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ABSTRACT Millimeter-wave massive MIMO can effectively improve the signal-to-noise ratio, but the
high-dimensional channel matrix significantly increases the complexity of the classic channel estimation
algorithm. On the other hand, millimeter-wave massive MIMO has low rank and sparsity properties in the
angle domain. Combining these two properties can effectively improve the channel estimation accuracy. This
article proposes a novel millimeter-wave sparse channel estimation method based on joint nuclear norm
and `1−2-regularization. The basic idea of the proposed algorithm is to formulate the channel estimation
problem as a compressed sensing problem. This method constructs an objective function consisted of
`1−2-regularization, and the resulting nuclear norm minimization problems is optimized via the alternating
directionmethod ofmultipliers (ADMM) algorithm. The simulation results verified that the proposedmethod
can provide better estimation accuracy compared with the state-of-the-art compressed sensing-based channel
estimation methods.

INDEX TERMS ADMM, low rank, sparse channel estimation, `1−2-regularization, massive MIMO,
millimeter-wave.

I. INTRODUCTION
Mobile communication systems have been constantly evolv-
ing due to new applications and demands. The emergence
of the Internet of Everything (IoE) system, which connects
millions of people and billions of machines requires the
wireless communication systems to have higher transmis-
sion rate and lower delay [1]. However, the existing fre-
quency band is no longer sufficient to meet the increasing
spectrum demands of wireless communication technology.
It is necessary for wireless communication to evolve to a
higher frequency band. Millimeter wave (mmWave) com-
munication technology plays a key role in providing more
bandwidth, larger capacity, ultra-high data rate and safe
transmission [2]–[4].

Due to the weak millimeter wave diffraction ability, it is
easily blocked, resulting in a poor wireless transmission. The
high path loss in mmWave frequencies can be compensated
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by massive MIMO technology. The short wavelengths of
mmWave enables the placement of dozens to hundreds of
antenna elements in an array on a relatively small physical
platform. The large antenna array can provide a sufficient
beamforming gain. Beamforming can be categorized into
analog digital, and hybrid [5]. To reduce the power consump-
tion and the cost, mmWave massiveMIMO systems often use
a hybrid beamforming structure [6]. The analog part aims to
increase the antenna array gain, and the digital part aims to
cancel interferences [6]. However, designing appropriate pre-
coding matrix for the system requires a priori known channel
state information. Hybrid precoding using channel estimation
is still required to improve mmWave system performance.

Nonetheless, millimeter-wave channels have sparse char-
acteristics in the beam space domain. [7]–[9] The application
of compressed sensing theory to millimeter-wave channel
estimation, using `1-norm instead of `0-norm to represent
sparsity, transforms the channel estimation problem to the
recovery of sparse signals problem, the solution of which can
be obtained using compressed sensing algorithm to improve
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estimation accuracy and to reduce complexity. Compared
with classic massive MIMO channel estimation algorithms
such as MMSE, LMMSE, LS, etc., millimeter wave channel
estimation algorithm based on `1-norm minimization pro-
vides lower complexity, higher performance and stronger
robustness. In addition, as the dimensions of massive MIMO
increase, compressed sensing algorithms have more obvious
low latency overhead, so they have been extensively studied
in recent years. In order to further utilize the sparsity of
signals, non-convex functions were proposed to recover the
sparse signals, such as using `q(0 < q < 1) instead of
`1-norm [10], [11]. Although `q is more difficult to min-
imize than `1-norm, it can reconstruct sparse signals from
fewer observation vectors [12]. However, many problems are
coherent, and conventional methods such as `1 minimization
do not work well. The difference of the `1 and `2 norms,
denoted as `1−2, is shown to have superior performance
over `1 method [10]. [11] Using the mixed `2/`1−2 further
expand the range of recoverable sparse signals and improve
the reconstruction probability.

In addition to the sparse scattering characteristic, millime-
ter wave channels also have low-rank properties. In the high-
density urban environment, previous real-worldmeasurement
reports indicate that millimeter wave channels propagate
in the angular domain in the form of clusters [13]–[16].
This angular expansion leads to the channel matrix having
a structured sparse nature, which can be used to improve
the estimation performance [17]. At the same time, since
millimeter wave channel propagation paths are mostly con-
centrated in clusters, the correlation of the channel matrix
is high, resulting in a low-rank channel matrix, the channel
rank of which is much smaller than the sparse level [24].
The low-rank structure of the millimeter wave channel can
effectively reduce the channel estimation pilot overhead and
the computational complexity. Previous works proposed a
method for millimeter wave channel estimation that exploits
both the low-rank and sparsity properties of millimeter-wave
massive MIMO channel via two-step, which first uses the
low-rank property of the channel to recover the received
signal, followed by the use of compressed sensing algo-
rithm to estimate the millimeter wave channel gain matrix
[18]–[21]. Additional works combined these two character-
istics simultaneously for millimeter wave channel estimation
at a same time [22]–[24].

In this article, we present a novel multi-objective opti-
mization formulation consist of joint nuclear norm and `1−2-
regularization for millimeter-wave massive MIMO channel
estimation. Moreover, we derived a formulation based on
alternating direction multiplication method (ADMM) for
optimal solution. The representative simulation results show
that the proposed algorithm exhibits faster convergence and
improved performance in terms of normalized mean squared
error for channel estimation compared with other state-of-
the-art techniques. This article is organized into following
sections: Section II introduces the channel model and some
basic assumptions used in our study. Section III describes the

formulation of the optimization problem and the optimization
algorithm is described. Section IV presents and analyzes the
simulation results. Finally, the conclusions of this article are
given in Section V.
Notation: scalar, vector, matrix are denoted by a, a, A

respectively; AT represent the transpose of the matrix, AH

indicating conjugate transposition; the actual value and esti-
mated value is represented by A and Â respectively; the
Hadamard matrix product is represented ◦; ()∗ represents
the complex conjugate. the Kronecker product is represented
by ⊗; the vectorization of the matrix is represented by
vec(A); unvec(A) is the inverse operation of vec(A). IN rep-
resents N × N dimensional identity matrix; � represents the
selection matrix composed of 0 and 1; ‖‖F is the F−norm of
the matrix.

II. SYSTEM MODEL
We adopt a point-to-point downlink wireless communication
system model. The BS is equipped with NT transmitting
antennas and the UE is equipped with NR receiver antennas.
The BS and UE both use uniform liner array (ULA). Con-
sidering the hardware overhead of precoding, the structure
of hybrid precoding is used at both the transmission and
receiver, and FT ∈ CNT is used to denote the precoding
matrix, WR ∈ CNR denote the combining matrix. Assuming
that each frame of the system is transmitted independently
and every frame consists of T blocks dedicated for channel
estimation, and the channel state characteristics in each frame
remain unchanged, the received signal can be expressed as

y(t) =WH
RHFTm(t)+WH

R n(t) (1)

where y(t) is the observed signal vector after the com-
biner, m(t) ∈ CNT×1 is the pilot signal vector. Y =

[y(0), · · · , y(T − 1)], M = [m(0),m(2), · · · ,m(T − 1)],
and n(t) is the additive white Gaussian noise (AWGN) vector.
H ∈ CNR×NT is the narrowed band millimeter-wave channel
matrix. By nature, millimeter waves are easily absorbed by
surrounding objects, bringing sparse characteristics to the
millimeter wave channel. Assuming that there are L paths
between the base station and the user, the millimeter wave
channel is expressed as follows

H =

√
NTNR
ρ

L∑
l=1

αlaR(θl)a∗T (φl) (2)

where ρ denote the average path loss, αl is the l-th path
complex-valued gain, α is a sparse vector which the number
of non-zero elements in α is equal to the number of paths L.
The array response vector of transmitter and receiver, aT (φl)
and aT (θl), are given by

aT (φl)=
1
√
NT

[1, ej(2π/λ)d sin(φl ), . . . , ej(NT−1)(2π/λ)d sin(φl )]T

(3)

aR(θl)=
1
√
NR

[1, ej(2π/λ)d sin(θl ), . . . , ej(NR−1)(2π/λ)d sin(θl )]T

(4)
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where λ is the wavelength and d is the antenna element spac-
ing, θl, φl ∈ [0, 2π ] are the angle of arrival (AoA) and depar-
ture (AoD) which are generated according to the Laplace
distribution. In order to make use of the sparse characteristic
of millimeter-wave channel, an alternative representation for
channel is based on the beamspace model that is defined as

H = ARSA∗T (5)

where S ∈ CNR×NT represents the channel gain of H, AT ∈

CNT×NT and AR ∈ CNR×NR are the steering vectors gener-
ated based on Discrete Fourier Transformation (DFT) that is
defined as

AT = [aT (φ1), aT (φ2), . . . , aT (φL)] (6)

AR = [aR(θ1), aR(θ2), . . . , aR(θL)] (7)

Without loss of generality, we assume that the pilot sig-
nal in each block is a unit vector with constant power, i.e.
M ∈ INT×T . Let A = FTM and substitute equation (5) into
equation (1) and vectorize it

y = (AT
⊗WH

R )(A
∗
T ⊗ AR)s+ q (8)

where q = vec(WH
R n) is the noise vector. y = vec(Y), s =

vec(S). Let 2 = (AT
⊗WH

R )(A
∗
T ⊗AR) and write it in vector

form. we can get

y = 2s+ q (9)

where s contains the arrival angle θl and departure angle φl
and their path gain information αl , l ∈ [0, 1, · · · ,L − 1].
According to compressed sensing theory, the channel estima-
tion problem is transformed into a signal recovery problem

min ‖s‖1 , s.t. ‖y−2s‖2 ≤ ε (10)

where ε is the error threshold. Wen et al proved that when the
sensing matrix satisfies the RIP, high-dimensional signals S
can be recovered from low-dimensional signals y to achieve
millimeter wave channel estimation [12]

(1− δ) ‖s‖22 ≤ ‖2s‖ ≤ (1+ δ) ‖s‖22 (11)

where δ ∈ (0, 1), write (10) into an unconstrained form to
obtain `1−regularized form:

min
S
λ ‖s‖1 +

1
2
‖y−2s‖2 (12)

where λ > 0 is the weighted factor, and question (12) is a
LASSOquestionwhich has been studied extensively, and eas-
ily solved by fast iterative shrinkage-thresholding algorithm
(FISTA).

III. PROPOSED JOINT SPARSE CHANNEL
ESTIMATON ALGORITHM
A. OPTIMIZATION FORMULATION
Before elaborating on the proposed algorithm, we perform
low-rank matrix sampling preprocessing on the observation
signal of formula (1). We adopt the receiving structure pro-
posed by Vlachos et al that randomly sample the signal

passing through the combiner, and output only part of the
observation signal [23].

Y� = (Y)ij, (i, j) ∈ � (13)

where Y� is the sub-sampling matrix of Y. If sub-sampling
noise is ignored, their (i, j) elements are all equal, � indi-
cating the set of observed element positions in the matrix
Y, |�| = T . Observed signals Y can be recovered using
matrix completion theory, such as Singular Value Threshold-
ing (SVT) algorithm

min
Ŷ
‖Y‖∗ , s.t Ŷij = Yij, ∀(i, j) ∈ � (14)

Reference [25] has proved that when the sub-sampling rate
satisfies equation (15), the probability of recovering the orig-
inal signal without error 1− c̃n3

p ≥
Cñ5/4R log(̃n)

NrNt
(15)

if the rank of the matrix to be restored is R ≤ ñ1/5, when the
sub-sampling rate p satisfies equation (16), the probability of
recovering the original signal without error is at least

p ≥
Cñ6/5R log(̃n)

NrNt
(16)

where ñ = max(NR,NT ),C and c are both mathemati-
cal statistical constants. Therefore, millimeter-wave chan-
nel estimation algorithm based on low-rank matrix comple-
tion requires several observations of O(Rmax(NR,NT )5/4).
Because the sparse characteristics of the millimeter wave
channel is ignored, only suboptimal sampling complexity can
be achieved. The combined sparse characteristics and low
rank structure can effectively reduce the sampling complex-
ity [18].

Inspired by Vlachos et al. [22], combining the `1−2 min-
imization and nuclear norm minimization problems, a novel
multi-objective optimization problem is proposed

min
Y,S

τY ‖Y‖∗+τS‖s‖1−2 , s.t. P�(Y)=Y�, y−2s≤ε (17)

where the nuclear norm ofY in the objective function imposes
its low rank property. whereas `1−2 of s enforces its sparse
structure. τY > 0, τS > 0 are the weighting factors which
depend in general on the number L of the millimeter-wave
MIMO channel propagation path P�() represent subsampling
operator

P�(M) =

{
Mij, (i, j) ∈ �
0, otherwise

(18)

B. THE PROPOSED JOINT CHANNEL ESTIMATION
ALGORITHM
Formula (17) is a multi-objective optimization problem.
In order to obtain the global optimal solution, we derive an
algorithm based on ADMM. A similar approach has been
adopted in by Vlachos et al. [22], however the method is
quite different. Firstly, our algorithm is based on compressed
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sensing, secondly, we creatively uses `1−2-regularization to
enforces sparse structure in angle domain, finally, we pro-
posed new step to solve `1−2-regularization problem. Equa-
tion (17) in unconstrained form can be written as

min
Y,S

τY ‖Y‖∗ + τS ‖s‖1−2

+
1
2
‖P�(Y)− Y�‖2F +

1
2
‖y−2s‖2F (19)

However, it is very difficult to solve `1−2. Inspired by
the [10], We can use the iterative method to solve equa-
tion (19)

s(k+1) = argmin
S

τY ‖Y‖∗ +
〈
v(k), s

〉
+ τS ‖s‖1

+
1
2
‖P�(Y)− Y�‖2F +

1
2
‖y−2s‖2F (20)

where v(k) = −τSs(k)/
∥∥s(k)∥∥2 , ∥∥s(k)∥∥2 6= 0. To solve (20),

we resort to an ADMM algorithm and reformulate it as fol-
lows

min
Y,s,X,z

τY ‖Y‖∗ +
〈
v(k), s

〉
+ τS ‖z‖1

+
1
2
‖P�(X)− Y�‖2F +

1
2
‖x−2s‖2F

s.t. s = z, Y = X (21)

where x = vec(X). Establish the augmented Lagrangian
function according to equation (21)

L1(Y, s, z,X, v1,V2)

= τY ‖Y‖∗ + τs ‖z‖1

+
1
2
‖x−2s‖2F +

〈
v(k), s

〉
+
1
2
‖P�(X)− Y�‖2F + tr(vT1 (s− z))

+
ρ

2
‖s− z‖2F + tr(VT

2 (Y− X))+
ρ

2
‖Y− X‖2F (22)

where v1 ∈ CNTNR×1, V2 ∈ CNR×T represent the Lagrange
multipliers, ρ represents the algorithm iteration step size.
According to ADMM approach, at the k-th algorithmic iter-
ation with k = 0, 1, . . . , Imax the following separate sub-
problems need to be solved

Y(k+1)
= argmin

Y
L1(Y, s(k), z(k),X(k), v(k)1 ,V

(k)
2 ) (23)

s(k+1)= argmin
s

L1(Y(k+1), s, z(k),X(k), v(k)1 ,V
(k)
2 ) (24)

z(k+1)= argmin
z

L1(Y(k+1), s(k+1), z,X(k), v(k)1 ,V
(k)
2 ) (25)

X(k+1)
= argmin

X
L1(Y(k+1), s(k+1), z(k+1),X, v(k)1 ,V

(k)
2 )

(26)

v(k+1)1 = v(k)1 + ρ(s
(k+1)
− z(k+1)) (27)

V(k+1)
2 =V(k)

2 + ρ(Y
(k+1)
−X(k+1)) (28)

Next, we will show the solving steps of questions (23)
to (26) in detail. During the k-th iteration, the solution of the

variable Y(k+1) can be equivalent to the following subprob-
lem

Y(k+1)
= argmin

Y
τY ‖Y‖∗

+ tr((V(k)
2 )T (Y− X(k)))+

ρ

2

∥∥∥Y− X(k)
∥∥∥2
F

= argmin
Y

τY ‖Y‖∗

+
ρ

2

∥∥∥∥Y−X(k)
+

1
ρ
V(k)
2

∥∥∥∥2
F
−
ρ

2

∥∥∥∥ 1
2ρ

V(k)
2

∥∥∥∥2
F

(29)

Note that the last item in (29) has no effect on the update
of the variable Y(k+1), and ignore this item

Y(k+1)
= argmin

Y
τY ‖Y‖∗+

ρ

2

∥∥∥∥Y−(X(k)
−

1
ρ
V(k)
2 )

∥∥∥∥2
F

(30)

There have been a lot of studies on the solution of problem
(30), such as ADMM or SVT, and we adopt SVT algorithm
to solve it

Y(k+1)
=U(k)diag({sign(µ(k)) max(µ(k), 0)})(T(k))T (31)

where U(k)
∈ CNR×R,T(k)

∈ CNR×R are the left and right

singular vectors, respectively, of the matrix X(k)
− 1/ρV(k)

2 ,
µ
(k)
j = σj−τY/ρ, where σj is theR-th singular value of matrix

X(k)
− 1/ρV(k)

2 .
The solution of the variable s(k+1) can be equivalent to the

following sub-problem

s(k+1) = argmin
s

1
2

∥∥∥x(k) −2s
∥∥∥2
F
+

〈
v(k), s

〉
+ tr((v(k)1 )T (s− z(k)))+

ρ

2

∥∥∥s− z(k)
∥∥∥2
F

(32)

similar to the update process of variableY(k+1), equation (32)
can be rewritten into the following form

s(k+1) = argmin
s

1
2

∥∥∥x(k) −2s
∥∥∥2
F

+

〈
v(k), s

〉
+
ρ

2

∥∥∥∥s− (z(k) −
1
ρ
v(k)1 )

∥∥∥∥2
F

(33)

rewrite equation (33) into a new sub-augmented Lagrange
function

L(s) =
1
2

∥∥∥x(k) −2s
∥∥∥2
F
+

〈
v(k), s

〉
+
ρ

2

∥∥∥∥s− (z(k) −
1
ρ
v(k)1 )

∥∥∥∥2
F

(34)

differentiating with respect to s and making it equal to 0 to
get the updated result of variable s(k+1)

s(k+1) = (2T2+ ρI)−1[2T x(k) + ρe− v(k)] (35)

where e = (z(k)−1/ρv(k)1 ). The solution of the variable z(k+1)

can be equivalent to the following subproblems

z(k+1) = argmin
Z

τs ‖z‖1 +
ρ

2

∥∥∥∥z−(s(k+1) + 1
ρ
v(k)1 )

∥∥∥∥2
F

(36)
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equation (36) can be regarded as a `1-regularization problem,
which is a standard LASSO problem, the update equation is
as follows

z(k+1) = sign(Re(b)) ◦max(|Re(b)| − τS/ρ, 0)

+ sign(Im(b)) ◦max(|Im(b)| − τS/ρ, 0) (37)

where b = (s(k)+1/ρv(k)1 ), sign() is sign function, Re() is the
real part of the signal, Im() is the imaginary part of the signal.

Finally, the solution of the variable X(k+1), we can firstly
update x(k+1) and then recover X(k+1) using X(k+1)

=

unvec(x(k+1))

x(k+1) = argmin
X

1
2

∥∥∥x−2s(k+1)
∥∥∥2
F
+

1
2
‖P�(X)− Y�‖2F

+
ρ

2

∥∥∥∥y(k+1)−(x− 1
ρ
vec(V(k)

2 ))

∥∥∥∥2
F

(38)

differentiating with respect to x and making it equal to 0 to
get the updated result of variable X(k+1)

x(k+1) = [(1+ ρ)I+K]−1c (39)

where c = (2s(k+1) + vec(Y�)+ vec(V
(k)
2 )+ ρy(k+1)), and

K =
NR∑
j=1

diag(|�|j)
T
⊗ [IR]jj (40)

where IR is the identity matrix with dimension NR × NR.
Through the above discussion, themillimeter wave channel

estimation problem is transformed into a joint minimization
problem of nuclear norm and `1−2-regularization. In order
to solve this problem, a multi-objective optimization channel
estimation algorithm based on ADMM algorithm is proposed
in this article. And the specific flow of the algorithm is
described in Algorithm 1.

In (19), the first term is used to constrain the low-rank
characteristics of the received signal, the second term is used
to constrain the sparse characteristics of the millimeter wave
channel, the third term is used to constrain the sub-sampling
error, and the fourth term is used to constrain the fitting
error. In order to balance the nuclear normminimization prob-
lem and the `1−2-regularization problem, a weighting factor
τY , τS is proposed. the weight factor τY , τS is set according
to the following formula [23].

τY = 1/ ‖Y�‖2F , τS =
1
2
τY (41)

During the iteration process, the value of the channel gain
matrix S will gradually approach the true value, and the
number of iterations will affect the final millimeter wave
channel estimation accuracy. Therefore, by setting an appro-
priate number of iterations, a high-accuracy channel estima-
tion result can be obtained by Algorithm 1. The simulation
results will be shown in the next section.

The total complexity of the algorithm is mainly affected
by Step 3. It is to use the matrix completion theory to
recover the signal matrix from the observed sub-sampled
signal. The complexity increases with the dimension of the

Algorithm 1 Jointly Nuclear Norm and `1−2-Regularization
Based mmWave Channel Estimation
Input: received matrix Y�, sensing matrix 2, weight
parameters τY , τS , ρ, iteration times Imax
output: H
1: Initialization X(0)

= V(0)
2 = 0 ∈ CNR×T ; s(0) = z(0) =

v(0)1 = 0 ∈ CNRNT×1; k = 0
2: repeat

3: Update Y(k+1) using equation (31)
4: Update s(k+1) using equation (35)
5: Update z(k+1) using equation (37)
6: Update X(k+1) using equation (39)
7: Update v(k+1)1 using equation (27)
8: Update V(k+1)

2 using equation (28)
9: Update k using k = k + 1

10: Until k > Imax
11: S = unvec(s)
12: H = ARSA∗T

sub-sampled signal increases, the computational complexity
isO((pNR)2T ). It means that the complexity of Algorithm 1 is
mainly affected by the number of transmit and receive anten-
nas in the communication system and the channel estimation
training length.

At the same time, the estimation accuracy of Algorithm 1 is
also affected by the sub-sampling rate p, which can effectively
reduce the sampling complexity of the system. However,
if the sub-sampling rate is set too low, Step 3 in Algo-
rithm 1 cannot accurately recover the signal matrix, which
affects the algorithm the overall performance. The experi-
mental results in [26] verify that the sub-sampling rate p =
0.5 can effectively recover the millimeter wave channel.
Only the narrowband systems are considered in this arti-

cle and, and our work can expand to broadband systems.
In broadband systems, the number of antennas or the transmit
bandwidth increase significantly, the propagation delay is dif-
ferent among antennas. This effect makes the array response
vary with frequency, causing the beams to deviate in OFDM
systems [27]. Hence, in broadband systems, the beam squint
effect is a factor that has to be considered.

IV. SIMULATION RESULTS
In order to verify the reliability and stability of joint
nuclear norm and `1−2-regularization channel estimation
algorithm proposed, we conducted simulation experiments.
The Monte-Carlo method is used to verify the perfor-
mance of the proposed algorithm under different system
parameter conditions. For performance comparison, the fast
iterative shrinkage-thresholding algorithm (FISTA) [28],
orthogonal matching pursuit (OMP) based channel esti-
mation algorithm [29], ADMM based matrix comple-
tion (ADMM-MC) [30], and recently proposed Two-Stage
estimation exploiting both Sparsity and low Rankness
(TSSR) [18] are selected to be carried out under the same
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TABLE 1. Parameter settings.

simulation conditions. Among them, OMP is a greedy algo-
rithm, FISTA is an `1-regularization algorithm, where OMP
requires a priori known channel sparsity and parameter for
channel sparsity was set to L, and ADMM-MC algorithm is
based on matrix rank priors known and parameter for channel
rank was also set to L, using ADMM to recover matrix.
The TSSR algorithm uses the low-rank characteristics and
sparse characteristics of the millimeter wave channel at two
continuous stages to estimate the millimeter wave channel.

We take the normalized mean square error as the numerical
index of the estimation accuracy

NMSE =

∥∥∥H − Ĥ∥∥∥2
F

‖H‖2F
(42)

Fig.1 plots the NMSE of mmWave channel estimation algo-
rithms against signal-to-noise ratios (SNR). The proposed
algorithm can get a much lower NMSE and has better per-
formance. The curve of the OMP algorithm does not vary
with the change of SNR because the angle is discretized,
which causes the channel sparsity to be bigger than the
pre-set sparsity, that ultimately makes the OMP algorithm
underfit. However, our proposed iteration method based on

FIGURE 1. NMSE comparison for different algorithms against SNR.

FIGURE 2. NMSE comparison for different algorithms against the number
of TX antennas with SNR = 10.

ADMM can estimate millimeter-wave channel without spar-
sity priori. At the same time, proposed joint nuclear norm and
`1−2-regularization channel estimation can get more sparse
solution compared with the `1-regularization based FISTA
algorithm.

Fig.2 shows the influence of the number of transmit anten-
nas NT at TX on the channel estimation performance. The
accuracy of OMP still does not change and other methods
decrease with the increase of NT . This is because as the
number of antennas increase, the channel matrix dimension
becomes larger, and the number of channel factor to be esti-
mated by the methods increase. However, our algorithm has
better performance than other algorithms.

Fig.3 shows the influence of different numbers of training
blocks on the channel estimation performance of different
algorithms. The accuracy of all algorithm improved as the
numbers of the training blocks is increased. Moreover, even if
the number of the training blocks is very small, our proposed
method still has better estimation accuracy which shows that

FIGURE 3. NMSE comparison for different algorithms against the number
of training blocks with SNR = 10.
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joint nuclear norm and `1−2-regularization based channel
estimation algorithm has more reliability and stability.

V. CONCLUSION
In this article, we focused on the channel estimation of
millimeter-wave massive MIMO system and proposed a joint
nuclear norm and `1−2-regularization sparse millimeter-wave
channel estimation. The algorithm simultaneously utilizes the
low-rank and sparse property of millimeter wave channels
to provide higher-precision channel recovery. In particular,
we transform the sparse millimeter wave channel estimation
problem into a compressed sensing problem, use the `1−2 to
enforce the channel sparsity, and combine the matrix com-
pletion theory to estimate the millimeter wave channel. The
simulation results show that the performance of our algorithm
significantly better than the recently proposed algorithms.

APPENDIX
Derivation of equation (35), let (34) equal 0.

1
2

∥∥∥x(k) −2s
∥∥∥2
F
+

〈
v(k), s

〉
+
ρ

2

∥∥∥∥s− (z(k) −
1
ρ
v(k)1 )

∥∥∥∥2
F

=
1
2
(x(k) −2s)T (x(k) −2s)+ sT v(k)

+
ρ

2
[s−(z(k)−

1
ρ
v(k)1 )]T [s− (z(k)−

1
ρ
v(k)1 )] = G(s)

(43)
∂G(s)
∂(s)

=
1
2
(−2T x(k) −2T x(k) + 22T2s+ 2v(k)

+ 2ρs− 2(z(k) −
1
ρ
v(k)1 ))

=−2T x(k) +2T2s+ v(k)

+ ρs− (z(k) −
1
ρ
v(k)1 )) = 0 (44)

s= (2T2+ρI)−1[2T x(k)+ρ(z(k)−
1
ρ
v(k)1 )−v(k)]

(45)

Derivation of equation (39). Let (38) equal 0.

B(x) =
1
2

∥∥∥x−2s(k+1)
∥∥∥2
F
+

1
2
‖P�(X)− Y�‖2F

+
ρ

2

∥∥∥∥y(k+1)−(x− 1
ρ
vec(V(k)

2 ))

∥∥∥∥2
F

(46)

∂B(x)
∂(x)

= x−2s(k+1) + vec(P�(X)− Y�)− V2

− ρ(y(k+1) − x)

= 0 (47)

P�(M) operator can be replaced by (40).and then

x−2s(k+1) +Kx− vec(Y� + V2)− ρy(k+1) + x

= 0

where. K =
NR∑
j=1

diag(|�|j)
T
⊗ [IR]jj (48)

x(k+1) = [(1+ ρ)I+K]−1c

where. c = (2s(k+1) + vec(Y�)+ vec(V
(k)
2 )+ ρy(k+1))

(49)
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