
Received August 12, 2020, accepted August 19, 2020, date of publication August 25, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019302

Runtime Adaptive Matrix Multiplication for the
SW26010 Many-Core Processor
ZHENG WU , MINGFAN LI, MENGXIAN CHI, LE XU, AND HONG AN
School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China

Corresponding author: Zheng Wu (zhengwu@mail.ustc.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2018YFB0204102.

ABSTRACT The study of matrix multiplication on the emerging SW26010 processor is highly significant
for many scientific and engineering applications. The state-of-the-art work from the swBLAS library,
called SWMM, focuses mainly on the infrequent case involving special matrix dimensions and determines
the execution action of matrix multiplication by one specified algorithm. To further adapt to various
matrix shapes, in this article, we present a runtime adaptive matrix multiplication methodology, called
RTAMM, which targets the features of the SW26010 architecture. The execution action of RTAMM is
determined dynamically at runtime via several fundamental cost formulas and multiple sets of blocking
factors, rather than determining the action at library generation time.With comprehensive trade-offs between
the computation and data access, overall architecture-oriented optimization methods are introduced at three
levels (macro, assistant, and micro) to fully exploit the computing capability of SW26010. The experiments
show that RTAMM can achieve competitive peak performance compared with SWMM. Moreover, in tests
on 6000 different matrix multiplication cases, RTAMM outperforms SWMM in 85.55% of the cases, and the
improvements range from 5% to 308%, whereas RTAMM is slightly inferior to SWMM in only 1.28% of
the cases. These results demonstrate that RTAMM has both great adaptability and considerable performance
improvement.

INDEX TERMS Matrix multiplication, BLAS, dense linear algebra, many-core architecture, SW26010,
Sunway TaihuLight.

I. INTRODUCTION
As an application program interface standard, BLAS (Basic
Linear Algebra Subprograms) [1] contains many primary
vector and matrix operations, which can be applied to dif-
ferent types of linear algebraic calculations [2]. As the core
subprogram of BLAS, matrix multiplication is of great signif-
icance for many scientific and engineering applications [3].
The efficient implementation of BLAS [4]–[7] is constantly
attracting the attention of researchers, and many-core proces-
sors have become a popular research platform.

The Sunway TaihuLight [8], which was developed by
the National Research Center of China for Parallel Com-
puter Engineering Technology, is the first supercomputer in
the world with a peak performance exceeding 100 PFlops,
and is composed mainly of 40k SW26010 heterogeneous
many-core processors. The system can achieve 74% of
the theoretical performance (93 PFlops) when running
LINKPACK [9]. As themain contributor to the computational

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

power of the Sunway TaihuLight, SW26010 has several spe-
cial architectural features [10]–[12], such as an 8 × 8 CPE
(computing processing element) cluster, software-controlled
memory hierarchy, hardware-supported register communi-
cation, and CPE double-pipeline instruction execution, all
of which have great potential for implementing matrix
multiplication.

For matrix multiplication on SW26010, the state-of-the-
art implementation derived from [13] in the swBLAS library,
called SWMM, pursues the peak performance in the case
where the matrix dimensions are sufficiently large and are
the multiple of the optimal blocking factors. Although gen-
eral matrix multiplication can straightforwardly rely on this
special case at the expense of superfluous computation and
data access overheads, the adaptability which receives more
attention in the real world will be diminished. Another non-
negligible consideration is that different matrix shapes have
complicated characteristics, that is, various scales, ratios, and
data alignments. Hence, if only one fixed execution action
is relied upon, highly efficient implementation will not be
feasible for different matrix multiplication cases.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 156915

https://orcid.org/0000-0002-3661-5360
https://orcid.org/0000-0003-2340-5433


Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

To solve the above problems, in this article, we present a
runtime adaptive matrix multiplication methodology called
RTAMM for the architectural features of SW26010. For
improved adaptability, the key novelty of this work is the
coordination of several fundamental cost formulas and mul-
tiple sets of blocking factors, where each cost formula
corresponds to one matrix multiplication algorithm. More-
over, referring to some parallel optimization technologies on
SW26010 [11], [13], [14], we conduct more subtle research
to balance the computation and data access for the high-
performance implementation. The main contributions of our
work can be summarized as follows:
• To cope with various matrix shapes, we propose
RTAMM, a methodology for dynamically determining
the most appropriate execution action during the opera-
tion of the program.

• Based on the possible loop orders of parameters
(M , N , and K ) and different parallel methods, we design
several matrix multiplication algorithms for RTAMM.
The execution cost of each algorithm is quantified
using one fundamental cost formula to evaluate the
execution efficiency. Moreover, we integrate many
architecture-oriented optimization technologies, such as
double buffering, register communication, and instruc-
tion scheduling, to ensure the highly efficient execution
of RTAMM.

• An adaptive engine is generated to explore and esti-
mate the potential execution actions of RTAMM. The
engine consists of several fundamental cost formulas
and a blocking factor pool that includes multiple sets of
valuable blocking factors.

• The experiments comprehensively evaluate RTAMM
and SWMM from two perspectives: (i) the peak perfor-
mance and (ii) the adaptability. RTAMM achieves com-
petitive peak performance in comparison with SWMM.
In the adaptability comparison based on 6000 matrix
multiplication cases with different configurations of M ,
N , andK , in 85.55% of the cases, RTAMM is superior to
SWMM with improvements ranging from 5% to 308%.
In contrast, SWMM is better than RTAMM in only
1.28% of the cases. Finally, we conduct an additional
experiment to demonstrate that the dynamic decision
method based on the adaptive engine is successful.

The remainder of this article is organized as follows.
Section 2 introduces the background, including matrix mul-
tiplication and the SW26010 architecture. Section 3 presents
the implementation details of RTAMM from different points
of view. Section 4 validates the work experimentally, and
Section 5 discusses the related works, leading to the conclu-
sions and a discussion of future works in Section 6.

II. BACKGROUND
A. MATRIX MULTIPLICATION
There are three levels of subroutines in BLAS: vector-
vector operations (Level 1 BLAS), matrix-vector operations
(Level 2 BLAS), and matrix-matrix operations

(Level 3 BLAS). Matrix multiplication, a matrix multiply-
accumulate routine, is a Level 3 BLAS operation and defined
as follows:

C = α op (A) op (B)+ β C, op (X) = X or XT (1)

where A ∈ RM×K and B ∈ RK×N are input matrices with a
transposed or non-transposed data format, and C ∈ RM×N

is an output matrix. α and β are scalars that represent the
operation coefficients. M , N , and K indicate the dimensions
of the matrices.

As a critical component of many scientific applica-
tions [15], such as deep learning, signal processing and astro-
physics, matrix multiplication is frequently applied to solve
linear equations, least-square problems, singular and eigen-
value calculations [16]. Matrix multiplication is also used
to evaluate the performance and efficiency of new processor
architectures for scientific computing [17] and to investigate
optimization methods on new architectures [18]. Because
matrix multiplication is so widely used and compute-bound,
it is significant to optimize its implementation. In this article,
we implement the basic case where A, B, and C are double-
precision, non-transposed, and row-major. This case is a per-
formance basis in the HPL package [9], which has been used
for ranking supercomputers in the TOP500 List for over two
decades.

B. SW26010 PROCESSOR ARCHITECTURE
The SW26010 processor [8], [12] is a heterogeneous many-
core architecture that uses distributed shared storage and
on-chip computing array. As illustrated on the left side of
Fig. 1, the processor consists of four CGs (core groups)
with 260 processing cores. Each CG consists of an MPE
(management processing element), an 8× 8 CPE cluster, and
a 4-way DDR3 MC (memory controller). Four CGs, each of
which is connected directly to 8GB DDR3 main memory, are
interconnected through the NoC (network on chip).

Both theMPE and the CPE have the frequency of 1.45GHz
and the vectorization size of 4, and support fused multiply-
add instruction. The difference is that the MPE has two
floating-point arithmetic pipelines, while the CPE has only
one. Therefore, the theoretical peak performance of an MPE
is 23.2 GFlops, while that of a CPE cluster is 742.4 GFlops.

The memory hierarchy of SW26010 is illustrated on the
right side of Fig. 1. An MPE has a 32KB L1 instruction
cache, a 32KB L1 data cache, and a 256KB L2 cache. Each
CPE cluster consists of 64 equivalent CPEs and shares a
64 KB L2 instruction cache. A CPE has a 16 KB L1 instruc-
tion cache and a 64 KB user-controlled SPM (scratchpad
memory), also called LDM (local data memory). The theoret-
ical memory bandwidth of one chip is 136 GB/s, and each CG
has 34.13 GB/s.

Two kinds of data transfer approaches are supported
between the MPE and CPEs. One is global memory access,
called gld/gst discrete access, which can read/write directly to
the main memory. The gld/gst data access is user-friendly but
has a high latency of up to 278 cycles. The other kind, known

156916 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

FIGURE 1. Architecture(left) and memory hierarchy(right) of the SW26010 processor.

as DMA (direct memory access) batched access, employs
LDM as a bridge to access the main memory. The data access
latency is relatively low, approximately 29 cycles. Due to
the limited size of LDM and the complex nature of DMA
operations, developers need to design parallel algorithms
accurately.

Between different CPEs on the same CG, low-latency
register communication is supported to reduce the frequency
of memory access. There are three basic principles: (i) each
communication fixes the data size to 256 bits; (ii) each
CPE exchanges data only with other CPEs in the same
row or column; (iii) the communication is anonymous based
on the FCFS (first-come-first-serve) principle. Each CPE is
equipped with a sending buffer, a row receiving buffer, and a
column receiving buffer, which can buffer 6, 4, and 4 register
messages, respectively.

Each CPE has two execution pipelines, P0 and P1. The
former supports floating-point and integer scalar/vector oper-
ations, while the latter supports data transfer, comparison,
jump, and integer scalar operations. The two pipelines share
an ID (instruction decoder) and an instruction queue. When
the following two conditions are satisfied, two instructions
can be issued to P0 and P1 simultaneously: (i) the two instruc-
tions belong to two separate pipelines; (ii) the two instructions
are conflict-free with each other as well as with the unfinished
instructions issued before.

III. IMPLEMENTATION AND OPTIMIZATION FOR RTAMM
The features of the SW26010 architecture make it more flex-
ible and controllable. However, more efforts are required to
develop parallel algorithms. We describe the coarse-grained
RTAMMmethodology on the basic architecture of SW26010,
then expound the fine-grained implementation and optimiza-
tion in detail. To facilitate the following discussion, we define
the meanings of some basic symbols in Table 1.

For matrix multiplication, the traditional implementation
includes two components [5], [19], [20]: (i) a blocking

TABLE 1. Descriptions of different symbols.

algorithm that utilizes the memory hierarchy to partition
different levels of workloads; (ii) a computational kernel
that fully utilizes the computational power of the hard-
ware. As illustrated in Fig. 2, the basic implementation of
RTAMM, based on traditional researches, is divided into
three levels: macro optimization, assistant optimization, and
micro optimization. In terms of different grained work-
loads, the basic implementation is composed of three parts,
RTAMMgb,RTAMMcg, andRTAMMth, which represent global
matrix multiplication, blocked matrix multiplication mapped
to one CG, and blocked matrix multiplication mapped to one
CPE, respectively. Macro optimization aims to design a high-
quality blocking strategy to map RTAMMgb to RTAMMcg.
Given various technologies used to alleviate the memory-
bound nature of SW26010, such as double buffering, and
register communication, assistant optimization focuses on
improving the data access efficiency of RTAMMcg. Finally,
micro optimization addresses the highly efficient computa-
tion of RTAMMth.

Rather than fixing the execution action at the library gen-
eration time, the action of RTAMM is dynamically deter-
mined at runtime via an adaptive engine, which comprises
several fundamental cost formulas and a blocking factor pool.
Synthesizing some essential factors, such as triple-nested
loop orders of matrix multiplication parameters, and parallel
methods, several algorithms are designed for the basic imple-
mentation. Each algorithm corresponds to one fundamental

VOLUME 8, 2020 156917



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

FIGURE 2. Guiding ideology of the RTAMM methodology for the SW26010 processor.

cost formula that evaluates the execution performance.
Instead of analyzing a set of ideal blocking factors in theory,
we gather multiple sets of potentially valuable blocking fac-
tors to construct the blocking factor pool. As demonstrated
by experiments later on, the adaptive engine can effectively
decide the execution action of RTAMM.

A. MACRO OPTIMIZATION
Macro optimization mainly addresses the blocking problem
of matrix multiplication to map RTAMMgb to RTAMMcg con-
sidering varying computation and data access overheads and
possible loop orders of matrix multiplication parameters.

1) BLOCKING STRATEGY BASED ON OVERHEAD FUNCTIONS
The memory hierarchy of modern processors can be sim-
plified to three levels (from high to low): register, cache,
and memory. The cache can be subdivided into L1 cache,
L2 cache, and L3 cache [21]. The key to solving the blocking
problem is to balance the computation and data access of two
adjacent storage devices. Many works [22]–[24] have dis-
cussed this content from three perspectives: (i) maximizing
the computation to data access ratio; (ii) utilizing the capac-
ity of high-level storage to the maximum extent possible;
(iii) maximizing the reutilization of data in low-level storage.

The memory hierarchy of the SW26010 processor is
software-controlled with three levels (from high to low): reg-
ister, LDM, and memory. Data can be transferred effectively

via DMA between the LDM and the memory. There are
many data-transfer modes, such as transferring data on one
CPE or more CPEs, and transferring one continuous data
block or multiple segmented data blocks. Different modes
and data sizes result in different DMA bandwidths [10].
To adapt to the characteristics of the DMA, we propose a
blocking strategy based on overhead functions. Two overhead
functions are introduced, namely, OPloadcg and OPstorecg , which
represent the time cost of loading one data from the memory
to the LDM and the time cost of storing one data from the
LDM to the memory, respectively. To further quantify the
blocking strategy, we add one overhead function, OPkernelcg ,
which represents the time cost of one computation on
the LDM.

CostMNKgb

= ngbMK × OPloadcg
(
Mcg,Kcg

)
+ mgbKN

×OPloadcg
(
Kcg,Ncg

)
+MN × OPloadcg

(
Mcg,Ncg

)
+MN × OPstorecg

(
Mcg,Ncg

)
+ 2MNK

×OPkernelcg
(
Mcg,Ncg,Kcg

)
(2)

CostMKNgb

= MK × OPloadcg
(
Mcg,Kcg

)
+ mcgKN

×OPloadcg
(
Kcg,Ncg

)
+ kgbMN × OPloadcg

(
Mcg,Ncg

)
+ kgbMN × OPstorecg

(
Mcg,Ncg

)
+ 2MNK

×OPkernelcg
(
Mcg,Ncg,Kcg

)
(3)

156918 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

Algorithm 1 RTAMMMNK
gb Algorithm With the Blocking Strategy

for m = 0 to mgb − 1 do
for n = 0 to ngb − 1 do

LoadDMA mtxCgb [m, n] to mtxCcg MN × OPloadcg
(
Mcg,Ncg

)
for k = 0 to kgb − 1 do

LoadDMA mtxAgb [m, k] to mtxAcg ngbMK × OPloadcg
(
Mcg,Kcg

)
LoadDMA mtxBgb [k, n] to mtxBcg mgbKN × OPloadcg

(
Kcg,Ncg

)
RTAMMcg

(
mtxAcg,mtxBcg,mtxCcg

)
2MNK × OPkernelcg

(
Mcg,Ncg,Kcg

)
end
StoreDMA mtxCcg to mtxCgb [m, n] MN × OPstorecg

(
Mcg,Ncg

)
end

end

CostNKMgb

= ngbMK × OPloadcg
(
Mcg,Kcg

)
+ KN

×OPloadcg
(
Kcg,Ncg

)
+ kgbMN × OPloadcg

(
Mcg,Ncg

)
+ kgbMN × OPstorecg

(
Mcg,Ncg

)
+ 2MNK

×OPkernelcg
(
Mcg,Ncg,Kcg

)
(4)

In theory, there are six types of cases depending on the
loop orders of the parameters M , N , and K . As shown in
Algorithm 1, in the case of the M → N → K triple-
nested loop, denoted MNK , the m, n, and k loops along
the M , N , and K matrix dimensions are blocked by sizes
Mcg, Ncg, and Kcg, respectively. M , N , and K are mgbMcg,
ngbNcg, and kgbKcg, respectively. The CG-level submatrix
mtxCcg resides in the LDM until one whole innermost loop
is accomplished, then is written back to the memory. Each
iteration loads one CG-level submatrix mtxAcg and one
CG-level submatrixmtxBcg and updates the resident subma-
trixmtxCcg. In other words: (i)mtxCgb is loaded and stored
one time. OPloadcg (Mcg,Ncg) and OPstorecg (Mcg,Ncg) are the
costs of loading and storing one element in mtxCgb, respec-
tively; (ii) mtxAgb is loaded ngb times. OPloadcg (Mcg,Kcg) is
the cost of loading one element in mtxAgb; (iii) mtxBgb is
loaded mgb times. OPloadcg (Kcg,Ncg) is the cost of loading
one element in mtxBgb; (iv) each element of mtxCgb is
updated via K multiply-add operations of a row of mtxAgb
and a column of mtxBgb and one add operation with the
priormtxCgb element, resulting in 2K arithmetic computing
operations. Different blocking strategies will not change the
total amount of computation for one matrix multiplication,
so the total amount of computation is 2MNK . Moreover,
OPkernelcg (Mcg,Ncg,Kcg) is the cost of one arithmetic oper-
ation in the context of RTAMMcg. Therefore, the cost of
RTAMMMNK

gb is shown in formula (2).
The work in this article is implemented on one CG for

the SW26010 processor because parallel algorithms across
different CGs are usually at higher programming levels by
users. Therefore, Algorithm 1 is executed serially without
considering the parallel execution. Upon interchanging the
two outermost loops of Algorithm 1, we can easily find

CostNMKgb = CostMNKgb . The equation will not be affected by
the implementation of RTAMMcg, because different imple-
mentations change only the unit overhead OPkernelcg while
leaving the overall computation and data access unchanged.
Thus, the influence is the same for CostNMKgb and CostMNKgb
regardless of how RTAMMcg is executed. Based on the above
illustration, only two cases of algorithms, M → K → N
(MKN ) and N → K → M (NKM ), are to be further
discussed because they are equal to KMN and KNM , respec-
tively. Similarly, the costs of RTAMMMKN

gb and RTAMMNKM
gb

are shown in formulas (3) and (4), respectively. Moreover,
we have CostMKNgb = CostKMNgb and CostNKMgb = CostKNMgb .

For one matrix multiplication case, the process of selecting
the blocking method is to compare the cost formulas (2)
through (4).

B. ASSISTANT OPTIMIZATION
Assistant optimization aims mainly to reduce the data access
overhead in RTAMMgb. Based on asynchronous DMA opera-
tions and data sharing within the same CPE cluster, we elim-
inate unnecessary data access and overlap necessary data
access and computation.

1) MIXED DOUBLE BUFFERING METHOD
RTAMMgb is composed of the data access by the DMA
and the computation in RTAMMcg. Although the appropriate
DMA operation can quickly transfer data between the mem-
ory and the LDM, the overhead is still nonnegligible. To opti-
mize the data access, we design a mixed double buffering
method to overlap the computation and data access [25], [26].

CostMNK,M2B2
gb ≈MN × OPloadcg

(
Mcg,Ncg

)
+MN

×OPstorecg
(
Mcg,Ncg

)
+max

{
LDSTolp,CMPTolp

}
(5)

CostMNK,M3B2
gb ≈MN × OPstorecg

(
Mcg,Ncg

)
+max

{
LDSToverlap,CMPToverlap

}
(6)

CostMKN,M2B2
gb ≈MK × OPloadcg

(
Mcg,Kcg

)
+ kgbMN

×OPstorecg
(
Mcg,Ncg

)
+max

{
LDSTolp,CMPTolp

}
(7)

VOLUME 8, 2020 156919



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

Algorithm 2 RTAMMMNK
gb Optimized Algorithm With the M2B2 Double Buffering

// super begin,end: begin and end of DMA operation
// sub next: the next loop related to the current loop
// cmpt ldst: the index of computation and data access
LoadAbeginDMA mtxAgb [0, 0] to mtxAcg [cmptA]
LoadBbeginDMA mtxBgb [0, 0] to mtxBcg [cmptB]
LoadAendDMA
LoadBendDMA
for m = 0 to mgb − 1 do

for n = 0 to ngb − 1 do
LoadCbegin

DMA mtxCgb [m, n] to mtxCcg
LoadCend

DMA
for k = 0 to kgb − 1 do

compute mnext , nnext , knext of next dma operation aboutmtxAcg and mtxBcg

LoadAbeginDMA mtxAgb [mnext , knext ] to mtxAcg [ldstA]
LoadBbeginDMA mtxBgb [knext , nnext ] to mtxBcg [ldstB]
RTAMMcg

(
mtxAcg [cmptA] ,mtxBcg [cmptB] ,mtxCcg

)
LoadAendDMA
LoadBendDMA
exchange the value of ldstA and cmptA
exchange the value of ldstB and cmptB

end
end
StoreCbegin

DMA mtxCcg to mtxCgb [m, n]
StoreCend

DMA
end

CostMKN,M3B2
gb ≈ kgbMN × OPstorecg

(
Mcg,Ncg

)
+max

{
LDSTolp,CMPTolp

}
(8)

CostNKM,M2B2
gb ≈KN × OPloadcg

(
Kcg,Ncg

)
+ kgbMN

×OPstorecg
(
Mcg,Ncg

)
+max

{
LDSTolp,CMPTolp

}
(9)

CostNKM,M3B2
gb ≈ kgbMN × OPstorecg

(
Mcg,Ncg

)
+max

{
LDSTolp,CMPTolp

}
(10)

The proposed method is based on the following
considerations:

• Perform the computation and data access in parallel by
interleaving their loop sequences.

• Because of the limited LDM, we balance the increase
in the degree of double buffering and the increase in the
computation task in RTAMMcg.

With the above considerations, the mixed double buffer-
ing method is proposed including M2B2 (double buffer two
matrices) andM3B2 (double buffer threematrices). As shown
in Algorithm 2, M2B2 targets more computation task in
RTAMMcg by reducing the overlap between the computation
and data access. We double buffer mtxAcg and mtxBcg,
and then prefetch the first mtxAcg and mtxBcg; in addition,
we guarantee that loading nextmtxAcg andmtxBcg and com-
puting currentRTAMMcg are executed in parallel without data

dependence. M3B2 aims to maximize the potential overlap
between the computation and data access, which is similar
to Algorithm 2. We double buffer mtxAcg, mtxBcg, and
mtxCcg, and then prefetch the first mtxAcg, mtxBcg, and
mtxCcg; similarly, we guarantee that loading next mtxAcg,
mtxBcg, and mtxCcg and computing current RTAMMcg are
executed in parallel.

Although the first LOADDMA and the last RTAMMcg can-
not be overlapped, the influence is negligible relative to
the entire matrix multiplication process. The approximate
cost of RTAMMMNK

gb is extended, as shown in the formu-
las (5) and (6). Similarly, the costs of RTAMMMKN

gb and
RTAMMNKM

gb are shown in the formulas (7), (8), (9), and (10).
In the above formulas, CMPTolp and LDSTolp repre-

sent the computation overlapped and data access over-
lapped. Taking CostMNK ,M2B2

gb as an example, 2MNK ×
OPkernelcg

(
Mcg,Ncg,Kcg

)
is equal to CMPTolp, and ngbMK ×

OPloadcg
(
Mcg,Kcg

)
+mgbKN ×OPloadcg

(
Kcg,Ncg

)
is equal to

LDSTolp.

2) BROADCAST-BROADCAST ON-CHIP COMMUNICATION
Intuitively, mtxCcg can be partitioned by an 8 × 8 mesh
and then mapped to one CG. Each CPE is responsible for
one mtxCcg

64 submatrix, which transfers the data of one mtxAcg
8

submatrix, one mtxBcg
8 submatrix and one mtxCcg

64 submatrix

156920 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

via the DMA. The mtxAcg and mtxBcg are loaded 8 times
repeatedly, which makes it valuable to research on-chip data
sharing. SW26010 does not support direct on-chip data shar-
ing, but provides a register communication mechanism so
that the 64 CPEs within the same CPE cluster can indirectly
exchange data with each other. A CPE cluster is similar to
a reduced distributed-memory parallel computer system, for
which matrix multiplication optimization has been evaluated
inmanyworks [27], [28]. Referring to those works, we design
a data sharing method, called broadcast-broadcast on-chip
communication, to enhance the reutilization of data on the
CPE cluster.

FIGURE 3. Broadcast-broadcast on-chip communication on an 8 × 8 CPE
cluster.

As illustrated in Fig. 3,CPE (i, j) represents the CPE in the
i-th row and j-th column (i ∈ {0, 1, . . . , 7} , j ∈ {0, 1, . . . , 7}).
The mtxAcg, mtxBcg, and mtxCcg are uniformly parti-
tioned into thread-level submatrices by an 8 × 8 mesh,
calledmtxAth,mtxBth, andmtxCth, respectively. CPE (i, j)
is responsible for the three submatrices mtxAth (i, j),
mtxBth (i, j) and mtxCth (i, j), to eliminate the unnecessary
data access of mtxAcg and mtxBcg. To regulate the compu-
tation mtxCth (i, j) =

∑7
k=0mtxAth (i, k)×mtxBth (k, j),

The CPEs of each row need to communicate with each other
once regarding mtxAth, and the CPEs of each column need
to communicate with each other once regradingmtxBth. The
process is as follows:

• Step0: CPE (i, 0) broadcasts the data of mtxAth (i, 0)
to other CPEs in the same row, which receive the row-
broadcast data, by register communication. CPE (0, j)
broadcasts the data of mtxBth (0, j) to other CPEs in
the same column, which receive the column-broadcast
data, by register communication. At the moment, all the
CPEs have four statuses: (i) the row broadcast ofmtxAth
and the column broadcast ofmtxBth; (ii) the row broad-
cast of mtxAth and the column reception of mtxBth;
(iii) the row reception ofmtxAth and the column broad-
cast of mtxBth; (iv) the row reception of mtxAth and
the column reception of mtxBth. The CPEs perform
RTAMMth by means of the local or remote mtxAth,
the local or remotemtxBth, and the localmtxCth.

• Step1: CPE (i, 1) broadcasts the data of mtxAth (i, 1)
to other CPEs in the same row, which receive the row-
broadcast data, by register communication. CPE (1, j)
broadcasts the data of mtxBth (1, j) to other CPEs in
the same column, which receive the column-broadcast
data, by register communication. Four statuses of CPEs
perform the corresponding SRTAMMth separately.

• Step2 through Step7 are similar to Step1.

According to the broadcast-broadcast on-chip communica-
tion mechanism, we enhance the reutilization of data on the
CPE cluster to eliminate unnecessary data access. RTAMMcg
can be efficiently accomplished by 8 steps.

C. MICRO OPTIMIZATION
Micro optimization focuses mainly on the highly efficient
computation of RTAMMth. To acquire the high-performance
computing kernel, we orchestrate the main instruction
sequence to fully utilize all usable vector registers and reduce
the idle time of the two pipelines (P0 and P1) on the CPE.

1) REGISTER BLOCKING
There are many limitations for register communication, such
as the fixed data size of 256 bits and anonymous process.
Therefore, we need to refine the broadcast-broadcast on-chip
communication mechanism to guarantee the accuracy and
efficiency of RTAMMth.

FIGURE 4. Register blocking based on the broadcast-broadcast on-chip
communication.

For RTAMMcg, each CPE needs to transfer a mtxAth with
size of Mth × Kth, a mtxBth with size of Kth × Nth, and a
mtxCth with size of Mth × Nth. Mth, Nth, and Kth are equal
to Mcg/8, Ncg/8, and Kcg/8, respectively. Both mtxAth and
mtxBth of each CPE must be broadcast once via register
communication. The limitation of register communication,
with one-time data size of 256 bits, makes it necessary to per-
form fine-grained blocking. As shown in Fig. 4, three thread-
level matrix blocks are divided into multiple register-level
matrix blocks,mtxArg,mtxBrg, andmtxCrg, whose sizes are
Mrg×Krg, Krg×Nrg, andMrg×Nrg, respectively. During the
communication phase, there are four CPE statuses. We take
the most complicated status with row broadcasting and col-
umn broadcasting as an example to explain register blocking
in detail:

VOLUME 8, 2020 156921



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

FIGURE 5. Instruction scheduling for the computational kernel.

• Load the 256-bit data segment in mtxCrg by vldd
instruction in turn, marked as the vector array
mtxCva

rg[0 : Mrg][0 :
Nrg
4 ].

• Load each data in mtxArg to perform vector expansion
in turn, marked as the vector array mtxAva

rg[0 : Mrg]
[0 : Krg], then perform the row broadcast, by ldder
instruction.

• Load the 256-bit data segment inmtxBrg in turn, marked
as the vector array mtxBva

rg[0 : Krg][0 :
Nrg
4 ], then

perform the column broadcast, by vldc instruction.
• Perform the register-level matrixmultiplication,mtxCva

rg

(i, j)+ =
∑Krg−1

k=0 mtxAva
rg (i, k)×mtxBva

rg (k, j),
by vmad instruction

For the highly efficient computation of register-level
matrix multiplication, we make the following two guaran-
tees: (i) there is no data dependence in the above process;
(ii) each vector element is matched by an independent vector
register. However, SW26010 has only 32 vector registers with
a size of 256-bits, including the zero register and the SP
(stack pointer) register. No more than 30 registers can be
used with confidence because of other operations, such as
the intermediate address calculation and loop judgment. With
these considerations, we set Krg = 1 to make guarantee (i)
above. In addition, we have Mrg +

Nrg
4 + Mrg

Nrg
4 < 30 to

ensure guarantee (ii) and synthesize the computation to data
access ratio of RTAMMth as follows:

2MthNthKth
4MthKth

Nth
Nrg
+ KthNth

Mth
Mrg
+ 2MthNth

≈
2

4
Nrg
+

1
Mrg

(11)

To maximize the ratio, we acquire the minimum value of
4
Nrg
+

1
Mrg

whenMrg =
Nrg
4 = 4.

2) INSTRUCTION SCHEDULING
To obtain higher peak performance, modern processors
not only integrate more and more cores, but also widely
apply superscalar technology [29]. Many studies [11], [13],
[30], [31] have focused on instruction-level optimization
methods based on superscalar technology. The same is true of
the SW26010 processor, which has two pipelines (P0 and P1)
on one CPE. P0 supports floating-point and integer oper-
ations of scalars/vectors, while P1 supports data transfer,
comparison, jump, and integer scalar operations. As a result,
the instruction arrangement and order are important to fully
parallelize pipelines P0 and P1.

As an example, we take the CPE that requires the row
broadcast of mtxAvarg and the column broadcast of mtxBvarg to
explain the instruction scheduling method. For RTAMMth,
the main goal is to perform multiple register-level vector
multiply-add operations. As shown on the left side of Fig. 5,
the innermost loop, which is the core of RTAMMth, includes
8 data access instructions, 16 vector multiply-add instruc-
tions, and some instructions for address calculation and loop
judgment. Normally, the execution overhead is 29 cycles
because of the terrible parallelization of P0 and P1, which
forfeits almost half of the computational power. To improve
the execution efficiency, wemanually reorder the instructions
to interleave the P0 instruction with the P1 instruction so
that two instructions can be issued together in one cycle.
As shown in the middle of Fig. 5, the execution overhead

156922 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

is 16 cycles after reordering the instructions, reflecting an
approximately 81.3% performance improvement. To further
explore the potential of the instruction sequence, we unroll
the innermost loop appropriately to reduce the number of
instructions and the frequency of branch judgment. Consid-
ering the 16 KB L1 ICache on SW26010, we unroll the loop
4 times to guarantee that all instructions of RTAMMth can be
stored in the L1 ICache without frequent instruction loading.
As shown on the right side of Fig. 5, the innermost loop is
divided into two parts. The main part is responsible for four
consecutive register-level matrix multiplication, while the tail
part for the remaining 0/1/2/3 ones. We reduce the number
of instructions by approximately 4.7% and the frequency of
branch judgment by approximately 75%.

D. ADAPTIVE ENGINE CONSTRUCTION
As illustrated in Fig. 2, the adaptive engine allowsRTAMMto
dynamically determine the execution action at runtime rather
than fixing the action at library generation time. As demon-
strated in subsequent experiments, the dynamic determina-
tionmethod greatly benefits the adaptability and performance
of matrix multiplication. The adaptive engine is composed
of two components: (i) several fundamental cost formulas;
(ii) a blocking factor pool. After explaining the basic imple-
mentation of RTAMM, the formulas (5) through (10) are
generated as the fundamental cost formulas to estimate the
execution efficiency. Furthermore, we no longer analyze one
set of theoretically optimal blocking factors, but instead
gather multiple sets of potential blocking factors to establish
a blocking factor pool and fully explore possible actions for
one matrix multiplication.

The blocking factors for RTAMM are Mcg, Ncg, and Kcg,
which are applied to map the global-level matrix multi-
plication to the CG-level one. Based on Krg = 1 and
Mrg =

Nrg
4 = 4 in Section 3.3, Mcg, Ncg, and Kcg should be

the multiple of 32, 128, and 8, respectively. To satisfy the
DDR3 interface which requires memory access in blocks
of 128 bytes, the column sizes (Ncg and Kcg) of the CG-level
matrix blocks need to be multiples of 128. On the other hand,
the LDM size on one CPE is only 64 KB, and it is impossible
to allocate all the LDM to matrix blocks because other data
also occupy a certain amount of LDM. After performing tests
on different allocated LDM sizes, we find that the reliable
threshold is 61 KB (499712 = 61 ∗ 64 ∗ 1024/8). There-
fore, corresponding to RTAMMMNK

cg by M2B2, RTAMMMKN
cg

by M2B2, RTAMMNKM
cg by M2B2, and RTAMMcg by

M3B2, Mcg, Ncg, and Kcg must satisfy the following
inequalities:

2McgKcg + 2KcgNcg +McgNcg 6 499712

McgKcg + 2KcgNcg + 2McgNcg 6 499712

2McgKcg + KcgNcg + 2McgNcg 6 499712

2McgKcg + 2KcgNcg + 2McgNcg 6 499712 (12)

Based on the above considerations, after testing on differ-
ent blocking factors of Mcg, Ncg, and Kcg, we select some

TABLE 2. Different blocking factors and unit overheads for RTAMM.

potential blocking factors appropriately, as shown in Table 2.
We do not search all of the useable blocking factors, because
this article aims to demonstrate the feasibility of the RTAMM
methodology rather than accomplishing the faultless imple-
mentation of matrix multiplication on SW26010. Instead, our
future work will focus on the perfect implementation. Here,
we design a MicroBenchmark to simulate the critical opera-
tions of RTAMM and measure their unit overheads OPloadcg ,
OPstorecg , and OPkernelcg . Upon testing the read and write DMA
bandwidths of one matrix, we can obtain OPloadcg (Mcg,Kcg),
OPloadcg (Kcg,Ncg), OPloadcg (Mcg,Ncg), and OPstorecg (Mcg,Ncg).
Similarly, OPkernelcg (Mcg,Ncg,Kcg) can be obtained via the
performance measurement for RTAMM without DMA oper-
ations. The results are shown in Table 2.

IV. EXPERIMENTAL RESULTS
For the fundamental math library, the adaptability of the
implementation is more important than the peak performance
because the former determines whether the library can adapt
to changeable scenes in real applications. To verify the superi-
ority of the proposed RTAMM, we evaluate the experimental
results from three perspectives: (i) the peak performance;
(ii) the adaptability; (iii) the effectiveness of the adaptive
engine. All the experiments are built on one CG, because
parallel algorithms across different CGs are usually at higher
programming levels by users. Taking the state-of-the-art
SWMM from the swBLAS library on SW26010 as the
baseline, we assess our work in this article. During the
experiments, we call directly the user API (application pro-
gramming interface) of matrix multiplication in SWMM,
dgemm_().

VOLUME 8, 2020 156923



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

FIGURE 6. Peak performance comparison between RTAMM and SWMM. The X axis indicates different matrix multiplication configurations with M, N ,
and K . The Y axis indicates the matrix multiplication performance (GFlops)at runtime.

A. PEAK PERFORMANCE EVALUATION
The square matrix (M = N = K ) is the most suitable
choice for testing the peak performance of matrix multipli-
cation. Considering that the DDR3 interface usually requires
memory access in blocks of 128 bytes to obtain the optimal
bandwidth, we set 90 matrix multiplications with different
configurations ofM = N = K = 128X (X ∈ {1, 2, . . . , 90}).
Fig. 6 displays the RTAMM and SWMM performance

trends as the matrix dimensions increase. WhenM is approx-
imately 9216, RTAMM reaches a peak of 657.97 GFlops,
while SWMM is 664.99 GFlops. In contrast to SWMM,
RTAMM achieves competitive peak performance with a neg-
ligible performance gap (≈ 1%). Moreover, RTAMM has a
more stable performance than SWMM because of the slight
fluctuation.

B. ADAPTABILITY EVALUATION
Here, we focus more on the adaptability of RTAMM than
the peak performance. Accordingly, we measure and analyze
6000 matrix multiplication cases with different configura-
tions of M , N , and K on RTAMM and SWMM.

The 6000matrixmultiplications can be divided into six cat-
egories (SMA,MMA, BMA, SMNA,MMNA, and BMNA) with
each consisting of 1000 matrix multiplications. The nota-
tions above are abbreviations used to describe the attributes
of the categories. SM , MM , and BM represent small-scale,
medium-scale, and big-scale matrix multiplications, respec-
tively, while A and NA are aligned and unaligned data.
As shown in Fig. 7, the ratios of matrix dimensions range
from 1 to 10, and baseSize describes the cardinal number of
matrix dimensions, namely, 128, 640, or 1152. The best data
alignment indicates that the data header address of each row
is aligned by 128 bytes for all the matrices. The worst data
alignment is the opposite, which indicates that the data header
address of each row is unaligned. These matrix multiplica-
tions, excluding extreme cases such as unit dimensions, and

FIGURE 7. Different matrix multiplication configurations.

enormous ratios, are adequate for comparing the adaptability
between RTAMM and SWMM because the purpose of this
article is not to implement perfect matrix multiplication on
SW26010.

As illustrated in Fig. 8, RTAMM achieves a considerable
performance improvement in most cases. The improvements
range from 5% to 308% compared with SWMM. The average
performance improvements of SMAN, MMNA, and BMNA
are 79.9%, 122.4%, and 131.1%, respectively, while those
of SMA, MMA, and BMA are 36.2%, 18.4%, and 11.5%,
respectively. For the average performance, SWMM has the
least gap relative to RTAMM in the BMA cases, because
the matrix dimensions in these cases are relatively large and
close to the multiple of the optimal blocking factors. As a
result, pursuing only the peak performance is restricted, and
adaptability should be the main concern. Because SWMM is
transparent for users, the fluctuations in Fig. 8 are difficult to
be explained in detail. To evaluate the experimental results,
we calculate the statistics of the number of cases for different
degrees of performance gaps, with 5% as the threshold of
the weak performance gap, 25% as the visible performance
gap, and 50% as the strong performance gap. As shown
in Table (3), when the performance gap is 5%, RTAMM
outperforms SWMM in 85.55% of the cases, while SWMM

156924 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

FIGURE 8. Adaptability comparison between RTAMM and SWMM. The X axis indicates the matrix multiplication configuration indexes from 1 to 1000.
The Y axis indicates the performance percentage (%) of RTAMM compared with SWMM. The six subfigures are as follows: (a) small-scale matrix
multiplication with aligned data; (b) small-scale matrix multiplication with unaligned data; (c) medium-scale matrix multiplication with aligned data;
(d) medium-scale matrix multiplication with unaligned data; (e) big-scale matrix multiplication with aligned data; (f) big-scale matrix multiplication
with unaligned data.

outperforms RTAMM in only 1.28%. As the performance
gap increases to 25%, RTAMM still has better performance
in 66.75% of the cases. At this threshold, the percentage of
cases where SWMM is superior is only approximately 0.05%.
Regarding the 50% performance gap, the number of cases
where RTAMM is superior to SWMM is over half of the total,
but no benefits can be gained from using SWMM. The results
above confirm that RTAMM adapts better to various matrix
multiplications.

In summary, Fig. 8 and Table 3 demonstrate that RTAMM
has better adaptability and higher performance in most matrix
multiplication cases.

C. EVALUATING THE EFFECTIVENESS OF THE
ADAPTIVE ENGINE
To verify the effectiveness of the adaptive engine, we man-
ually produce three versions of RTAMM: (i) the static
RTAMM which fixes the execution action by an MNK
nested loop, M2B2 double buffering, and one set of opti-
mal blocking factors; (ii) the dynamic RTAMM which
applies the adaptive engine; (iii) the ideal RTAMM which
obtains the best performance via testing on all possible
actions of the adaptive engine. The whole experiment is
built on the 6000 different matrix multiplications described
in Section 4.2.

VOLUME 8, 2020 156925



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

TABLE 3. Quantity statistics of matrix multiplication based on different
performance gaps.

TABLE 4. Statistics for the effectiveness of the adaptive engine in
RTAMM.

As shown in Table 4, the dynamic RTAMM can achieve
a performance improvement of 18.78% on average and
116.13% on maximum compared with the static RTAMM.
For the decision accuracy, the dynamic RTAMM can reach
97.5% compared with the ideal RTAMM.Moreover, the deci-
sion overhead is so negligible that we can accomplish high-
performance execution. In summary, the above statistics
demonstrate that the adaptive engine is beneficial for the
adaptability of RTAMM and has a negligible overhead.

V. RELATED WORKS
All BLAS operations can be implemented based on a high-
performance matrix multiplication, which was proposed by
Kågström et al. [32]. Many practical scientific applica-
tions are closely related to frequent dense linear operations.
Because these operations have large computational require-
ments, the optimization of matrix multiplication is a hot
research topic [4]–[7]. For example, Volkov and Demmel [4]
proposed a quick implementation method on the G80 archi-
tecture, and used a blocking algorithm to exploit locality in
shared memory. Nath et al. [33] developed the dense linear
algebra library MAGMA for the heterogeneous architecture
of many-core+GPU, which uses a method similar to double
buffering to prefetch data into additional registers instead of
shared memory. Lim et al. [24] optimized the performance
of matrix multiplication on Intel KNL platform with C lan-
guage based on blocking schemes, data prefetching, loop
unrolling and Intel AVX-512. Compared with these works,
we find two pivotal directions for optimizing matrix multipli-
cation: the macro-level blocking method and the micro-level

computational kernel. The former mainly exploits data local-
ity to balance the computation and data access, while the
latter focuses mainly on the efficiency of the bottom hard-
ware execution unit by utilizing high-level languages such as
C/C++ or low-level assembly code.

In addition to manual optimization, the automatic adjust-
ment of matrix multiplication is also an important research
field. Bilmes et al. [23] proposed an early prototype of the
automatic matrix multiplication generation system known as
PHIPAC. Subsequently, Whaley et al. [34] extended the idea
of PHIPAC to all other dense matrix kernels of BLAS to form
ATLAS. Jiang and Snir [35] developed a matrix multiplica-
tion automatic tuning system similar to ATLAS that generates
multiple implementation versions based on a parameterized
code generator and uses a dedicated search engine to search
for the best version. Lim et al. [36] proposed a heuristic
automatic tuning method to generate the computational ker-
nel for Intel KNL and Intel Skylake-SP processors. The tun-
ing parameters include the register-level/cache-level matrix
block size, expected distance and depth of loop unrolling.

For many years, almost all research on matrix multipli-
cation focused on general-purpose processors, such as Intel
Xeon/Xeon Phi and NVIDIA GPUs. In contrast, only a few
studies [11], [13] have investigated the SW26010 processor
which is a rising star in the modern many-core proces-
sor domain. Moreover, to achieve the ideal peak perfor-
mance, these works discussed the performance optimization
in only the special case where matrix dimensions are suffi-
ciently large and the multiple of the optimal blocking fac-
tors. In this article, the proposed RTAMM methodology can
provide the better implementation of matrix multiplication on
SW26010. Because of the architectural differences between
SW26010 and general-purpose processors (CPU and GPU),
the research of matrix multiplication on SW26010 is of great
significance for the development of many-core processors.

VI. CONCLUSION
In this article, we propose RTAMM to promote the adapt-
ability and performance of various matrix multiplications
for the SW26010 many-core processor. The basic idea is
to quantize several fundamental cost formulas for different
matrix multiplication algorithms, and then combine them
with multiple sets of potentially valuable blocking factors to
explore possible execution actions for one matrix multipli-
cation case. Based on the above idea, RTAMM dynamically
determines the execution action at runtime. With the state-of-
the-art SWMM as the baseline, experiments demonstrate that
RTAMMnot only achieves competitive peak performance but
also has better adaptability for various matrix multiplications.

In the future, we will further study the perfect implemen-
tation of matrix multiplication on SW26010 based on the
dynamic adaptive methodology.

REFERENCES
[1] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, ‘‘A set of level

3 basic linear algebra subprograms,’’ ACM Trans. Math. Softw., vol. 16,
no. 1, pp. 1–17, Mar. 1990.

156926 VOLUME 8, 2020



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

[2] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and
R. C. Whaley, ‘‘Design and implementation of the ScaLAPACK LU,
QR, and cholesky factorization routines,’’ Sci. Program., vol. 5, no. 3,
pp. 173–184, 1996.

[3] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. (2001). Petsc. [Online]. Avail-
able: http://www.mcs.anl.gov/petsc

[4] V. Volkov and J. W. Demmel, ‘‘Benchmarking GPUs to tune dense linear
algebra,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2008, pp. 1–11.

[5] J. Kurzak, S. Tomov, and J. Dongarra, ‘‘Autotuning GEMM kernels for
the Fermi GPU,’’ IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 11,
pp. 2045–2057, Nov. 2012.

[6] V. Kelefouras, A. Kritikakou, I. Mporas, and V. Kolonias, ‘‘A high-
performancematrix–matrix multiplicationmethodology for CPU andGPU
architectures,’’ J. Supercomput., vol. 72, no. 3, pp. 804–844, Mar. 2016.

[7] V. Kelefouras, A. Kritikakou, and C. Goutis, ‘‘A Matrix–Matrix multi-
plication methodology for single/multi-core architectures using SIMD,’’
J. Supercomput., vol. 68, no. 3, pp. 1418–1440, Jun. 2014.

[8] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang,
Y. Wang, C. Zhou, and G. Yang, ‘‘The sunway TaihuLight supercomputer:
System and applications,’’ Sci. China Inf. Sci., vol. 59, no. 7, Jul. 2016,
Art. no. 072001.

[9] J. J. Dongarra, P. Luszczek, and A. Petitet, ‘‘The LINPACK benchmark:
Past, present and future,’’ Concurrency Comput., Pract. Exper., vol. 15,
no. 9, pp. 803–820, 2003.

[10] Z. Xu, J. Lin, and S. Matsuoka, ‘‘Benchmarking SW26010 many-core
processor,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2017, pp. 743–752.

[11] J. Lin, Z. Xu, A. Nukada, N. Maruyama, and S. Matsuoka, ‘‘Optimizations
of two compute-bound scientific kernels on the SW26010 many-core
processor,’’ in Proc. 46th Int. Conf. Parallel Process. (ICPP), Aug. 2017,
pp. 432–441.

[12] J. Lin, Z. Xu, L. Cai, A. Nukada, and S. Matsuoka, ‘‘Evaluating the
SW26010 many-core processor with a micro-benchmark suite for perfor-
mance optimizations,’’ Parallel Comput., vol. 77, pp. 128–143, Sep. 2018.

[13] L. Jiang, C. Yang, Y. Ao, W. Yin, W. Ma, Q. Sun, F. Liu, R. Lin, and
P. Zhang, ‘‘Towards highly efficient DGEMM on the emerging SW26010
many-core processor,’’ in Proc. 46th Int. Conf. Parallel Process. (ICPP),
Aug. 2017, pp. 422–431.

[14] Y. Liu, Q. Liao, J. Sun, M. Hu, L. Liu, and L. Zheng, ‘‘A heterogeneous
parallel genetic algorithm based on SW26010 processors,’’ in Proc. IEEE
21st Int. Conf. High Perform. Comput. Commun., Aug. 2019, pp. 54–61.

[15] D. J. M. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,
J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. W. Leong,
‘‘A customizable matrix multiplication framework for the intel HARPv2
Xeon+FPGA platform: A deep learning case study,’’ in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2018, pp. 107–116.

[16] T. M. Smith, R. V. D. Geijn, M. Smelyanskiy, J. R. Hammond, and
F. G. V. Zee, ‘‘Anatomy of high-performance many-threaded matrix mul-
tiplication,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp.,
May 2014, pp. 1049–1059.

[17] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz, and R. A. van
de Geijn, ‘‘Unleashing the high-performance and low-power of multi-
core DSPs for general-purpose HPC,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2012, pp. 1–11.

[18] F. Wang, H. Jiang, K. Zuo, X. Su, J. Xue, and C. Yang, ‘‘Design and
implementation of a highly efficient DGEMM for 64-bit ARMv8 multi-
core processors,’’ in Proc. 44th Int. Conf. Parallel Process., Sep. 2015,
pp. 200–209.

[19] K. Goto and R. Van De Geijn, ‘‘High-performance implementation of
the level-3 BLAS,’’ ACM Trans. Math. Softw., vol. 35, no. 1, pp. 1–14,
Jul. 2008.

[20] X. Su, X. Liao, H. Jiang, C. Yang, and J. Xue, ‘‘SCP: Shared cache
partitioning for high-performance GEMM,’’ ACM Trans. Archit. Code
Optim., vol. 15, no. 4, pp. 1–21, Jan. 2019.

[21] S. Mittal, ‘‘A survey of architectural techniques for improving cache power
efficiency,’’ Sustain. Comput., Informat. Syst., vol. 4, no. 1, pp. 33–43,
Mar. 2014.

[22] J. A. Gunnels, G. M. Henry, and R. A. Van De Geijn, ‘‘A family of
high-performance matrix multiplication algorithms,’’ in Proc. Int. Conf.
Comput. Sci., 2001, pp. 51–60.

[23] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, ‘‘Optimizing matrix
multiply using PHiPAC: A portable, high-performance, ANSI c cod-
ing methodology,’’ in Proc. 25th Anniversary Int. Conf. Supercomputing
Anniversary, 2014, pp. 253–260.

[24] R. Lim, Y. Lee, R. Kim, and J. Choi, ‘‘An implementation of matrix–
matrix multiplication on the intel KNL processor with AVX-512,’’ Cluster
Comput., vol. 21, no. 4, pp. 1785–1795, Dec. 2018.

[25] S. Cho, J. Hong, J. Choi, and H. Han, ‘‘Multithreaded double queuing for
balanced CPU-GPUmemory copying,’’ inProc. 34th ACM/SIGAPP Symp.
Appl. Comput., Apr. 2019, pp. 1444–1450.

[26] J. Nie, C. Zhang, D. Zou, F. Xia, L. Lu, X. Wang, and F. Zhao, ‘‘Adaptive
sparse matrix-vector multiplication on CPU-GPU heterogeneous architec-
ture,’’ in Proc. 3rd High Perform. Comput. Cluster Technol. Conf., 2019,
pp. 6–10.

[27] R. C. Agarwal, F. G. Gustavson, and M. Zubair, ‘‘A high-performance
matrix-multiplication algorithm on a distributed-memory parallel com-
puter, using overlapped communication,’’ IBM J. Res. Develop., vol. 38,
no. 6, pp. 673–681, Nov. 1994.

[28] G. C. Fox, S.W. Otto, and A. J. G. Hey, ‘‘Matrix algorithms on a hypercube
I: Matrix multiplication,’’ Parallel Comput., vol. 4, no. 1, pp. 17–31,
Feb. 1987.

[29] J. P. Shen and M. H. Lipasti, Modern Processor Design: Fundamentals
Superscalar Processors. Long Grove, IL, USA: Waveland Press, 2013.

[30] Y. Zhang, B. Shu, Y. Yin, Y. Zhou, S. Li, and J. Wu, ‘‘Efficient processing
of convolutional neural networks on sw26010,’’ in Proc. Int. Conf. Netw.
Parallel Comput., 2019, pp. 316–321.

[31] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, T. Kitamura, and
S. Tomita, ‘‘A high-speed dynamic instruction scheduling scheme for
supersealar processors,’’ in Proc. 34th ACM/IEEE Int. Symp. Microarchi-
tecture., 1999, pp. 225–236.

[32] B. Kágström, P. Ling, and C. van Loan, ‘‘GEMM-based level 3 BLAS:
high-performance model implementations and performance evaluation
benchmark,’’ ACM Trans. Math. Softw., vol. 24, no. 3, pp. 268–302,
Sep. 1998.

[33] R. Nath, S. Tomov, and J. Dongarra, ‘‘An improved magma GEMM for
Fermi graphics processing units,’’ Int. J. High Perform. Comput. Appl.,
vol. 24, no. 4, pp. 511–515, 2010.

[34] R. Clint Whaley, A. Petitet, and J. J. Dongarra, ‘‘Automated empirical
optimizations of software and the ATLAS project,’’ Parallel Comput.,
vol. 27, nos. 1–2, pp. 3–35, Jan. 2001.

[35] C. Jiang and M. Snir, ‘‘Automatic tuning matrix multiplication perfor-
mance on graphics hardware,’’ in Proc. 14th Int. Conf. Parallel Archit.
Compilation Techn., 2005, pp. 185–194.

[36] R. Lim, Y. Lee, R. Kim, J. Choi, andM. Lee, ‘‘Auto-tuning GEMMkernels
on the intel KNL and intel skylake-SP processors,’’ J. Supercomput.,
vol. 75, no. 12, pp. 7895–7908, Dec. 2019.

ZHENG WU received the B.S. degree in the
Internet of Things engineering from the Hefei
University of Technology, in 2015. He is currently
pursuing the Ph.D. degree in computer science
with the University of Science and Technology of
China, Hefei, China.

His research interests include computer sys-
tems organization, parallel computing, high-
performance computing, and artificial intelligence.

MINGFAN LI received the B.S. degree in com-
puter science and technology from the University
of Electronic Science and Technology of China,
Chengdu, in 2017. He is currently pursuing the
M.S. degree with the School of Computer Science
and Technology, University of Science and Tech-
nology of China, Hefei, China.

His research interests include dataflow systems,
parallel and distributed computing, and scheduling
in heterogeneous environments.

VOLUME 8, 2020 156927



Z. Wu et al.: Runtime Adaptive Matrix Multiplication for the SW26010 Many-Core Processor

MENGXIAN CHI received the B.E. degree
from the University of Science and Technol-
ogy of China, Hefei, China, in 2014, where
he is currently pursuing the Ph.D. degree with
the Advanced Computer System Architecture
Laboratory, School of Computer Science and
Technology.

His research interests include parallel comput-
ing, big data in scientific computing, and deep
learning acceleration.

LE XU received the B.S. degree in computer
science from Xidian University, in 2019. He is
currently pursuing the M.S. degree in computer
science with the University of Science and Tech-
nology of China, Hefei, China.

His research interests include computer archi-
tecture, parallel computing, and high-performance
computing.

HONG AN received the Ph.D. degree in computer
science from the University of Science and Tech-
nology of China (USTC), in 2000.

She is currently a Full Professor of com-
puter science and technology and the Director
of the Computer System Architecture Laboratory,
USTC. She has published more than 150 research
papers in international conferences and journals,
such as ICS, SC, PPoPP, IPDPS, HPCA, ICPP,
HPCC, IJPC, IJPP, and the IEEE TRANSACTIONS.

Her major research interests include large-scale parallel computing chip
and system structure, high-performance computing, parallel computing, and
cognitive computing system for medical imaging.

156928 VOLUME 8, 2020


