
Received August 12, 2020, accepted August 19, 2020, date of publication August 25, 2020, date of current version September 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019422

Information Geometry-Based Fuzzy-C Means
Algorithm for Cooperative Spectrum Sensing
YONGWEI ZHANG 1, CANFENG MA 1, YONGHUA WANG 1, (Member, IEEE),
SHUNCHAO ZHANG 1, AND PIN WAN 1,2
1School of Automation, Guangdong University of Technology, Guangzhou 510006, China
2Hubei Key Laboratory of Intelligent Wireless Communications, South-Central University for Nationalities, Wuhan 430074, China

Corresponding author: Yonghua Wang (wangyonghua@gdut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61971147, in part by the Special Funds
from Central Finance to Support the Development of Local Universities under Grant 400170044 and Grant 400180004, and in part by the
Foundation of National and Local Joint Engineering Research Center of Intelligent Manufacturing Cyber-Physical Systems and
Guangdong Provincial Key Laboratory of Cyber-Physical Systems under Grant 008.

ABSTRACT In this paper, the spectrum sensing problem is investigated under the context of information
geometry and a novel clustering algorithm based spectrum sensing scheme is developed to obtain a classifier
to estimate the channel state of primary user (PU). In order to enhance the sensing performance at complex
environment, the empirical mode decomposition (EMD) algorithm is applied towipe off the noise component
of the received signals from all secondary users (SUs). Subsequently, a signal matrix composed of the
reconstructed signals is constructed. Based on the information geometry (IG) theory, the covariancematrix of
the signal matrix is mapped into a point on a manifold. Then, the sample points on the manifold are collected
as a data set. Moreover, a novel clustering algorithm, namely Riemannian distance based Fuzzy-c means
clustering (RDFCM) algorithm, is developed to cluster the samples on manifold for obtaining a classifier,
which is employed to decide the PU state. The simulation results show that compared with other spectrum
sensing methods, the proposed scheme improves the performance of detection.

INDEX TERMS Cognitive radio, spectrum sensing, information geometry, empirical mode decomposition.

I. INTRODUCTION
With the rapid development of the wireless communication
technology, the amount of wireless devices and services has
increased dramatically over the past decade, which requires
a great deal of spectrum resources. However, according to
the investigation report of Federal Communications Commis-
sion, the utilization of spectrum resources is poor [1]–[3].
In order to conquer this drawback, the spectrum sensing
which is a vital technique in cognitive radio (CR), has been
extensively developed to obtain awareness about the spec-
trum usage and existence of primary users (PUs) in an area
[4]–[7]. Several conventional spectrum sensing approaches,
such as energy detection (ED) [8], [9], matched filtering
detection (MFD) [10], [11] and cyclostationary feature detec-
tion (CFD) [12], [13] have been developed. The ED approach
is a comparatively simple technique, which obtains the sens-
ing decision by calculating the energy of the signal and
comparing it to a threshold. However, it is vulnerable to noise
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uncertainty. By analyzing the spectral correlation function of
the signal, the CFD method is competent to differentiate the
signal and noise, but the computational burden is enormous.
The MFD algorithm requires the priori knowledge of the
PU, such as bandwidth and operating frequency, which is
restricted in practical application.

A. RELATED WORK
The aforementioned works are based on signal secondary
user (SU), which are susceptible to multipath fading, shad-
owing and receiver uncertainty. To conquer these bottle-
necks, the cooperative spectrum sensing (CSS) which is an
indispensable framework in CR, has achieved widespread
attention to improve the sensing performance by integrat-
ing the information received from multiple SUs [14]–[17].
Compared with signal SU sensing, the SUs in CSS transmit
their sensing information to a fusion center (FC) to make
a global decision, which is more precise than individual
decision. Most of the CSS approaches are based on random
matrix theory (RMT) [18]–[20]. The FC establishes a signal
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TABLE 1. Weaknesses of different methods.

matrix based on the signals received from all the SUs. Then,
the statistical eigenvalue of the covariance matrix is cal-
culated and compared it with a threshold to determine the
state of PU. On the other hand, the information geometry
(IG) based CSS methods are gradual investigated [21]–[23].
In [22], a novel wideband spectrum sensing method based on
Riemannian distance and Riemannian mean was proposed.
Based on IG theory, a Riemannian distance detector (RDD)
which is blind to noise statistical characteristics and priori
knowledge of PU, was designed to detect the spectrum hole.
In [23], the covariance matrices of the received signal matrix
were mapped into a series of coordinates on the statistical
manifold, and the signal features were constructed by the
geodesic distances between the coordinates and the corre-
sponding Riemannian mean. Then, a constant false alarm rate
detector was applied to determine the state of PU. In the
view of IG theory, the statistical features are located in the
manifold, rather than the linear space theory, which pro-
vides a novel perspective to analyze the spectrum sensing
problem.

It should be emphasised that all the aforementioned works
need to deduce a precisely threshold to decide the state of
channel, which is intractable in complicated environment.
In recent years, machine leaning has been widely applied
in various fields due to its capacity to employ mathematical
calculations to analyze and interpret patterns and structures
in data. In spectrum sensing community, several machine
leaning based schemes have been proposed [24]–[28].
In [24], newly CSS approaches based on machine learning
algorithms, such as K-means clustering, Gaussian mixture
model and K-nearest-neighbor, were developed. The vector
of the signal energy is considered as a feature vector to train
a classifier to decide whether the PU is presence or not.
In [25], a spectrum sensing method based on K-means clus-
tering and support vector machine algorithms was presented.
To reduce the computational burden, a low-dimensional prob-
ability vector was designed as the feature vector and used it
to obtain a classifier to achieve spectrum sensing. In [26],
the statistical eigenvalue of the covariance matrix, such as
maximum-minimum eigenvalue (MME), was treated as the
feature vector to train a classifier by using the K-means and
K-medoids algorithms, respectively. In general, the machine
learning based spectrum sensing approaches use a feature
vector, such as energy statistic, probability vector and sta-
tistical eigenvalue of the covariance matrix, to train a classi-
fier by using supervised or unsupervised learning algorithm.
Therefore, choosing appropriate eigenvalue and machine

learning algorithm are crucial to obtain desired sensing
performance.

B. MOTIVATIONS
Theweaknesses of different methods are displayed in Table 1.
To overcome these problems, a new spectrum sensingmethod
based on IG theory is developed in this paper. In order to real-
ize clustering directly in manifold space, under the context of
IG theory, a novel spectrum sensing scheme is developed in
this paper by using a newly designed Riemannian distance
based Fuzzy-c means clustering (RDFCM) algorithm. In real
scenario, the received information of SUs are adulterated by
noise, which degrades the detection performance. To address
this issue, the empirical mode decomposition (EMD) algo-
rithm which treated as a forceful technique to deal with the
nonstationary and nonlinear signal, is adopted to eliminate
noise component [29]–[31]. Then, based on the IG theory,
the covariancematrices of the signalmatrices aremapped into
a series of coordinate points on the manifold. Subsequently,
the RDFCM algorithm is designed, which clustering directly
on the manifold space. Finally, a classifier is trained to per-
ceive the state of PU by using the coordinate points on the
manifold.

The novelty and contribution of this work are summarized
as follows:
1) This paper develops a new clustering algorithm, namely

RDFCM algorithm. It achieves clustering directly on
manifold space by applying Riemannian distance to
measure the distance between two points on the mani-
fold. The original FCM algorithm is suitable for linear
space only. It cannot cluster the points which lie on
the manifold space. Therefore, the developed RDFCM
algorithm is the extension of the FCM algorithm.

2) Different from existing methods [20], [21], this paper
extends the RDFCM clustering algorithm to deal with
the spectrum sensing problem. Unlike the traditional
methods, this method is realized on manifold space and
the decision threshold is not required. Moreover, based
on the sample points on the manifold and the devel-
oped RDFCM algorithm, a classifier is trained to decide
whether the PU is present or not.

3) This scheme integrates the EMD algorithm to exclude
the noise component of the signals received by SUs,
which can be considered as a data preprocessing process
to obtain superior feature. In simulation part, the avail-
ability of the developed scheme is analyzed under the
SUs at different signal to noise ratio (SNR).
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FIGURE 1. The scenario of CSS.

The rest of this paper is organized as follows. Section II
introduces the scenario of CSS. Section III proposes an
EMD-based RDFCM approach (EMD-RDFCM) for CSS.
In Section IV, the effectiveness of the EMD-RDFCM
approach is verified under different conditions. In Section V,
the conclusion is given.

II. COOPERATIVE SPECTRUM SENSING
Consider a CR system with one PU, one FC and L SUs,
as displayed in Figure 1. In CSS scenario, SUs share their
sensing data to FC for acquiring a global decision to decide
the presence or absence of the PU. Typically, the spectrum
sensing can be considered as a binary hypotheses testing
problem, which can be expressed as

H0 : yl(n) = zl(n), n = 1, . . . ,N ,

H1 : yl(n) = hl(n)x(n)+ zl(n), n = 1, . . . ,N , (1)

where yl(n) and xl(n) represent the received and transmitted
signals of the lth SU, N is the number of sample points. zl(n)
is the Gaussian white noise and satisfies zl(n) ∼ N (0, σ 2

z ),
hl(n) denotes the channel gain, H0 and H1 stand for the
absence and presence of PU, respectively. Hence, the signal
matrix can be established as

Y =


y1(1) y1(2) · · · y1(N )
y2(1) y2(2) · · · y2(N )
...

...
. . .

...

yL(1) yL(2) · · · yL(N )

 . (2)

In order to reflect the sensing performance, the probabili-
ties of detection Pd and false alarm Pf are formulated as

Pd = P[H1|H1], (3)

Pf = P[H1|H0]. (4)

III. COOPERATIVE SPECTRUM SENSING BASED ON
EMD-RDFCM APPROACH
The structure of EDM-RDFCMapproach is given in Figure 2.
To begin with, the EMD algorithm is employed to eliminate

the noise component in the received signal. Subsequently,
the reconstructed signal matrix is established and the corre-
sponding covariancematrix is calculated.Moreover, based on
the IG theory, the covariance matrices are mapped to coordi-
nate points on the manifold and the new RDFCM clustering
algorithm is developed. Finally, a data set is prepared to train
a classifier to determine the state of the channel.

A. EMD-BASED SIGNAL DENOISING
In practical sensing scenario, SUs will be disturbed by noise,
which degrades the sensing performance. To address this
conundrum, the EMD algorithm which is considered as an
effective technique for nonlinear and nonstationary modal
decomposition, is employed to remove the noise component
in the noisy signal that collected by SUs. The basic idea
of EMD algorithm is decomposing the signal into a series
of intrinsic mode functions (IMFs). The major advantage of
the EMD is that the basis functions are derived from the
signal itself. Hence, the analysis is adaptive in contrast to
the traditional methods where the basis functions are fixed.
It is noticed that most of the noise components are concen-
trated on the higher frequency ones. Hence, by reconstructing
the low-frequency modes, the noise part can be eliminated.
Assume that yl(t) represents the received noisy signal for
lth SU. The decomposition process of EMD algorithm is
given in Algorithm 1.

After EMD decomposition, the received noisy signal yl(t)
for lth SU can be represented by

yl(t) =
C∑
j=1

IMFj(t)+ rC (t), (5)

where C is the number of modes, rC (t) is a residual. In order
to remove the noise components in yl(t), the IMF components
at low frequency should be reconstructed. Hence, we need
to find a mode index js, after which, IMF components are
dominated by the signal. In this paper, the consecutive MSE
(CMSE) is adopted to determine the js. Define ỹ

js
l (t) is the

reconstruction of the original signal, i.e.,

ỹjsl (t) =
C∑
j=js

IMFj(t)+ rC (t). (6)

Then, the CMSE is defined as

CMSE
(
ỹjsl (t), ỹ

js+1
l (t)

)
,

1
N

N∑
i=1

(
ỹjsl (ti)− ỹ

js+1
l (ti)

)2
,

1
N

N∑
i=1

(
IMFjs (ti)

)2
. (7)

Therefore, the index js is obtained by

js = argmin
1≤js≤C−1

CMSE
(
ỹjsl (t), ỹ

js+1
l (t)

)
. (8)
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FIGURE 2. The structure of EMD-RDFCM approach.

After EMD denoising, the received signal for lth SU is
expressed by

ȳl(t) =
C∑
j=js

IMFj(t)+ rC (t). (9)

Then, the signal matrix is represented as

Y =


ȳ1(1) ȳ1(2) · · · ȳ1(N )
ȳ2(1) ȳ2(2) · · · ȳ2(N )
...

...
. . .

...

ȳL(1) ȳL(2) · · · ȳL(N )

 . (10)

B. SPECTRUM SENSING BASED ON
INFORMATION GEOMETRY
Based on (10), the covariance matrix of signal matrix is
calculated as

C =
1
N
YYT (14)

Then, the binary hypotheses can be formulated as

H0 : C = σ 2
z I,

H1 : C = Cp + σ
2
z I, (15)

where Cp ∈ RL×L is the PU signal matrix, I ∈ RL×L is
the identity matrix. From [22], [32], we know that C follows
the Wichter distributions W(L, σ 2

z I) and W(L,Cp + σ 2
z I)

in the case ofH0 andH1, respectively.

Algorithm 1 EMD Algorithm
Step 1: Extract all the extreme points on yl(t).
Step 2: Calculate the upper and lower envelopes ymax

l (t) and
ymin
l (t) by cubic spline interpolation approach. Then,
the envelope mean is calculated by

m1(t) =
ymax
l (t)+ ymin

l (t)

2
. (11)

Step 3: Calculate the first component by

h1(t) = yl(t)− m1(t). (12)

If h1(t) satisfies the IMF conditions, then goto Step
4. Otherwise, repeat Steps 1 and 2 on h1(t).

Step 4: Let IMF1 = h1(t) and calculate the residual signal by

rC (t) = yl(t)− IMF1. (13)

Step 5: If rC (t) is a monotonous function or a constant, then
let rC (t) be the final residual signal. Otherwise, let
rC (t) be the original signal and repeat Steps 1–5.

IG is the application of differential geometry in statistics.
The main idea is using parameterized probability distri-
bution clusters to construct statistical manifold and then
transform the statistical problem into a geometric problem.
Spectrum sensing is a kind of signal detection problem, which
can be solved by analyzing the probability distribution of
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detection data. Based on IG theory, the spectrum sensing
problem can be transformed into a geometric problem on
manifold space and the properties of probability distribution
function clusters can be analyzed more intuitively by using
geometric method. In the context of IG theory, the statistical
manifold Sm can be defined as

Sm = {p(x|θ )|θ ∈ 2}, (16)

where x ∈ Rn is the random variable, θ ∈ Rm is the
parameter vector, p(x|θ ) is the probability density function,
2 is the probability distribution space. In IG theory, θ can
be considered as the coordinate on the manifold. From the
above analysis, the Wichter distributions W(L, σ 2

z I) and
W(L,Cp + σ

2
z I) can be mapped into the statistical manifold

and the covariancematrices σ 2
z I andCp+σ

2
z I can be regarded

as the corresponding coordinates. The structure of the statis-
tical manifold is shown in Figure 3.

FIGURE 3. The structure of the statistical manifold.

In IG theory, the Riemannian distance which is the shortest
curve to connect the two coordinate points on manifold, can
be used to indicate the similarity of two distributions. Let 41
and42 be the two points on the manifold. Then, the Rieman-
nian distance between 41 and 42 can be calculated by

D2(41, 42) =

∥∥∥∥log(4− 1
2

1 424
−

1
2

1 )

∥∥∥∥2
=

∥∥∥log(4−11 42)
∥∥∥2

= tr
(
log2(4−11 42)

)
=

L∑
i=1

log2(λi), (17)

where ‖ · ‖ is the Frobenius norm and λi is the i eigenvalues
of the matrix 4−11 42.

C. COOPERATIVE SPECTRUM SENSING BASED ON
RDFCM CLUSTERING ALGORITHM
FCM algorithm is a vital clustering approach in unsupervised
machine learning, which groups the data points into a spe-
cific number of clusters by minimizing the distance between

the data and the cluster centers of their fuzzy memberships
[33]–[36]. Let S = {s1, . . . , sk} be a data set containing
k data points, q be the number of clusters and satisfies
2 ≤ q < k , CF = {c1, . . . , cq} be a set of cluster centers.
Then, FCM algorithm performs clustering by addressing

minimize J (U ,CF ) =
q∑
i=1

k∑
j=1

µmij ‖sj − ci‖
2,

subject to
q∑
i=1

µij = 1,
k∑
j=1

µij > 0, (18)

where µmij ∈ [0, 1] is the membership of sj in class i,
m ∈ [1,∞) is the degree of fuzzification, U = {µij} ∈ Rq×k

is themembershipmatrix. The constraints guarantee that each
data has the same overall weight in the data set and none of
the clusters is empty. By using the alternating optimization
approach, the update equations at p iterate are obtained by

µ
p+1
ij =



 q∑
h=1

[
‖sj − c

p
i ‖

2

‖sj − c
p
h‖

2

] 1
m−1
−1 , if Ij = ∅

1
|Ij| , if Ij 6= ∅, i ∈ Ij
0, if Ij 6= ∅, i /∈ Ij

cp+1i =

k∑
j=1

(µp+1ij )msj

k∑
j=1

(µp+1ij )m
,

where Ij = {i|i ∈ [1, q], sj = cpi }. It is noticed that
traditional FCM algorithm uses Euclidean distance to mea-
sure the distance between the sample point and the cluster
center, which only available in linear space. To achieve clus-
tering on the manifold, a modified FCM algorithm, namely
RDFCM method is developed, which uses Riemannian dis-
tance instead of Euclidean distance to measure the distance
between two elements on manifold.

Under the spectrum sensing scenario, RDFCM needs to
divide the sampled data located on the manifold into two
groups, i.e., the PU is idle and the PU is active. Before training
the classifier, the data set T which contains M covariance
matrices, needs to obtain, such that

T = {T1,T2, . . . ,TM }. (19)

Let Tj ∈ RL×L be the jth sample in T . Denote ϒi is the ith
center of the clusters. Then, the objective function of RDFCM
algorithm is designed as

minimize JRDFCM =

M∑
j=1

q∑
i=1

µmijD
2(Tj, ϒi),

subject to
q∑
i=1

µij = 1,
M∑
j=1

µij > 0, (20)
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Algorithm 2 RDFCM
Step 1: Input ε, T and let t = 0.
Step 2: Initialize the cluster center ϒ0

i and the membership matrix U0
= {µij}1≤i≤q,1≤j≤M .

Step 3: Calculate the equation (24) and update the cluster centers.
Step 4: Calculate the equation (25) and update the membership matrix.
Step 5: If ‖J t+1

RDFCM − J t
RDFCM‖

2
≤ ε, then goto Step 3. Otherwise, let t = t + 1, go back to Step 2 and continue.

Step 6: Output ϒi and U .

where D2(Tj, ϒi) is the Riemannian distance between Tj and
ϒi, µmij is the membership and satisfies m = 2. The Lagrange
multiplier method is employed to minimize the objective
function. Hence, we can obtain

L(µij, ϒi, λi) =
M∑
j=1

( q∑
i=1

µmijD
2(Tj, ϒi)

+λi(1−
q∑
i=1

µij)
)
. (21)

The partial derivatives of L with respect to µij and ϒi can be
calculated as

∂L
∂µij
= mD2(Tj, ϒi)µ

m−1
ij − λi, (22)

∂L
∂ϒi
= −

M∑
j=1

2µmij (Tj − ϒi). (23)

Then, we can final obtain

ϒi =

∑M
j=1 µ

m
ijTj∑M

j=1 µ
m
ij

, (24)

µij =

q∑
h=1

(
D2(Tj, ϒi)
D2(Tj, ϒh)

)− 1
m−1

. (25)

From (24) and (25), we know that ϒi and µij are related
to each other. Therefore, an iterative approach is adopted to
obtain the optimal solution. The specific process is given in
Algorithm 2. After the training is accomplished, a classifier
for spectrum sensing is obtained by

F(T̂) =
D2(ϒ1, T̂)

D2(ϒ2, T̂)
, (26)

where T̂ is the data on the manifold that need to be classified.
If F(T̂) > ξ , it means that the PU is absence and the
SUs are not allowed to be accessed. If F(T̂) ≤ ξ , it indi-
cates that PU is presence, then the SUs can use the licensed
spectrum. ξ is a designed parameter that uses to control
the Pd and Pf .

D. COMPLEXITY ANALYSIS
The complexity of the EMD-RDFCM-based CSS method
consists of two parts, i.e., the training phase and the sens-
ing phase. In training phase, the complexity is expressed

as O((M × q) × Ik ), where M is the number of data set,
q is the number of cluster centers, and Ik is the num-
ber of iterations. It is worth mentioning that the complex-
ity of the EMD-RDFCM-based CSS approach in training
phase can be rewritten as O(M ) as the M is increase.
In sensing phase, the classifier has been obtained and can
be used directly. Therefore, comparing with the training
phase, the complexity of the sensing phase is low and can be
ignored.
Remark 1: The differences between the EMD-RDFCM

method and existing methods lies in that: 1) Different from
existing methods [8], [10], [12], [18], [22], [23], the fixed
decision threshold and the fixed reference are not required
in EMD-RDFCM method. Therefore, it is more adaptive
in different scenarios. 2) Different from existing methods
[24]–[27], this method is realized on manifold space by using
the novel RDFCM clustering algorithm. Moreover, the EMD
algorithm is adopted to exclude the noise component of the
signals received by SUs, which can be considered as a data
preprocessing process to obtain superior feature.

IV. SIMULATION ANALYSIS
In this section, the effectiveness of the EMD-RDFCM-based
CSS method is verified.

A. SUs IN SAME SNR
In this part, the performance of the EMD-RDFCM-based
CSS method is analyzed when SUs in same SNR. Before
training the classifier, a date set T = {T1, . . . ,T2000}

which contains 2000 samples is generated. The number
of SU and the number of sample points are selected as
L = 2 and N = 1000, respectively. Under the condi-
tions of SNR = [−10dB, −10dB], SNR = [−12dB,
−12dB], SNR = [−14dB, −14dB], and SNR =

[−16dB,−16dB], the comparison results between the EMD-
RDFCM-based CSS approach and other spectrum sens-
ing methods, such as DARDMM, IQDMM, and IQRMET
[26], [27], are revealed in Figures 4–7, respectively. It is obvi-
ous that the RDFCM method is better than traditional ones.
Similarly, the EMD-RDFCM achieve superior detection per-
formance than RDFCM, which means that the EMD algo-
rithm removes the noise component effectual. The detailed
data is shown in Table 2. In SNR = [−10dB,−10dB],
Pf = 0.1, compared with conventional methods, the detec-
tion probability of EMD-RDFCM approach is enhanced
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TABLE 2. Detection probability of different methods when SUs in same SNR.

TABLE 3. Detection probability of different methods when SUs in different SNR.

FIGURE 4. The ROC curves of different methods when
SNR = [−12dB,−12dB].

by 5.92%, 12.20%, 13.35%, and 15.19%, respectively.
In SNR = [−12dB,−12dB],Pf = 0.1, the detection prob-
ability of EMD-RDFCM approach is increased by 4.15%,
29.17%, 49.68%, and 78.61%, respectively. Figure 12 shows
the convergence of the loss value for EMD-RDFCMapproach
at SNR = [−12dB,−12dB]. It means that the developed
algorithm is stable.

B. SUs IN DIFFERENT SNR
In this section, the effectiveness of the EMD-RDFCM-
based CSS method is demonstrated in the condition of

FIGURE 5. The ROC curves of different methods when
SNR = [−16dB,−16dB].

SUs in different SNR. As can be seen from Figures 8–11,
compared with traditional methods, the EMD-RDFCM
approach can obtain the best detection results. The
detection probability of different methods are provided
in Table 3. In condition of SNR = [−10dB,−10.5dB],
Pf = 0.1, we can calculate that the detection probability
of EMD-RDFCM method is 0.981. However, the detection
probability of RDFCM, DARDMM, DARIG, and IQDMM
are 0.945, 0.845, 0.832 and 0.831, respectively. In condition
of SNR = [−12dB,−12.5dB],Pf = 0.1, the detection
probability of EMD-RDFCM method is 0.954. However, the
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FIGURE 6. The ROC curves of different methods when
SNR = [−12dB,−12.5dB].

FIGURE 7. The ROC curves of different methods when
SNR = [−16dB,−16.5dB].

FIGURE 8. The Loss value of EMD-RDFCM method at
SNR = [−12dB,−12.5dB].

detection probability of the other methods are 0.901, 0.676,
0.539 and 0.471, respectively. From section A and B, we can
conclude that the EMD-RDFCM method can obtain the
optimal sensing performance than the rest of approaches
under two different scenarios. Under the condition of SNR =
[−12dB,−12.5dB], the convergence of the loss value for the
EMD-RDFCM method is shown in Figure 13.

FIGURE 9. The ROC curves of different sampling number.

FIGURE 10. The ROC curves of different methods when
SNR = [−14dB,−14.5dB].

FIGURE 11. The ROC curves of different methods when
SNR = [−16dB,−16.5dB].

C. DIFFERENT NUMBER OF SUs
In this portion, the sensing performance of the EMD-RDFCM
method is analyzed under different number of SUs. The ROC
curves and detection probability of different methods are
displayed in Figure 14 and Table 4, respectively. It is clear
that the detection performance is better as the number of the
SUs increase.
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FIGURE 12. The Loss value of EMD-RDFCM method at
SNR = [−12dB,−12dB].

FIGURE 13. The Loss value of EMD-RDFCM method at
SNR = [−12dB,−12.5dB].

FIGURE 14. The ROC curves under different number of SUs.

TABLE 4. Detection probability under different number of SUs.

D. DIFFERENT NUMBER OF SAMPLING POINT
In this portion, the availability of the EMD-RDFCM
approach is verified under different number of sampling
point. The ROC curves of EMD-RDFCM approach at

FIGURE 15. The ROC curves of different sampling number.

TABLE 5. Detection probability of different sampling number.

different sampling point are revealed at Figure 15. The
detailed detection probability is provided in Table 5. Accord-
ing to the experimental results, the sensing performance is
improved as the number of the sampling point increase.

V. CONCLUSION
In this paper, an EMD-RDFCM approach is developed to
address the spectrum sensing problem in CR. To enhance the
detection precision, the EMD algorithm is adopted to wipe
off the noise portion of the received signal. A data set which
contains the covariance matrix of the reconstructed signal
is prepared to train a classifier. Then, an RDFCM cluster-
ing algorithm is proposed to cluster samples on manifold
space. After the classifier is obtained, we use it to decide
the state of the channel. Finally, the simulation part verifies
the effectiveness of the EMD-RDFCM approach under two
different conditions, i.e., the SUs in same SNR and the SUs
in different SNR. The major contribution of this paper is on
proposing an RDFCM clustering algorithm to obtain a classi-
fier on manifold. Furthermore, the developed EMD-RDFCM
approach obtains the better sensing performance in contrast
to traditional methods. In future work, the delay, delivery
ratio, fairness index and efficiency of the CR will be con-
sidered and extend the developed CSS method to real-world
scenarios.
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