the system. However, in some cases,
when the channel is non-stationary or is strongly turbulent,
it is difficult to know the accurate CSI in order to implement
FSO, which limits the implementation potential of this tech-
nique.

The above problems can be substantially minimized by
replacing the ML with perfect CSI detection and the decoders
with a fixed threshold using the proposed DL models. In order
to check the BER performance of the proposed DL models,
two datasets of the input/output data are trained. The train-
ing of the data was carried out using Tensorflow software.
During the training process, the DL system tries to learn the
weights and recovers the detected data bits with minimum
loss. Fifty iterations were sufficient for obtaining minimum
loss. Then, after the training process, the system can receive
online transmitted data and detect it. Comparison between the
BER performance of our FC DL model, the ML with perfect
CSI detection method, and the detection method with the
fixed threshold across the different turbulent channels with
the first data set are presented in Figs. 7a-c.

In Figs. 7(a)-(c), we compare between the results of the
conventional detector with a fixed threshold, ML with per-
fect CSI detector, DL FC model 1, and FCNN with mem-
ory model 2 for the three different turbulent channels. The
blue curve presents BER performance of FC model 1, the
green curve presents the results of the conventional detector
with a fixed threshold, the red curve shows the performance
of the ML with perfect CSI detector, and the black curve
shows the results for the DL FCNN with memory model 2.
Across all the different turbulent channels, the proposed DL
models present better performance and energy consumption
than those of the conventional detection method with a fixed
threshold. The performance results are close to those of the
ML detector with perfect CSI. For example, when the channel
is turbulent the results of the ML detector and our models
are very close, but when the channel is with moderate or
strong turbulence, our models display an improvement over
ML performance by a few dB. The results for FC (model
1) and FCNN with memory (model 2) are very similar and
consume less energy than the regular detection method with
the fixed threshold and are also very close to the results of the
ML detector model. For example, when the channel is with
strong turbulence, to obtain BER = 1073 in the conventional
detector with a fixed threshold, it is necessary to transmit
with SNR = 39 dB. However, in the FC model 1 and FCNN
with memory model 2 cases, it is sufficient to transmit with
SNR = 8 dB and SNR = 9 dB, respectively. These levels are
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FIGURE 7. BER performance against the normalized SNR for
conventional detector with fixed threshold, ML with perfect CSI detector,
DNN FC model 1, and DNN-FCNN with memory model 2.

approximately 30-31 dB less than the required values for
the regular detector with a fixed threshold, and 1-3 dB less
than the required SNR in the ML with perfect CSI detection
case. In our case we get performance very close to the ML
performance, and even slightly improved (by 1-3 dB) since
DL is more robust to variations in the AWGN channel models
than ML. In our case, ML knows the channel coefficient of
the turbulent channel, while DL considers the whole system
as a black box channel coefficient of the turbulent channel
with the AWGN. Since DL tries to minimize total system loss,
we get slightly better performance. Another important thing
in DL is how to set the values of the hyperparameters of the
network. In order to get better performance it is very impor-
tant correctly set the hyperparameters. When the hyperparam-
eters are tuned properly, the network can learn more complex
relationships. Any small changes in these parameters affects
the outcome and leads to worse performance. Further, in DL
we could go deeper and implement many layers, so that DL
can yield more complicated features.

In Figs. 8(a)-(c), the results of the proposed FC model are
presented with two data sets of sizes 5,000 and 10,000. The
performance of the first data set with size 5,000 is shown in
black, and results of the second data set are presented in red.
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FIGURE 8. BER performance against normalized SNR for FC model
datasets equal to 5,000 and 10,000.

In Figs.8a-c we see that the results of the two data sets
with different sizes are very close and the small data set of
size 5,000 is sufficient to obtain good results and decrease
by half the training time compared with the long dataset. The
two data sets yield good performance, better than that of the
regular detector with the fixed threshold and slightly better
than the performance of the ML decoder with perfect CSI and
are very similar. For example, in the results of the two data
sets we can obtain a BER of less than 10> with a SNR of
approximately 4 dB, 13 dB, and 30 dB less than in the three
different turbulent channels, respectively, compared with the
fixed threshold detection method, and approximately 1-3 dB
less than with the ML with perfect CSI detection method.

We calculate the complexity of the proposed mod-
els in terms of amount of floating point multiplication
adds (FLOPs) and detection time consumption (see Figs. 9
and 10).

In Figs. 8a-c, it is shown that the performance results of
the FC (model 1) and FCNN (model 2) cases are very close,
but according to Fig. 9, the number of FLOPs in FCNN with
memory model 2 is seen to be less than for the FC model.
This is because in FCNN the nodes in each layer are not
connected to all the nodes in the next layer, which leads to
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FIGURE 10. Normalized detection time consumption for the different
models.

reduced calculations. Moreover, the detection time after the
training process in the models for one input data set was less
than 0.01 times the detection time in the ML with perfect CSI
detection method. Therefore, the proposed models succeed
to recover the detected data with improved performance and
speed in the OOK detection model than ML with perfect
channel estimation detectors. Our models are simple and very
easy to use and, at the same time, succeed in achieving similar
performance to the ML with perfect CSI detection methods.

V. SUMMARY AND CONCLUSION

The novelties of the methods presented here are the effec-
tiveness of using DL for signal detection of OOK modu-
lated data over different FSO turbulent channels in terms of:
improving the performance, decreasing the prediction time,
and reducing the energy consumption. In such situations,
ML is non-ideal and non-optimal because the channel is not
stationary. We built two different models of DL; in the first
model we used FC neural networks and in the second model
we used FCNN with concatenation of memory from previous
layers. We tested our models in two phases. In the first phase
we trained our models offline using OOK modulated data
that was received after passing through different turbulence
strength channels with noise. During this process, the models
learn the weights of the system. In the second phase, the

VOLUME 8, 2020



L. Darwesh, N. S. Kopeika: Deep Learning for Improving Performance of OOK Modulation Over FSO Turbulent Channels

IEEE Access

system received online transmitted modulated OOK data with
noise and recovered the original data bits.

We compared between the performance of our suggested
DL models and the ML with perfect channel estimation
OOK detection method and with the fixed threshold detec-
tion method. In the simulation results, we show that the use
of DL for signal detection of OOK has many advantages
when the FSO channel has strong turbulence. DL successfully
recovered the original data bits with a significant improve-
ment in BER performance compared with the fixed threshold
detection method and performed slightly better than the state
of the art ML with perfect CSI decoder method. DL was
able to detect the data and learn the channel despite the
turbulence, no matter if the turbulence was strong or weak.
For example, over a strong turbulence channel with a]% =
3.5, in order to obtain a BER of less than 102, the DL
models succeeded in decreasing the required SNR by 30 dB
compared with the fixed threshold detection method, and by
1-2 dB compared with ML with perfect CSI. The DL models
were able to detect the data with similar BER performance
for the different turbulence levels, with lower BER than in the
fixed threshold detection method. We succeeded in obtaining
the same BER performance with approximately the same
SNR = 8 to 10 dB, which is less than the required SNR in the
fixed threshold detection method, which was 14 dB, 25 dB,
and 39 dB for the three different turbulent channels that
we used with O’l% = 0.1, 1.6 and 3.5. In addition, our DL
decoders performed slightly better than the state of the art ML
with perfect CSI decoder. If we use DL for signal detection of
OOK in FSO, it is possible to exploit the many advantages of
this technology, such as communicating during turbulence.
Also, in cases of unknown channel parameters, such as in
a fast changing channel, we can use FSO and transmit with
less energy, while obtaining BER levels characteristic of an
environment with weak turbulence or a deterministic channel.
Moreover, after the training process, our models work faster
than the ML detection method. Hence, the advantage of using
FCNN is that we can insert any non-specific size of input data,
although the input data should be equal to or a multiple of 512.
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