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ABSTRACT In this paper, the problem of adaptive control with disturbance attenuation is investigated
for stochastic discrete-time nonlinear systems with Markovian jumping parameters and unknown system
parameters. Using the proposed control law and the sufficient conditions, the closed-loop system achieved
H∞ performance. As a practical example of the considered problem, an air-fuel ratio controller for a gas
engine intended as an electric vehicle extender is designed based on the proposed adaptive disturbance
attenuation control algorithm. The air-fuel ratio controller is validated via a numerical simulation under three
working conditions. The results of the numerical simulation show that the air-fuel ratio can be regulated
into a range around its desired value by the proposed adaptive disturbance attenuation controller and that
the adaptive law can be tuned to a steady value. The control performance indices of the proposed adaptive
disturbance attenuation controller are smaller than those of the open-loop controller, which means that the
proposed adaptive disturbance attenuation controller achieves a greater control effect.

INDEX TERMS Stochastic robust adaptive control, air-fuel ratio, Markovian switching, gas engine for
electric vehicle extender.

I. INTRODUCTION
Research on robust and/or adaptive control algorithms for
stochastic systems has become an interesting area in the
theory of control. For the continuous-time case, the finite time
fault tolerant adaptive control problem for nonlinear system
with various faults was deduced in [1], using the backstepping
and neural networks technologies. The neural adaptive back-
stepping controller design problem for a nonlinear system
with non-strict feedback characteristics and consideration of
input delay was investigated in [2]. The finite time adaptive
tracking control algorithm for an indeterminate non-strict
feedback nonlinear system with restriction of input has was
reported by [3], and the unmeasured states were obtained
by the observer. By applying dynamic programming with
a neural network, the robust adaptive event-driven control
problem of an indeterminate nonlinear systemwas researched
in [4]. The robust adaptive fuzzy constructive on-line
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control algorithm design problem with consideration of the
disturbances and uncertainties of a surface tracking vehicle
was deduced in [5]. The resilient controller design problem
for regulation of cross movement of an intelligent vehicle
was investigated by [6]. In further development, stochastic
systems with Markovian jumping parameters and unknown
system parameters have attracted much attention, and the
tracking control problem of an indeterminate switched
nonlinear system with non-lower triangular characteristics
using the adaptive neural control algorithm was researched
in [7]. The stochastic neural adaptive tracking control
problem of an indeterminate switched nonlinear system with
a non-strict feedback characteristic was investigated in [8],
using the average dwell time approach. The neural adaptive
tracking control problem of an indeterminate multi-input
multi-output switched nonlinear non-strict feedback system
with dead zone inputs and constraints of outputs was
deduced in [9]. The stochastic fuzzy adaptive output feedback
tracking control problem of a switched nonlinear system
with pure feedback characteristics was studied in [10] using
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backstepping technology. Output feedback static robust H∞
control design of linear systemwith uncertainties of polytopic
examined in [11].

For discrete-time stochastic systems with Markovian
jumping parameters, adaptive controller design of a nonlinear
system with discrete-time characteristics was researched
in [12] using neural networks. A robust controller was
proposed by [13] for a linear discrete-time system that con-
tains Markovian jumping parameters, and the achievements
of stochastic stability and H∞ performance were reported.
Robust control and stability analysis of the stochastic linear
system with discrete-time characteristics and Markovian
jumping parameters were researched in [14]. The robust
control problem of a discrete-time linear system with Marko-
vian jump parameters and time-delays of mode-dependent
was investigated in [15]. The results of [13] were extended
to a nonlinear system with discrete-time characteristics
and Markovian jumping parameters by [16]. The problems
of a nonlinear system with discrete-time characteristics
and Markovian jump parameters were investigated by [17]
using control design to restrict executor and the partially
known probabilities of transition. Stochastic stability and
stabilization with the partially known transition probabilities
of finite-time for a linear Markovian jump system with
discrete-time characteristics was researched by [18]. The
problem of stabilization for a Markovian jump delay system
with discrete-time characteristics and stochastic non-linearity
was deduced by [19]. The work in [20] addressed the
output feedback optimal control algorithm of a stationary
dynamic for linear system with discrete-time characteristics,
Markovian jumping parameters and additive standard distur-
bance. The H∞ filter design problem for an indeterminate
discrete-time system with the characteristics of packet
dropouts and quantized measurements was proposed in [21].
A robust H∞ controller design for a non-homogeneous
Markovian jump linear system with discrete-time character-
istics and Markovian jumping parameters was studied using
a multi-step Lyapunov function approach by [22]. Research
on robust regulation for a linear system with discrete-time
characteristics and Markovian jumping parameters subjected
to variation of the structured parameter was proposed in [23].

However, no robust adaptive control algorithms have
been reported for stochastic discrete-time nonlinear systems
with Markovian jumping parameters and unknown system
parameters, even though those of stochastic continuous-time
nonlinear systems with Markovian jumping parameters and
unknown system parameters are well researched. Indeed,
the methodological systems in stochastic robust adaptive
control algorithm design for the continuous-time case and
the discrete-time case are dissimilar, e.g., the method of
solving the Lyapunov function in the continuous-time case is
based on differential theory, whereas that in the discrete-time
case is based on difference theory, which leads to different
processing technologies.

The robust adaptive air-fuel ratio control problem of
a gas engine intended as an electric vehicle extender is

a practical application of the proposed robust adaptive
control problem of stochastic discrete-time nonlinear systems
with Markovian jumping parameters and unknown system
parameters. Indeed, the control problems of gas engines
have been widely researched. The variation in the cyclic
cylinder pressure of gas engines relative to the lean burn
operating mode was researched in [24]. In [25], the results
of an experiment on gas engines with direct injection were
investigated by improvement of the gasoline engine with port
injection systems. For calculation of the equivalence ratio
of the pre-combustion chamber, a model was established
under various mixtures and fuel flow proportions in [26].
In [27], an experimental study was performed on the effect
of compression ratio on the performances of combustion and
emission which are affected by the compression proportion
for gas engines with enriched hydrogen under various air-fuel
ratios. The research results related to the effect of the
natural gas composition on the combustion and emission
performances of internal combustion engines fueled by
natural gas were reviewed by [28]. Cyclic variation of
combustion in gas engines with pre-mixed and lean-burn
characteristics was investigated in [29]. Improvement of the
thermal efficiency by increasing the compression ratio for
acquisition of a higher expansion proportion was validated
by the experiments in [30]. Compressed natural gas and
air mixed fired by a laser was investigated in experiments
under various compression proportions and excess air for
the purpose of fully utilizing compressed natural gas was
discussed in [31]. It should be noted that the cyclic mass
of the intake air in the gas engines is uncertain even at
steady working conditions, which consist of an unknown
nominal component and a disturbance component. Moreover,
cyclic transmutation of the residual gas fraction which
reflects the level of the residual gas, obeys the Markov
property [32]. The above factors have a large influence on
the air-fuel ratio control performance of gas engines, and
the proposed robust adaptive control design technology of
stochastic discrete-time nonlinear systems with Markovian
jumping parameters and unknown system parameters is a
suitable approach to solving the problem.

Based on the results of [13] and [33], the robust adaptive
controller, the adaptive law and the sufficient conditions of
the stochastic nonlinear discrete-time systems with Marko-
vian jumping parameters and unknown system parameters
are given in this paper by solving a discrete-time Lyapunov
function. Robust adaptive air-fuel ratio control of the gas
engine for an electric vehicle extender, which meets the form
of the considered problem, is used as a practical application
of the proposed control law. From the results of the numerical
simulation, we observe that the proposed control law is
effective under various working conditions.

The contributions of this paper can be summarized in
the following two points. First, the robust adaptive control
algorithm is designed for stochastic discrete-time nonlinear
systems with Markovian jumping parameters and unknown
system parameters by solving a discrete-time Lyapunov
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function. Second, the proposed control algorithm is applied
to air-fuel ratio control of a gas engine intended as an electric
vehicle extender to overcome the influence of the intake air
and residual gas on the control accuracy of the air-fuel ratio.

The rest parts of the paper are organized as follows. The
problem formulation and controller design are described in
Section II. Section III presents application to gas engine
as an electric vehicle extender. The numerical simulation is
demonstrated in Section IV. Lastly, Section V summarizes the
conclusions of this paper.

II. PROBLEM FORMULATION AND CONTROLLER DESIGN
For the stochastic nonlinear system with discrete-time
characteristics, Markovian jumping parameters and unknown
system parameters, the following applies:

x (k + 1) = A (r (k)) x (k)+ B1 (r (k)) ω (k)+ α (x (k)) θ

+B2 (r (k)) u (k) , y (k)

= C (r (k)) x (k) , (1)

where x(k) ∈ Rn denotes the state of the system, u(k) ∈
Rp denotes the control, y(k) ∈ Rm denotes the output,
θ ∈ Rr denotes the unknown parameter vector, α(·) denotes
the known positive bounded function of the appropriate
dimensions, ω(k) ∈ Rq denotes the disturbance input that
belongs to L2[0,∞], the discrete-time homogeneous Markov
chain, which is denoted by r(k), taking values into the set
S = {s1, · · · , sn}, and the one-step transition probability pij,

pij = P
(
r (k + 1) = sj | r (k) = si

)
. (2)

For r (k) = si, the matrices A(si), B1(si), B2(si) and C(si)
are constant matrices with the appropriate dimensions.

The control objective is to ensure that the system (1)
stochastically stable when ω(k) is 0 and hasH∞ performance
γ from the disturbance input ω(k) to the output y(k) over
[0,∞], i.e.,

E(
∞∑
k=0

yT (k)y(k)) ≤ γ
∞∑
k=0

ωT (k) ω (k), (3)

where E denotes the operator of expectation, yT (k) denotes
the transpose of y(k), and γ is a given scaler.
The definition of the stochastically stable and stability

theorem is shown first in this section [34].
Definition 1: If for every initial state (x (0) , r(0)), a finite

number M (x (0) , r (0)) > 0 exists, such that

E

{
∞∑
k=0

xT (k) x (k) |x (0) , r(0)

}
< M (x (0) , r (0)), (4)

then system (1) in the case ofω (k) = 0, u(k) = 0 and α (k) =
0 is said to be stochastically stable.
Lemma 1: If for any given set of {W (si) > 0, i =

1, · · · ,N }, a series of appropriate dimension matrices
{χ (si) > 0, i = 1, · · · ,N } exists, such that

N∑
j=1

pijAT (si) χ
(
sj
)
A (si)− χ (si) = −W (si) , (5)

then system (1) in the case of ω (k) = 0, u(k) = 0 and
α (k) = 0 is stochastically stable.
The design process of the control algorithm is expressed in

the following:
Theorem 1: Set a scaler γ , if a series of appropriate

dimension matrices {χ (si) > 0, i = 1, · · · ,N } exists,
satisfying

γ > BT1 (si)χ̄ (si)B1 (si)

+

((
αT (x (k)) α (x (k))

)−1
αT (x (k))B1 (si)

)T
0

×

((
αT (x(k))α(x(k))

)−1
αT (x(k))B1 (si)

)
, (6)

R (si) < 0, (7)

where

χ̄ (si) =
N∑
j=1

χ
(
sj
)
pij, (8)

R (si) = AT (si) χ̄ (si)A (si)− χ (si)+ CT (si)C (si)
+ ε−11 AT (si) χ̄ (si)B1 (si)�1 (si)−1

×BT1 (si) χ̄ (si)A (si)+ ε
−1
4 AT (si) χ̄ (si) α (x (k))

×�2 (si)−1 αT (x (k)) χ̄ (si)A (si)

−AT (si) χ̄ (si)
(
χ̄ (si) + ε

−1
2 χ̄ (si)B1 (si)

×�1 (si)−1 BT1 (si)χ̄ (si)+ ε
−1
5 χ̄ (si) α (x (k))

×�−12 (si) αT (x (k)) χ̄ (si)
)−1

χ̄ (si)A (si), (9)

where

�1 (si) = γ − B1 (si)T χ̄ (si)B1 (si)

−

((
αT (x (k)) α (x (k))

)−1
αT (x (k))B1 (si)

)T
0

×

((
αT (x(k))α(x(k))

)−1
αT (x(k))B1 (si)

)
, (10)

�2 (si) = 0 − αT (x(k))χ̄ (si) α (x (k))− ε
−1
3 αT (x (k))

× χ̄ (si)B1 (si)�
−1
1 (si)BT1 (si)χ̄ (si) α (x (k)),

(11)

and 0 > 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, ε5 > 0 are
design parameters satisfying

�2 (si) > 0,

ε1 + ε2 + ε3 = 1,

ε4 + ε5 = 1. (12)

There exists a stochastic adaptive control algorithm and the
adaptive law:

u (k) = −BT2 (k)
(
B2 (k)BT2 (k)

)−1 (
α (k) θ̂ (k)

+

(
χ̄ (si)+ ε

−1
2 χ̄ (si)B1 (si)�1 (si)−1

×BT1 (si) χ̄ (si)+ ε
−1
5 χ̄ (si) α (x (k))�

−1
2

× (si) αT (x (k)) χ̄ (si)
)−1

× χ̄ (si)A (si) x (k)
)
, (13)

VOLUME 8, 2020 156435



J. Yang et al.: Robust Adaptive Control for Stochastic Discrete-Time Nonlinear Systems and Application to Gas Engine

θ̂ (k + 1) = θ̂ (k)+
(
αT (x (k)) α (x (k))

)−1
αT (x (k))

×
(
x (k + 1)− x̂ (k + 1)

)
, (14)

where

x̂ (k + 1)=A (r(k)) x (k)+ α (x (k)) θ̂ (k)+ B2 (si) u (k),

(15)

where x̂(k) and θ̂ (k) are the estimated values of x (k) and θ ,
respectively, such that the system (1), (13) and (13) is
stochastically stable and has L2-gain performance γ over
[0,∞].

Proof: Choose a stochastic Lyapunov function as

V (k, r (k)=si)=xT (k) χ (si) x (k)+θ̃T (k) 0θ̃ (k), (16)

where θ̃ (k) = θ − θ̂ (k). By differential calculus, we have

1V (k, r (k) = si) = E [V (k + 1, r (k + 1)) |r (k) = si]

−V (k, r (k) = si)

= E
[
xT (k + 1) χ (r(k + 1)) x (k + 1)

+ θ̃T (k + 1) 0θ̃ (k + 1)
]

− xT (k) χ (si) x (k)− θ̃T (k) 0θ̃ (k).

(17)

Substituting (1) into (17), we obtain

1V (k, r (k) = si) = E
[
(A (r (k)) x (k)+ B1 (r (k)) ω (k)

+α (x (k)) θ + B2 (r (k)) u (k))T

×χ (r(k + 1)) (A (r (k)) x (k)

+B1 (r (k)) ω (k)+ α (x (k)) θ

+B2 (r (k)) u (k))+ θ̃T (k + 1)

×0θ̃ (k + 1)
]
− xT (k) χ (si) x (k)

− θ̃T (k) 0θ̃ (k), (18)

and based on (18), we can obtain

1V (k, r (k) = si)

= E [(A (r (k)) x (k)+ B1 (r (k)) ω (k)

+ α (x (k)) θ + B2 (r (k)) u (k))T χ (r(k + 1))

(A (r (k)) x (k)+ B1 (r (k)) ω (k)

+ α (x (k)) θ + B2 (r (k)) u (k))

+ θ̃T (k + 1) 0θ̃ (k + 1)
]

− xT (k) χ (si) x (k)− θ̃T (k) 0θ̃ (k)

+ yT (k) y (k)− yT (k) y (k)

+ γωT (k) ω (k)− γωT (k) ω (k). (19)

Rearranging (19), we have

1V (k, r (k) = si)

=

[
(xT (k)AT (r (k)) χ̄ (si)A (r (k)) x (k)

+ωT (k)BT1 (r (k)) χ̄ (si)B1 (r (k)) ω (k)

+ θTαT (x (k)) χ̄ (si) α (x (k)) θ

+ uT (k)BT2 (r (k)) χ̄ (si)B2 (r (k)) u (k)

+ xT (k)AT (r (k)) χ̄ (si)B1 (r (k)) ω (k)

+ωT (k)BT1 (r (k)) χ̄ (si)A (r (k)) x (k)

+ xT (k)AT (r (k)) χ̄ (si) α (x (k)) θ

+ θTαT (x (k)) χ̄ (si)A (r (k)) x (k)

+ xT (k)AT (r (k)) χ̄ (si)B2 (r (k)) u (k)

+ uT (k)BT2 (r (k)) χ̄ (si)A (r (k)) x (k)

+ωT (k)BT1 (r (k)) χ̄ (si) α (x (k)) θ

+ θTαT (x (k)) χ̄ (si)B1 (r (k)) ω (k)

+ωT (k)BT1 (r (k)) χ̄ (si)B2 (r (k)) u (k)

+ uT (k)BT2 (r (k)) χ̄ (si)B1 (r (k)) ω (k)

+ θTαT (x (k)) χ̄ (si)B2 (r (k)) u (k)

+ uT (k)BT2 (r (k)) χ̄ (si) α (x (k)) θ

+ θ̃T (k + 1)0θ̃ (k + 1)
]

− xT (k) χ (si) x (k)− θ̃T (k) 0θ̃ (k)

+ yT (k) y (k)− yT (k) y (k)

+ γωT (k) ω (k)− γωT (k) ω (k). (20)

Using (6) to (15), we can obtain

1V (k, r (k) = si)≤γωT (k) ω (k)−yT (k) y (k), (21)

which implies

E [V (k + 1, r (k + 1)) |r (k) = si]− V (k, r (k) = si)

≤ γωT (k) ω (k)− yT (k) y (k). (22)

Because (45) is true for every si, we can obtain

E [V (k + 1, r (k + 1))]− V (k, r (k) = si)

=

N∑
j=1

(E [V (k + 1, r (k + 1)) |r (k) = si]

− V (k, r (k) = si)) psi

≤

(
γωT (k) ω (k)− yT (k) y (k)

)
psi

= γωT (k) ω (k)− EyT (k) y (k). (23)

Summing both sides from 0 to∞, we have

E(
∞∑
k=0

yT (k) y (k)≤V (0, r (0))+γ
∞∑
k=0

ωT (k) ω (k). (24)

Hence, the resulting closed-loop system is stochastically
stable when ω (k) is 0 and achieves H∞ performance when
ω (k) is nonzero, i.e., from the disturbance input ω (k) to the
output y (k), it has finite L2-gain not larger than γ .

III. APPLICATION TO GAS ENGINE AS AN ELECTRIC
VEHICLE EXTENDER
The designed control law is applied to the control problem of
the air-fuel ratio of a gas engine intended as an electric vehicle
extender. The process of in-cylinder gas exchange of the gas
engine is exhibited in Fig. 1.
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FIGURE 1. Sketch map of gas exchange process of gas engine as an
electric vehicle extender.

A. DYNAMIC MODEL DESCRIPTION
The air-fuel ratio control dynamic model of the gas engine as
an electric vehicle extender is same as the one for the gasoline
engines shown in [32]:

y (k) = Ma (k)− λdMf (k) ,Ma (k + 1)

=
(
Ma (k)− λdMf (k)

)
ξ (k)

+Man (k) ,Mf (k + 1)

= Mf (k) (1− µ) ξ (k)+Mfn (k), (25)

where y (k) denotes the output of the system,Ma (k) denotes
the whole in-cylinder air mass, Mf (k) denotes the whole
in-cylinder fuel mass, the ideal air-fuel ratio λd is set to 17.4,
µ ∈ [0, 1] denotes the efficiency of combustion, the mass of
intake air Man (k) is viewed as an unknown constant intake
air massMan0 that adds a disturbance1Man (k) belonging to
L2[0,∞], and the fresh fuel mass Mfn (k) is the input. The
residual gas fraction ξ (k) is treated as a finite homogeneous
Markov chain, its state space is S = {ξ1, · · · , ξn} and the
one-step transition probability is

pij = P
(
r (k + 1) = ξj | r (k) = ξi

)
. (26)

System (25) is rearranged as follows:

y (k + 1) = ξ (k) y (k)− λdMfn (k)+Man (k)

= ξ (k) y (k)− λdMfn (k)+Man0

+1Man (k). (27)

It is clear that system (27) meets the form of system (1).

B. CONTROLLER DESIGN
The unknown constant mass of intake air Man0 is calculated
using the adaptive law [20]:

M̂an0 (k+1)=M̂an0 (k)+
(
y (k + 1)− ŷ (k + 1)

)
, (28)

where M̂an0 (k) denotes the estimation of Man0 of the k th
cycle, and the estimated value of y (k) of the k + 1 th cycle is
given as:

ŷ (k + 1) = ξ (k) y (k)− λdMfn (k)+ M̂an0 (k). (29)

The design process of the adaptive disturbance attenuation
air-fuel ratio controller is given in the following:

Theorem 2: For system (27), after setting a constant γ > 0,
if a class of χ (ξi) > 0, ξi ∈ � exists, and satisfies

ζ > η̄ (ξi)+ µ, (30)

φ (ξi) < 0, (31)

where

η̄ (ξi) =

N∑
j=1

η
(
ξj
)
pij, (32)

R (ξi) = η̄ (ξi) ξ2i − η (ξi)+ 1+ ε−11 η̄2 (ξi) ξ
2
i �
−1
3 (ξi)

+ ε−14 η̄2 (ξi) ξ
2
i �
−1
4 (ξi)

− η̄2 (ξi) ξ
2
i

(
η̄ (ξi)+ ε

−1
2 η̄2 (ξi)�

−1
3 (ξi)

+ ε−15 η̄2 (ξi)�
−1
4 (ξi)

)−1
, (33)

where

�3 (ξi) = ζ − η̄ (ξi)− µ, (34)

�4 (ξi) = µ− η̄ (ξi)− ε
−1
3 η̄2 (ξi)�

−1
3 (ξi). (35)

and µ > 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, ε5 > 0 are design
parameters satisfying:

�4 (ξi) > 0,

ε1 + ε2 + ε3 = 1,

ε4 + ε5 = 1. (36)

Thus, the adaptive disturbance attenuation air-fuel ratio
controller exists:

Mfn (k)

= λ−1d

(
M̂an0 (k) + η̄ (ξi) ξi

(
η̄ (ξi)+ ε

−1
2 η̄2 (ξi)�

−1
3 (ξi)

+ ε−15 η̄2 (ξi)�
−1
4 (ξi)

)−1
y(k)

)
. (37)

Therefore, the system (27) is stochastically stable when
1Man (k) is 0 and achievesH∞ performance when1Man (k)
is nonzero, i.e., from1Man (k) to the output y (k), it has finite
L2-gain not larger than ζ :

E
∞∑
k=0

y2 (k) < ζ

∞∑
k=0

1M2
an (k). (38)

Proof: Choose a stochastic Lyapunov function as
follows

V (k, ξ (k) = ξi) = η (ξi) y2(k)+ µM̃2
an (k), (39)

where M̃an0 (k) = Man0 − M̂an0 (k). By differential calculus,
we have

1V (k, ξ (k) = ξi) = E [V (k + 1, ξ (k + 1)) |ξ (k) = ξi]

−V (k, ξ (k) = ξi)

= E
[
η (ξ (k + 1)) y2 (k + 1)

+ µM̃2
an (k + 1)

]
− η (ξi) y2 (k)

−µM̃2
an (k). (40)
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Substituting (27) into (40), we obtain

1V (k, ξ (k) = ξi)

= E
[
η (ξ (k + 1))

(
ξiy (k)− λdMfn (k)

+ Man0 +1Man (k))2 + µM̃2
an (k + 1)

]
− η (ξi) y2 (k)− µM̃2

an (k), (41)

and based on (41), we can obtain

1V (k, ξ (k) = ξi)

= E
[
η (ξ (k + 1))

(
ξiy (k)− λdMfn (k)

+ Man0 +1Man (k))2 + µM̃2
an (k + 1)

]
− η (ξi) y2 (k)− µM̃2

an (k)+ y
2 (k)

− y2 (k)+ ζ1M2
an (k)− ζ1M

2
an (k). (42)

Rearranging (42), we have

1V (k, ξ (k) = ξi)

= η̄ (ξi) ξ
2
i y

2 (k)+ η̄ (ξi) λ2dM
2
fn (k)

+ η̄ (ξi)M2
an0 + η̄ (ξi)1M

2
an (k)

− 2η̄ (ξi) ξiλdy (k)Mfn (k)+ 2η̄ (ξi) ξiy (k)Man0

+ 2η̄ (ξi) ξiy (k)1Man (k)

− 2η̄ (ξi) λdMfn (k)Man0

− 2η̄ (ξi) λdMfn (k)1Man (k)

+ 2η̄ (ξi)Man01Man (k)+ µM̃2
an (k + 1)

− η (ξi) y2 (k)− µM̃2
an (k)+ y

2 (k)

− y2 (k)+ ζ1M2
an (k)− ζ1M

2
an (k). (43)

By (28) to (37), we can obtain

1V (k, ξ (k) = ξi) ≤ ζ1M2
an (k)− y

2 (k), (44)

which implies

E [V (k + 1, ξ (k + 1)) |ξ (k) = ξi]− V (k, ξ (k) = ξi)

≤ ζ1M2
an (k)− y

2 (k). (45)

Because (45) is true for every ξi, we can obtain

E [V (k + 1, ξ (k + 1))]− V (k, ξ (k) = ξi)

=

N∑
j=1

(E [V (k + 1, ξ (k + 1)) |ξ (k) = ξi]

− V (k, ξ (k) = ξi)) pξi

≤

(
ζ1M2

an (k)− y
2 (k)

)
pξi

= ζ1M2
an (k)− Ey

2 (k). (46)

Summing both sides from 0 to∞, we have

E
∞∑
k=0

y2 (k) ≤ V (0, ξ (0))+ ζ
∞∑
k=0

1M2
an (k). (47)

Hence, the resulting closed-loop system is stochastically
stable when 1Man (k) is 0 and achieves H∞ performance
when 1Man (k) is nonzero, i.e., from the disturbance

input 1Man (k) to the output y (k), it has finite L2-gain not
larger thanζ .
Remark 1: The computation process of the adaptive

disturbance attenuation air-fuel ratio controller (37) is the
same as the one of the robust adaptive control algorithm (13),
i.e., (37) can be calculated by replacing themulti-dimensional
variables in system (13) by the corresponding one-dimension
variables of the gas engine intended as an electric vehicle
extender because system (27) is the typical form of sys-
tem (1).
Remark 2: The main results of this paper contain the

design of a robust adaptive control algorithm (13) for
stochastic discrete-time nonlinear systems with Markovian
jumping parameters and unknown system parameters (1),
the methodological systems of which are dissimilar to
those of the corresponding continuous-time systems. The
design of the adaptive disturbance attenuation air-fuel ratio
controller (37) for the gas engine intended as an electric
vehicle extender is an application of the proposed control
algorithm, that overcomes the influence from the intake air
and residual gas on the control accuracy of the air-fuel ratio.

IV. NUMERICAL SIMULATION
Validation of the given control algorithm (37) is demonstrated
using the numerical simulation, which is same as the one
in [32]:

y (k) = Ma (k)−Mf (k)λd ,
Ma (k + 1) =

(
Ma (k)− λdµMf (k)

)
r (k)+Man (k),

Mf (k + 1) = Mf (k) (1− µ) r (k)+Mfn (k),

Ṁan =
ρaVdηv
4πPa

ωePm,

Te =
HuVdηiηvPm
4πRTmλ

,

J ω̇e = Te − Tl,

Ṗm =
RTm
Vm

(
Ṁi − Ṁan

)
,

Ṁi = s0 (1− cosφ)
Pa
√
RTa

ψ

(
Pa
Pm

)
, (48)

where Ṁan denotes the flow rate of the air mass leaving the
manifold, ρa denotes the atmospheric density, Vd denotes the
cylinder displacement, ηv denotes the volumetric efficiency,
ωe denotes the engine revolution, Pm denotes the manifold
pressure, Pa denotes the atmospheric pressure, Te denotes the
mean indicated torque,Hu denotes the fuel low heating value,
ηi denotes the indicated efficiency, R denotes the constant
of gas, Tm denotes the manifold temperature, J denotes the
rotational inertia, Tl denotes the external load, Ṁi denotes the
mass flow rate of the air pass throttle, s0 denotes the area of
the throttle, φ denotes the opening of the throttle, and

ψ (s) =


s
2
k

(
2k

k − 1
(1− s)

) k−1
k

if s ≥
(

2
k + 1

) k
k−1

k
(

2
k + 1

) k+1
k−1

if otherwise.

(49)
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FIGURE 2. Sketch map of simulation.

FIGURE 3. Air-fuel ratio of A.

Fig. 2 shows a sketch map of the simulation. The sim-
ulations were conducted under working conditions denoted
by A, B and C. For A, the engine revolution is 800 rpm,
the external load is 60 Nm, and M̂an0 (0) is 0.13 g. For
B, the engine revolution is 1200 rpm, the external load is
60 Nm, and M̂an0 (0) is 0.14 g. For C, the engine revolution is
1200 rpm, the external load is 90 Nm, and M̂an0 (0) is 0.15 g.
The control parameters γ , 0, ξi, ε1, ε2, ε3, ε4, and ε5 are
chosen as 4.9, 2.5, 1.2, 0.4, 0.3, 0.3, 0.5, and 0.5, respectively.

The performance of the proposed control algorithm is
shown in Figs. 3-8, where Mopen(k) denotes the open-loop
controller as follows:

Mopen(k) =
Man(k)
λd

, (50)

where Man(k) can be estimated by the air mass flow
rate sensor, and Mfn(k) denotes the adaptive disturbance
attenuation air-fuel ratio controller (37). From the signals
of the air-fuel ratio shown in Figs. 3-5, we observe that
the air-fuel ratio can be controlled in a small range of the

FIGURE 4. Air-fuel ratio of B.

FIGURE 5. Air-fuel ratio of C.

ideal air-fuel ratio by Mfn(k) and Mopen(k) under all of the
working conditions. The signals given in Figs. 6-8 show that
the adaptive law can be tuned to a steady value by Mfn(k)
under each working condition.
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FIGURE 6. Adaptive law of A.

FIGURE 7. Adaptive law of B.

FIGURE 8. Adaptive law of C.

The control performance indices over 140000 sampling
points of Mfn(k) and Mopen(k) under the three working
conditions are exhibited in TABLE I, where

J (N ) =
N∑
k=1

(λ (k)− λd )2 . (51)

From TABLE I we find that the dispersion of the air-fuel ratio
of Mfn(k) is smaller than that of Mopen(k), which means that
Mfn(k) achieves better control performance under all of the
working conditions.

TABLE 1. Control performance indices of A, B and C.

V. CONCLUSION
The paper addressed the adaptive control problem and
disturbance attenuation for stochastic systems with nonlinear
characteristics and Markovian jumping parameters. The
robust adaptive controller is given, and the closed-loop
system achieves stochastic stability without disturbance
and achieves H∞ performance over [0,∞] with nonzero
disturbance. The proposed control law is validated through
the robust adaptive air-fuel ratio control problem of the
gas engine intended as an electric vehicle extender. The
disadvantage of the proposed control algorithm is that the
structure is complex because many influencing factors are
considered, such as unknown parameters and external distur-
bance, which results in a complicated design and theoretical
analysis process for the proposed control algorithm. For use
of alternative fuels, the control problem of gas engines fueled
by biogas will be the subject of our future work.
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