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ABSTRACT To solve the problem of falling into local optimum and poor convergence speed of traditional
ant colony algorithm, this paper proposes a High-frequency path mining-based Reward and Punishment
mechanism for multi-colony Ant Colony Optimization (HRPACO). Firstly, the pheromone concentration on
the path of effective strong association is rewarded adaptively according to the lift of association rules to
accelerate the convergence speed. Secondly, the pheromone concentration on the path of minimum spanning
tree is punished adaptively according to the support of association rules to improve the diversity of the
colony. The interaction of reward and punishment mechanism can effectively balance the diversity and
convergence. Finally, a self-evolutionary mechanism based on Gaussian filter is proposed to adaptively adjust
the pheromone concentration by dynamic smoothing of the pheromone matrix, so as to help the colony jump
out of the local optimum. The TSP is used to verify the performance of the algorithm. The simulation results
show that the proposed algorithm can effectively accelerate the convergence speed and improve the accuracy
of solution, especially for large-scale problems. Meanwhile, path planning is used to verify the feasibility of
the proposed algorithm. The simulation results show that the algorithm can find an effective and better path
even in the environment of complex obstacles.

INDEX TERMS Reward and punishment mechanism, association rules, minimum spanning tree, gaussian

filter, path planning.

I. INTRODUCTION

Traveling Salesman Problem is a typical combinatorial opti-
mization problem. It is a concentrated generalization and
simplified form of various complex problems in many fields.
Besides, the TSP has an important practical and engineer-
ing background, and it is widely used in many fields such
as transportation, computer network, circuit board design,
and logistics distribution. Therefore, any method that sim-
plifies the solution of the problem will be highly valued
and concerned. The TSP can be explained as that the trav-
eler knows the mutual distances between n cities, he starts
from a certain city, then visits each city once and only once
before returning to the first city. Lastly, he asks to find the
shortest path to traverse n cities. In the beginning, people
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used the optimal solution algorithm to solve TSP, such as
the branch and bound method and the dynamic programming
method. Although the optimal solution algorithm yields exact
solution, the computation time is intolerable and hence var-
ious approximation methods have been developed, such as
Majorize-Minimization (MM), greedy algorithm, and Mini-
mum Spanning Tree (MST). These approximate algorithms
can get a feasible solution that is close to the optimal solution
quickly. However, the disadvantage is that the degree of
approaching the optimal solution is not satisfactory.
Meta-heuristic algorithms are the improvement of the
heuristic algorithm, which is the product of the combi-
nation of random algorithms and local search algorithms.
They usually do not rely on the specific conditions of some
problems, so they can be applied to a broader area. Today,
the Meta-heuristic algorithm has been successfully applied in
engineering, computer network, biological system modeling,
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forecasting, pattern recognition, data clustering, feature
selection, and other fields [1]-[4]. Meta-heuristic algo-
rithms are classified into local search-based algorithms and
population-based algorithms. Although local search algo-
rithms are simple, flexible, and easy to implement, they tend
to fall into the local optimum, such as simulated annealing [5],
tabu search [6], hill climbing [7], etc. Evolutionary com-
putation and swarm intelligence methods are classifications
of population-based methods. Evolutionary computation is
a search algorithm based on natural selection and natural
genetics, such as Genetic Algorithm (GA) [8], Evolution-
ary Strategy (ES) [9], Evolutionary Programming (EG) [10].
It has the characteristics of self-organization, self-adaptive,
and self-learning. However, the algorithms are dependent
on the choice of parameters and most importantly on their
poor local search capability. Swarm intelligence algorithms
primarily simulate the behavior of groups of insects, herds,
birds, and fish. These groups follow a cooperative approach
to finding food, with each member of the group constantly
changing the direction of the search by learning from their
own experiences and the experiences of other members.
It is a bionic and random probability search algorithm with
robustness and intelligence, such as Ant Colony Optimiza-
tion (ACO) [11], Particle Swarm Optimization (PSO) [12],
Artificial Bee Colony (ABC) [13] and Fruit Fly Optimization
Algorithm(FOA) [14]. Swarm intelligence algorithms realize
the information exchange and cooperation between individu-
als and groups. The individual has certain randomness, which
keeps the diversity of search directions to a certain extent,
and avoids premature convergence and falls into local opti-
mality. The group grasps the direction of optimization on the
whole to ensure the convergence of the algorithm. Therefore,
in recent years, more and more swarm intelligence algorithms
have been used to solve TSP [15]-[20].

The ant colony optimization is a probabilistic algorithm for
finding the optimal paths. It was proposed by Dorigo in his
doctoral thesis in 1992, and it was inspired by the behavior
of ants discovering paths in the process of finding food.
As ants walk, they release a substance called pheromones
that are used to mark their walking path. In the process of
searching for food, the ants choose the direction of walking
according to pheromone concentration and eventually reach
the food. Compared with other heuristics, the ant colony algo-
rithm is characterized by distributed computing, pheromone
positive feedback, and strong robustness. As a result, ant
colony optimization has been widely used in Recommender
systems [21], Feature selection [22], machine layout prob-
lem [23], path planning problem [24], and other fields, and
has obtained remarkable results. Ant colony algorithms have
become a common method for solving robot path planning
problems, and therefore, our research group is studying the
use of ant colony algorithms to solve robot path planning
problems. The path planning has always been a hot topic and
key problem in the field of artificial intelligence research, and
it shows great application value. However, TSP also plays an
important role as a direction of robot path planning.
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Due to the problems of poor convergence and precocious-
ness of traditional ant colony algorithms, many experts and
scholars have proposed improved ant colony algorithms.
However, the performance of most single colony ant colony
algorithms still needs to be improved. The multi-colony ant
colony algorithm was found to be superior to the single
colony ant colony algorithm in performance. Therefore,
the research of the multi-colony algorithm has become an
inevitable trend. The detailed development process of the
ACO and its main strengths and weaknesses will be discussed
in the relevant work.

Inspired by the above analysis, a High-frequency path
mining-based Reward and Punishment mechanism for multi-
colony Ant Colony Optimization is proposed in this paper.
We focus on improving the accuracy of the solution on
large-scale problems and balance the diversity and the con-
vergence performance of the algorithm. We selected 13 TSP
instances of different scales to verify the performance of
HRPACO and compared them with the traditional ant colony
algorithm and the improved meta-heuristic algorithm in
this field. Meanwhile, four obstacle environments of dif-
ferent complexity were selected to prove the feasibility of
HRPACO. Secondly, to illustrate that HRPACO is different
from the traditional ant colony algorithms and improved ant
colony algorithms, we use Friedman to prove the statisti-
cal significance of the results. Aside from this, in order to
obtain as superior a set of parameters as possible, we use
the orthogonal test to select the appropriate parameters.
Finally, the experimental results show that the performance
of HRPACO is better than several algorithms mentioned in
this paper. It can effectively accelerate the convergence speed
and obtain more accurate solutions. In addition, HRPACO
can find an effective and better solution even in a complex
environment. The main contributions of this paper are sum-
marized as follows:

1. The average of similarities between the minimum span-
ning tree and the optimal paths is used as the evaluation
criterion to adaptively adjust the communication fre-
quency of the colony and realize the information shar-
ing among the sub-colonies. This will help to improve
the adaptive interaction between colonies.

2. Reward mechanism finds the potential connection
between paths according to the lift of association rules,
and adaptively rewards the pheromone concentration
on the effective strong association path, so as to acceler-
ate the convergence speed. The punishment mechanism
evaluates the frequency of path selection according to
the support of association rules, and adaptively pun-
ishes the pheromone concentration on the path of the
minimum spanning tree, so as to improve the diversity.
The combination of the two strategies can effectively
balance diversity and convergence.

3. A self-evolutionary mechanism based on the Gaussian
filter is proposed. When the colony falls into the local
optimum, the self-evolutionary mechanism is imple-
mented adaptively according to the self-evolutionary
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condition. The mechanism adaptively adjusts the
pheromone concentration by dynamic smoothing of the
pheromone matrix. It can help the colony to jump out
of the local optimum.

This article is organized as follows. Section 2 intro-
duces the related works in the domain of the ACO and
the motivation of our work. Section 3 describes the ACS,
Minimum spanning tree, Association Rules, Gaussian filter
and Grid method. Reward and punishment mechanism based
on high-frequency path mining and self-evolutionary mech-
anism are proposed in Section 4. Section 5 illustrates the
experimental results of TSPs, the experimental results of
path planning and comparison among different algorithms.
Section 6 summarizes our work and describes some of our
future directions.

Il. THE RELATED WORK

In this section, we briefly review some research work in
related areas and discuss the differences and connections
between these work and our methods.

Ant Colony Optimization is one of the most effective meta-
heuristic algorithms, which simulates the foraging behavior
of ants in nature. It has been successfully applied to solve
combinatorial optimization problems. In 1992, Dorigo et al.
proposed the Ant System (AS) [25] inspired by the mecha-
nism of biological evolution. Because AS has the characteris-
tics of positive information feedback, distributed computing,
and heuristic search, it has been widely concerned and studied
by many scholars. However, with the continuous expansion of
the scale of test cases, the performance has declined seriously.
Its main defects are slow convergence and easy to fall into
local optimum.

To solve these problems, in 1996, Dorigo proposed the ant
colony system (ACS) [26], which is a modified algorithm
based on the AS. The new algorithm introduces the concept
of a global update, and the state transition rules used in
path creation are also superior to the AS. As a result, ACS
can get a better solution when solving large TSP instances.
In 1997, S tutzle and others in the experimental analysis and
application research of AS puts forward the Max-Min Ant
System (MMAS) [27], MMAS allows only the best Ant in
each iteration updating the pheromone trails, and limit the
pheromone concentration value of upper and lower. Its pur-
pose is to prevent algorithm premature stop leakage, increase
the diversity of the algorithm. However, the traditional ant
colony algorithm mentioned above still has some defects such
as insufficient convergence, low precision, and easy to fall
into local optimum.

A large number of variations of ACO have been presented
over the past few years [28]-[37]. Wu et al. proposed a
multimodal continuous ant colony optimization algorithm
and designs an efficient local search optimization method
to ensure high diversity and improve search efficiency [28].
Ye et al. proposed to take advantage of search-history infor-
mation and continually obtains failure experience to guide
the ant swarm exploring the unknown space during the
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optimization process, to utilize the negative feedback to
improve the diversity of solutions [31]. Chen et al. proposed a
method to adjust the time interval adaptively according to the
diversity of the solutions, to increase the ability of the search
and to avoid early convergence [32]. To further accelerate
the convergence, a novel strengthened pheromone updating
mechanism is designed, which strengthens pheromone on the
edge that never appeared before, using the dynamic informa-
tion in the process of the optimal path optimization, to achieve
the purpose of strengthening the convergence speed [33].

To keep a more reasonable balance between the search
ability and the convergence in the search process, some schol-
ars have proposed a hybrid algorithm based on ant colony
algorithm. This algorithm can absorb the advantages of other
algorithms so as to obtain better performance [38]-[45].
Xiao et al. proposed a hybrid ant colony optimization
approach that combines with the continuous population-based
incremental learning and the differential evolution for con-
tinuous domains. To alleviate the less diversity problem in
traditional population-based ant colony algorithms, differen-
tial evolution is employed to calculate Gaussian mean values
for the next generation [38]. Dahan et al. embedded the 3-Opt
algorithm into the ant colony algorithm, the number of neigh-
boring nodes that received pheromones varied depending on
the quality of the solution compared to obtain high-quality
solutions [39]. Yindee et al. used four local search strategies
in the algorithm: simulated annealing, simulated annealing
with similarity measure, 2-opt, and 3-opt, so as to avoid
the stagnation of the algorithm [40]. To effectively balance
diversity and convergence, Kaabachi et al. proposed a new
hybrid approach that combines local search with the ant
colony optimization algorithm for solving the TSP [41].

However, all the above algorithms are single colony ant
colony algorithms. To further improve the search perfor-
mance and solution quality of the ant colony algorithm,
the multi-colony ant colony algorithms have been proposed
[46]-[56]. Different ant colonies have different characteris-
tics, complementary advantages, and potential cooperation
with each other, so heterogeneous multi-colony ant colony
algorithms have more advantages in solving complex and
large-scale problems. Chen et al. used entropy to measure
diversity, and the entropy-based allotropic mechanism with
three communication strategies can improve the adaptability
of the algorithm. Then, the heterogeneous colonies with
complementary advantages are proposed to balance the con-
vergence speed and the diversity of the algorithm [48].
Zhu et al. proposed a Multiple Ant Colony Optimization
based on the Pearson Correlation Coefficient in order to
avoid getting trapped in local optimization and enhance
the diversity of algorithms [51]. Tuani et al. solved hard
Optimization problems by introducing unique biases towards
the pheromone trail and local heuristics for each ant. Besides,
the well-known Ant System and Max-Min Ant System are
used as the base algorithms to implement heterogeneity,
so as to effectively improve the quality of the solution [52].
A heterogeneous feature ant colony optimization algorithm
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based on effective vertexes of obstacles is proposed by
Zhao et al. to solve the problem of poor convergence and
local optimum [53].

The selection of the single colonies that form a multi-
colony algorithm is very important. To some extent, using het-
erogeneous ant optimization algorithms is more possible to
avoid premature convergence [50]. We select two classical ant
colony algorithms ACS, MMAS to compose the multi-colony
algorithm. Among them, ACS is a representative single
colony ant colony algorithm in terms of convergence, and
MMAS is a representative single colony ant colony algo-
rithm in terms of diversity. The combination of these two
single colonies with different characteristics can improve the
performance of the algorithm. To achieve a better balance
between intensification and diversification, the winner ant
is awarded and the loser ant is punished, according to a
feedback mechanism called Rule of Winner and Loser [57].
The best solution is rewarded to enhance the guiding effect
of the current optimal solution on subsequent iterations. The
penalty for the worst solution is used to reduce the misleading
effect of the worst path on subsequent iterations so that the
algorithm accelerates the convergence speed to the global
optimal solution [58]. Therefore, adding the operation of
reward and punishment into the algorithm is beneficial to
the performance improvement of the algorithm. Besides,
association rules reflect the interdependence and relevance
between one thing and other things. If we find out the
potential correlation, it will not only improve the speed of
the solution, but also improve the accuracy of the solution.
Shang et al. introduce association rules into the ant colony
algorithm to solve TSP. The algorithm finds relation above all
cities in the proper size of solutions according to association
rule [59]. Gao et al. tried to combined ACO and the strong
association rules to improve the accuracy of the solution [60].

For better performance, the colonies with the above advan-
tages should also be applied. All of the above are what
motivate our work.

lll. MATERIALS AND METHODS

A. THE PRINCIPLE OF ACS

1) PATH CONSTRUCTION

In ACS algorithm, the antselects the next node using a state
transition rule which is different fromAS algorithm. It is a
pseudo-random ratio rule controlled by a parameter go. The
formula is as follows

arg max {n;/~n§} g <490

j= Jjeallowed
J else

ey

where ¢ = a random variable, which ranges from 0 to 1.
qo = an adjustable parameter, which ranges from O to 1.
i = current node, j = next node, n; = the reciprocal of
the distance between nod i and node, 7;; = the pheromone
intensity values between nod i and node, allowed = the set
of nodes, which is chosen by the ants next. / = a random
variable, which is generated from the probability distribution
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given in (2):
[zi(D)]* [ :
- J € allowed
P,:/'(l‘) — Sea%wed[fis(t)] [771'5]/3 2)
0 else

where o determines the importance of the pheromone infor-
matio; B determines the importance of the heuristic infor-
mation. The larger their values, the greater their role in the
probability of state transfer.

2) PHEROMONE UPDATES

1. Global update rule:
In ACS, global pheromones are updated after all ant cycles
have been completed and only the pheromones on the current
best path are updated. Using this update method makes the
path search more targeted and the ants prefer to search for
theoptimal path. Theupdate the rule is as follow:

5t + 1) = (1 = p)r(1) + pATy 3)

where Atj; = 1/Lgp, Lgp, = the current global optimal path
length of the algorithm, At; = increment of pheromone,
which is released by the ants on the path from nod i to node j
in the current iteration, p = the volatility coefficient of the
global pheromone. The update of global pheromone is helpful
to improve the convergence speed of the algorith.
2. Local update rule:

After each ant moves from node i to the next node j,
the pheromones on the path between the two node are updated
according to (4). This pheromone updating method makes
ants more likely to choose a different path than the previous
one during path construction. The formula of the local update
rule is as follows.

Tij(t + 1) = (1 = p)7;(t) + p7o “

where p = the volatility coefficient of local pheromon,
7o = the initial value of the pheromone on each path. The
update of local pheromonecan prevent algorithm stagnation
and increase the diversity of the algorithm.

B. MAX-MIN ANT SYSTEM
To make the algorithm search near the shortest path and
gradually find the global optimal solution, the algorithm only
updats the pheromone of the shortest path in the current cycle.
The formula is as follows:
Tt + 1) = pry(1) + AT (5)

In order to prevent some edge pheromones from grow-
ing too fast and causing stagnation, the size of any edge
pheromone in the MMAS algorithm is limited to the range of
[Tmin, Tmax]- If the concentration of pheromone on the current
edge is higher than 1., then the concentration of pheromone
on the current edge is set to Tax, as shown in the following
formula:

1 1

TR ©

Tmax
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where, f(s%’") = the global optimal solution and p = the
volatile factor of pheromone.

If the concentration of the pheromone on the current edge
is lower than tp,,, then the concentration of the pheromone
on the edgeis set to Ty, as shown in the following formula:

Tmax(1 — /Pbest)
(n/2 - 1)»\"/pbest
where, ppess = the probability of finding the optimal
solution when the MMAS algorithm converges, which is
generally 0.05.

Tmin =

(N

C. DEFINITION AND CONSTRUCTION OF MINIMUM
SPANNING TREE

Suppose that the directionless connected band-weight graph
G=<V,E,W >, T is a spanning tree of G. The sum
of the rights of the sides of T is called the weight of T,
which is denoted as W(T). The spanning tree with the least
weight among all spanning trees of G is called the minimum
spanning tree of G.

The Prim and Kruskal algorithms are usually used to
construct the minimum spanning tree.

The process ofthe Prim algorith is described: the vertex
is always dominant and the choice of the starting point is
arbitrary. The minimum weighted edge is chosen from the
starting point to some other point, and then the minimum
weighted edge is found at each of the two vertices of this edg.
In addition, edges that are already indirectly connected are
skipped.

The process of the Kruskal algorithm is described: the edge
is always dominant, the minimum weighted edge currently
available is always chosen, and each time it is judged whether
the two points are already indirectly connected to each other,
and if so, this edge is skipped.

D. ASSOCIATION RULES

Association rules reflect the interdependencies and relevance
between one thing and other things. It is an important tech-
nique in data mining for extracting valuable correlations
between data items from large amounts of data.

The process of association rules mining mainly consists
of two stages: the first stage must find out all high-frequent
itemsets from the data set, that is, the item set whose support
is greater than the set minimum threshold is found from the
transaction data set. The second stage is to generate associa-
tion rules from these high-frequent itemsets, that is, to extract
the rule whose confidence is higher than the minimum
threshold set.

The rules that satisfy the minimum support and minimum
confidence are called a “‘strong association rule”’. However,
in the strong association rule, there are also valid strong
association rules and invalid strong association rules. The lift
reflects the relevance between the key content of X and Y
in association rules, that is, to judge whether it is a valid
strong association. If the lift is greater than 1, then the rule
“X — Y7 is a valid strong association rule; if the lift is less
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than 1, then the rule “X — Y is an invalid strong association
rule; if the lift is equal to 1, then X and Y are independent of
each other and have no relationship.

According to the three metrics of support, confidence and
lift, association rules that meet the conditions can be screened
out.

o Support: the number of occurrences of several associ-

ated data in the dataset as a proportion of the proportion
of the total dataset.

P(XY)
P(All)
« Confidence: the probability that one data appears fol-

lowed by another, or the conditional probability of the
data.

Support(X,Y) = (8)

Confidence(Y — X) = P(X|Y) = P(XY)/P(Y) )

« Lift: the ratio of the probability of X occurring in the
condition containing Y to the probability of X occurring
overall.

P(X|Y)  Confidence(Y — X)

PX) Support(X)

Lift(Y — X) = (10)

E. GAUSSIAN FILTER

Under the concept of image processing, Gausian filter con-
nects image frequency domain processing and time-domain
processing, and is used as a low-pass filter to filter out
low-frequency energy and to smooth out images.

Gaussian filter is a linear smoothing filter, which is suitable
for eliminating Gaussian noise and widely used inthe process
of image processing noise reduction. Generally speaking,
Gaussian filtering is the process of the weighted average of
the whole image. The value of each pixel is obtained by the
weighted average of itself and other pixel values in the neigh-
borhood. The specific operation of Gaussian filtering is to
scan every pixel in the image with a template (or convolution,
mask), and use the weighted average gray value of the pixel in
the neighborhood determined by the template to replace the
value of the central pixel of the template. Gaussian smoothing
filter is very effective to suppress the noise which obeys the
normal distribution.

F. THE GRID METHOD

The grid method is the representation of maps by coded
grids. It marks grids that contain obstacles as obstacle grids,
otherwise as free grids, and uses them as the basis for path
search.

It is assumed that the workspace of the robot is a finite area
on the two-dimensional plane, and the obstacles distributed
in the workspace are static, finite, and its location and size
are known. The working area is divided into a grid of unit
size. If there is no obstacle in the grid, it is called a free grid,
which is represented by white and recorded as 0; otherwise,
itis called the obstacle grid, which is represented by black and
recorded as 1, as shown in Fig. 1 a. When the robot is unob-
structed and not at an edge grid, there are eight directions that
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FIGURE 1. Obstacle Representationand Robot movement direction.

can move to the adjacent grid: right, upper right, lower right,
left, upper left, lower left, up, down, as shown in Fig. 1 b.
A grid coordinate system can be established according to the
starting point, target point and obstacles of the robot.

IV. HIGH FREQUENCY PATH MINING-BASED REWARD
AND PUNISHMENT MECHANISM FOR MULTI-COLONY
ANT COLONY OPTIMIZATION

A. FREQUENCY OF ADAPTIVE COMMUNICATION

For the communication period betweencolonies,the regular
information exchange is carried out every fixed iteration pro-
cess, which is more direct and easy to achieve. However, fre-
quent communication will disrupt the search progress within
a single colony and increase the calculation time. In addition,
less communication will make the algorithm close to the
single colony algorithm, which does not show the advan-
tages of multi-colony algorithm. Therefore, in this algorithm,
the time interval of communication between sub-colonies
is not fixed, but changes according to the evolution degree
of thecolony and the composition of the optimal solution,
which is conducive to adaptive adjustment of the frequency
of communication betweencolonies.

There is a close relationship between the minimum span-
ning tree and the standard optimal solution of TSP. Some
studies show that the similarity between the minimum span-
ning tree and the standard optimal path of TSP instances is
as high as 70% ~ 80% [61]. Therefore, when the average
value of the similarities between the minimum spanning tree
path and the optimal paths of the sub-colonies reaches above a
certain threshold, and if the average value remains unchanged
for a period of iteration, the sub-colony can be considered to
be immersed in local optimum. The current iteration carries
out communication between colonies. Thus, the colony can
adjust the frequency of communication adaptively and help
the algorithm jump out of the local optimum. The iterations
selected for communication are as follows:

iter, lf Havg > hg A D(Havg) > w0

(11)

iterg =

Null, otherwise
where, iterp = an iteration that requires communication
between colonie, iter = current iteratio, H,, = the

average similariies between the optimal solutios of the
su-colonies andthe path of the minimum spanning tree,
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ho = the threshold, D(H,,;) = the number of iterations
whose value of H,, remains unchanged and wy = the
threshold.

If iterq is not Null in the current iteration, the algorithm
falls into the local optimum. At this time, the interaction
strategies between colonies need to be implemented in the
current iteration. In other words, the frequency of colony
communication is determined by the frequency of itery pro-
duction, so that neither too frequent communication nor too
early disruption of the search experience within the colony.
To sum up, this method helps the sub-colony to adjust the
communication frequency adaptively to make the algorithm
break the stagnation state.

B. REWARD AND PUNISHMENT MECHANISM BASED ON
HIGH-FREQUENCY PATH MINING

Because of the positive feedback of the selection strategy
of a single colony, the pheromone distribution tends to be
consistent with the progress of the algorithm, that is, most
pheromones will be distributed in a few paths of the loop,
which makes the algorithm inevitably stagnate in the later
stage. HRPACO adopts heterogeneous ant colonies with
different pheromone updating mechanisms for independent
search, with the main body consisting of multiple ACS algo-
rithms and multiple MMAS algorithms. According to the
evolutionary degree of the current colony, HRPACO can
adaptively select the relevant mechanism to learn, so as to
effectively improve the accuracy of the solution. In the early
stage of the algorithm, due to the differences of search space
and pheromone distribution, the reward and punishment
mechanism based on high-frequency path mining is adopted.
Firstly, the algorithm punishes the path of the minimum
spanning tree according to the support of association rules,
so that the pheromones do not gather on these paths exces-
sively. Secondly, according to the lift of association rules,
the algorithm strengthens the selection probability of effec-
tive strong association path, so as to accelerate the conver-
gence speed. Under the influence of reward and punishment
mechanism, it can help the algorithm effectively balance the
diversity and convergence. In the later stage of the algorithm,
the search regions of the sub-colonies become more and
more concentrated due to the convergence of the pheromone
distribution regions, so the sub-colonies become more and
more similar in search experience and optimal solutions, and
interspecies communication does not yield valid experience.
Therefore, we adopt a self-evolutionary mechanism. Through
the dynamic smoothing of the pheromone matrix, the paths
with excessive accumulation of pheromones can adaptively
reduce the pheromone concentration, while the pheromone
concentration on the nearby path is relatively increased, thus
expanding the search space and help the algorithm jump out
of the local optimum.

1) REWARD MECHANISM
Association rules reflect the interdependence and relevance
between one thing and other things. Association rules are
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applied to ant colony algorithm to predict the correlation
between paths. There are many similar paths among the
optimal solutions of sub-colonies, which means that these
frequently occurring paths are likely to be part of the standard
optimal solution. More specifically, with the emergence of
some frequent paths, another path will follow with a certain
probability. This shows that there is a potential correlation
between paths. We mine these frequent paths, and then judge
the potential relevance between these paths, and finally give
rewards, which can not only share the search information
among the colonies, but also effectively save the time for the
colony to expand the search space.

The frequent itemsets in this paper can be understood as the
number of times the path set appears in the optimal solution
of the sub-colony greater than the minimum support thresh-
old S,,,, while the maximum frequent itemset is defined as the
frequent superset that does not contain the current frequent
itemsets. We calculate the maximum frequent itemsets Gmax
based on the optimal solutions of the sub-colonies. However,
not every optimal solution of sub-colony contains complete
set of maximum frequent itemsets. Therefore, the optimal
solution of the sub-colony contains part of the set of max-
imum frequent terms that make up G,. Gp is the absolute
complement of G, in Gpax. We look for sets of pathways that
are potentially strongly associated with the corresponding G,
based on the G, of the different sub-colonies. Association
rules are the implication of the form X — Y, which means
that Y can be derived from X. So X is G4, and Y is Gp.
We calculate the lift degree according to (5), (6), (7). If the
lift is greater than 1, it means that with the emergence of G,
Gy, will also appear with a high probability, so we will reward
the path in G;,. However, if the lift degree is less than or equal
to 1, then G, and Gy, are invalid strong associations. Next, the
lift of subsets of G, and G, is calculated until there is a subset
that can make the lift greater than 1. The process diagram is
as follows:

Implement
reward
mechanism

Tmplement Life>l

Life<1

B

¥
o
¥
©

~
W
G, f
Life>l @ Life<1

Tmplement
reward
mechanism,

FIGURE 2. Process chart of reward mechanism.
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The formula for the award is as follows:
Gl =G} + L0 (12)

where GZ = the path in item set Gp, Ly, = the lift between
G, and Gy, and 79 = the initial value of pheromone on the
path of the city.

The reward operations based on effective strong correla-
tions between paths can effectively reduce the cycle for the
colony to explore new paths, allowing the colony to search
directionally, thus further accelerating the rate of conver-
gence.

2) PUNISHMENT MECHANISM

The similarity between the minimum spanning tree and the
standard optimal solution of TSP instances is 70%~80%,
but there are still some paths of the minimum spanning tree
that are not part of the standard optimal solution. In the
initial iteration of the algorithm, the pheromone concentration
between cities is equal, so the pheromone of each path has
the same attraction to ants. However, the distance between
cities is different, so the probability of ants choosing the
next city is dominated by the distance heuristic information
between cities, which means that the shorter the distance
between cities, the higher the probability of being selected.
Unfortunately, the colony has a high probability of choosing
the minimum spanning tree path which does not belong to
the standard optimal solution, resulting in a pheromone on
this path concentrations are high. Thus, when the colony falls
into the local optimum, it is likely due to the selection of
these minimum spanning tree paths. Therefore, we punish the
colony by adaptively reducing the pheromone concentration
on the path of the minimum spanning tree, which will reduce
the attraction to ants, so as to help the colony have a greater
probability to choose other paths and expand the search space.
However, the punishing each path of the minimum spanning
tree with the same intensity would destroy the previous search
experience of the colony, making the probability that the
paths of minimum spanning tree that are supposed to form
the standard optimal solution are selected excessively low.
The significance of support in association rules is to measure
the frequency with which an item set appears in the overall
set of transactions. When discovering rules, we want to focus
on item sets with high frequency, because item sets with low
support may appear only by chance, and the itemsets with
high support have an expected property. When we apply the
support to this paper, the paths with high support are most
likely to be a part of the standard optimal solution. Therefore,
the punishment formula can be written as follows:

M = M — (1= 5 - 1 (13)
where, tl.mi“ = the pheromone concentration of the minimum
spanning tree path i, S™" = the support of the minimum
spanning tree path i, and typ = the initial value of the
pheromone on the path.

The value range of Sl-min is between 0 and 1, and rl-mi“
is an increasing function. More specifically, the lower the
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support of the minimum spanning tree path, the greater the
reduction in its pheromone concentration, thus reducing the
probability of selecting an invalid minimum spanning tree
path. This also indirectly increases the search probability of
other paths and expands the search space, so the diversity
of the colony is effectively increased. In addition, in order
to prevent too much reduction of pheromone concentration
on the path, we introduce the mechanism of the upper and
lower limit of the pheromone of MMAS, which allows us
to better control the amount of variation in the pheromone
concentration.

Reward mechanism provides a convergence function and
punishment mechanism provides a diversity function. The
mechanisms of rewards and punishments work together and
interact with each other to achieve an effective balance
between diversity and convergence.

C. SELF-EVOLUTIONARY MECHANISM
Because of the difference of search area and search pro-
cess among the sub-colonies in the early stage, when the
sub-colonies fall into the local optimum, the information
exchange is conducive to the mutual learning among the sub-
colonies. In this way, the search space can be expanded and
the optimization ability can be improved, so that the colony
is easier to jump out of the local optimum. However, with the
increase of the number of iterations, the search experience
between sub-colonies becomes more and more similar, and
the paths of the optimal solution are also very similar, which
means that communication between subpopulations does not
have the desired effect when the population falls into a local
optimum again. At this time, another mechanism is adopted to
adjust itself according to the information within the colonies.
Gaussian filter is used to dynamically smooth the pheromone
matrix of sub-colony, and adaptively reduce the high value
of the pheromone matrix. Therefore, the colony has a large
probability to choose other paths, which jumps out of the local
optimum. The condition for selecting the self-evolutionary
mechanism is as follows:

Lot = Lo (14)

‘current ‘previous

where, Lf,‘f;,em = the iteration optimal solution of the colony

when iterg have a new value. L;fetvi ous = the iteration optimal
solution of colony for itery at the previous old value. itery is
given by (8). When (11) is satisfied, the current iteration
needs to implement a self-evolutionary mechanism.

The two important steps of the Gaussian filter are to find
the Gaussian template and then to convolute. The Gaussian
kernel is typically an odd-sized Gaussian template.
We choose a 3*3 Gaussian template, which is shown as

follows:

X 12 1
“xl2 a4 2
1611 2

With the Gauss template, we can calculate the dynam-
ically smoothed pheromone matrix. The center point and
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Algorithm 1 HRPACO Algorithm for TSP
Input: TSP dataset, Algorithm parameters
Output: Shortest path

1. Initialize the pheromone and parameters

2. Calculate the distance between cities

3. While termination condition is not satisfied do
Construct ant solution for ACS with (1), (2)
Construct ant solution for MMAS with (2)
Update pheromone for ACS with (3), (4)
Update pheromone for MMAS with (5), (6), (7)
Calculate the iterg with (11)

9. Ifiterg is not null

10. If (14) is not true

® Nk

11. Reward the related paths with (8), (9), (10)
and (12)

12. Punish the related paths with (8), (13)

13. else

14. Gaussian filter is used to smooth the pheromone
matrix

15. end-if

16. end-if

17. NC=NC+1

18. END while

19. Comparing the optimal solutions of ACS and MMAS
20. Output the minimum solution

8 surrounding points multiplied by their own corresponding
weight values and summing these values, which is the dynam-
ically smoothed value of the center point. Repeat this process
for all points in the pheromone matrix to get the dynamic
smoothed pheromone matrix.

Because of the positive feedback mechanism, pheromones
tend to focus on the local optimal path, which leads to stag-
nation. By using Gaussian filter to dynamically smooth the
pheromone matrix, the pheromone concentration of the cen-
tral path is adaptively adjusted according to the pheromone
concentrations of the surrounding paths. More specifically,
the path with high pheromone concentration adaptively allo-
cates some pheromones to the path with low pheromone
concentration around, so that the probability of the colony to
choose other paths is greatly increased. In this way, the colony
can jump out of the local optimum and find a more accurate
solution.

D. ALGORITHM FRAMEWORK

The above is the pseudo-code of the algorithm in this paper.
Fig. 3 is the basic framework of the algorithm in this paper.
The multi-colony ant colony algorithm proposed in this
paper is composed of two types of single colony algorithms:
ACS, MMAS. ACS is responsible for accelerating conver-
gence. MMAS is responsible for improving diversity. In the
beginning, sub-colonies carry out path optimization and
pheromone update operations according to their respective
mechanisms. When the search information and the optimal
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Initialize the pheromone matrix and parameters
of ACS and MMAS respectively

Construct paths and update
pheromones for ACS

Construct paths and update
pheromones for MMAS

Are the conditions for adaptive
communication satisfied?

Implement the reward and
punishment mechanism based
on association rules

Implement the Self-evolution
mechanism

B

Compare the optimal solution of
ACS and MMAS, and output the
best solution

FIGURE 3. Flowchart of the HRPACO.

solution of the sub-colony are quite different, the reward and
punishment mechanism based on high-frequency path mining
is used to effectively balance the diversity and convergence of
the algorithm. When the search direction of the colony tends
to be the same, we use the self-evolutionary mechanism to
jump out of the local optimum, so as to improve the accuracy
of the solution.

E. THE TIME COMPLEXITY OF THE ALGORITHM

From the analysis of the above algorithm pseudo-code, it can
be concluded that the number of executions of the HRPACO
is n x N % k * m. Where n = number of sub-colonies, it is a
constant, N = maximum number of iterations, k = number
of ants per sub-colony, and m = number of cities. So the max-
imum time complexity of HRPACO is o(N xk xm). However,
the maximum time complexity of ACS is o(N %k xm) and the
maximum time complexity of MMAS is o(N * k % m). It can
be seen that compared with ACS and MMAS, the HRPACO
does not change the maximum time complexity.

V. EXPERIMENTAL SIMULATION AND APPLICATION

The experiment was simulated in MATLAB R2016a on an
Intel Core-i5 PC. In order to demonstrate the optimization
performance of HRPACO, we selected twelve TSP standard
instances from the standard TSPLIB database for system-
atic analysis. Meanwhile, the classical ACS algorithm and
MMAS algorithm are selected to compare the optimiza-
tion performance with HRPACO. Then, HRPACO is com-
pared with other improved ant colony algorithms and other
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intelligent algorithms. Finally, the path planning experiments
are carried out on four kinds of simulation maps with different
degrees of complexity, and compared with ACS and MMAS.
In addition, we also use the map scanned in the real scene to
verify the feasibility of the proposed algorithm.

A. PARAMETER SETTING OF THE ALGORITHM

The parameter values of intelligent algorithms are closely
related to the actual problem. Researchers usually design
experiments to come up with the most suitable set of param-
eters for their algorithms. In addition, the range of values of
the parameters is the same among similar algorithms.

The scientific method of designing experiments should not
only reduce the number of experiments as much as possi-
ble in the arrangement of experiments, but also make use
of the obtained experimental data on the basis of a small
number of experiments to analyze the correct conclusions
guiding the experiments and get better results. The orthogonal
experiment can select a few test schemes with strong repre-
sentativeness evenly, and introduce a better scheme among
the few test results. In order to get a better combination of
parameters for HRPACO, Lig(2 x 37) orthogonal tables were
arranged for experiments. As other orthogonal experiments,
the values in this paper are obtained through the preliminary
optimization phase. We run 15 times of every program and
further calculated the average of TSP eil76.

Based on the experimental results in Tables 1-3, We know
that in HRPACO, the best combination of parameters is that
Sn=06,04 =1,4 =4,04 =03, =0.1,apy = 1,
/3M = 4, PM = 0.2.

TABLE 1. Experimental factors and levels of HRPACO.

Sm a/l ﬂ/l p/I 6/1 aM ﬁ’l/l pM

Level 1 0.4 1 2 0.2 0.1 1 2 0.2
Level 2 0.6 2 3 0.3 0.2 2 3 0.3
Level 3 - 3 4 0.4 0.3 3 4 0.4

S, = minimum support, ©,= the globally updated evaporation factor in
the ACS, &, = the locally updated evaporation factor in the ACS, p,, = the
evaporation factor in the MMAS.

B. STATISTICAL TEST OF THE ALGORITHM

Because ant colony optimization is a probability algorithm,
we can only do a limited number of experiments. However,
when we analyze the performance difference between algo-
rithms through the experimental results, we cannot judge
whether the difference is purely opportunity variation or
caused by the improvement work we have done. So we need
to carry out a significance test to check whether the algorithm
proposed in this paper is significantly different from the tradi-
tional ant colony optimization and other improved ant colony
optimization. Because the Friedman test does not require
the assumption of normality and homogeneity of variance,
the Friedman test is used to test the significance in this paper.
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TABLE 2. Orthogonal test scheme and test results of HRPACO.

no. S, a, B L ¢, a,, P Py results
1 0.4 1 2 02 0.1 1 2 0.2 545.5
2 0.4 1 3 03 02 2 3 0.3 547.4
3 0.4 1 4 04 03 3 4 0.4 5442
4 0.4 2 2 02 02 2 4 0.4 544.6
5 0.4 2 3 03 03 3 2 0.2 553.8
6 0.4 2 4 04 0.1 1 3 0.3 543.1
7 0.4 3 2 03 0.1 3 3 0.4 548.8
8 0.4 3 3 04 02 1 4 0.2 540.8
9 0.4 3 4 02 03 2 2 0.3 554.9
10 0.6 1 2 04 03 2 3 0.2 545.1
11 0.6 1 3 02 0.1 3 4 0.3 543.7
12 0.6 1 4 03 02 1 2 0.4 545.8
13 0.6 2 2 03 03 1 4 0.3 540.4
14 0.6 2 3 04 0.1 2 2 0.4 553.6
15 0.6 2 4 02 02 3 3 0.2 549.9
16 0.6 3 2 04 02 3 2 0.3 555.1
17 0.6 3 3 02 03 1 3 0.4 540.5
18 0.6 3 4 03 0.1 2 4 0.2 541.3

no. = number of tests, and results = the average of 15 test data in each

group.

Friedman test only focuses on whether there is a sig-
nificant difference between the levels of each column, and
it is not interested in the area groups of each row at all.
So to make the experiment more reasonable, we selected

TABLE 3. Analysis of test results of HRPACO.

the large-scale TSP instance 1in318, the medium-scale TSP
instance kroB150, the small-scale TSP instance €il76 as the
experimental objects. Besides, we selected 10 experimental
data from each scale instance to carry out the Friedman test
in spss25 software.

First, we give the original hypothesis, Hy: there is no sig-
nificant difference in the performance of the four algorithms.
Then, we input the data into spss25 software and get the
final result chart. The significance level in Table 4 is p =
0 < 0.05, so the decision is to reject the null hypothesis.
In other words, the performance of the four algorithms is
significantly different. It can be seen from Fig. 4 that the
mean rank of HRPACO is 1.02, the mean rank of ACS is
2.07, the mean rank of EDHACO is 2.95, and the mean rank
of MMAS is 3.97. Pairwise comparisons are needed because
of the difference in response rates at different frequencies.
The results of the pairwise comparison are shown in Table 5.
As can be seen from Table 5, the Adj. Sig of HRPACO and
ACS is 0.01 < 0.05. The Adj. Sig of HRPACO and MMAS
was 0 < 0.05. The Adj. Sig of HRPACO and EDHACO
was 0 < 0.05. In conclusion, HRPACO is different from
ACS, MMAS, and EDHACO. In other words, the perfor-
mance comparison between HRPACO and other algorithms
has statistical significance in the following experiments.

TABLE 4. Hypothesis test summary.

Null Hypothesis Test Sig. Decision
The distributions of Related-Samples
HRPACO, ACS, Friedman's Two-Way 0 Reject the null
EDHACO and MMAS  Analysis of Variance hypothesis.
are the same. by Ranks.

The significance level is 0.05.
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K S, a, B Pi S ay By Py
K, 4923.1 3271.7 3279.6 3279.1 3276.0 3256.1 3308.7 3276.4
K, 4915.4 32854 3279.8 3277.5 3283.6 3286.9 3274.8 3284.6
K, - 3281.4 3279.2 3281.9 3278.9 3295.5 3255.0 3277.5
k, 547.0 545.3 546.6 546.5 546.0 542.7 551.5 546.1
k, 546.2 547.6 546.6 546.2 547.3 547.8 545.8 547.4
k, - 546.9 546.5 547.0 546.5 549.3 542.5 546.3
max 547.0 547.6 546.6 547.0 547.3 549.3 551.5 547.4
min 546.2 545.3 546.5 546.2 546.0 542.7 542.5 546.1
range 0.8 2.3 0.1 0.8 1.3 6.6 9 1.3
scheme Level 2 Level 1 Level 3 Level 2 Level 1 Level 1 Level 3 Level 1

K.(i=1,2,3)= sum of results, k(i=1,2,3)= means of every level. max = the results of

maximal path length and min = the results of minimal path length. range = the difference by the

max minus the min, which will be applied to determine which one factor is important. scheme = the

project of every factor by orthogonal test to obtain the best result.
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FIGURE 4. Related-Samples Friendman’s Two-Way Analysis of Variance by Rank.

TABLE 5. Multiple comparison.

Test Std Std. Test

Samplel-Sample Statistic _Error _ Statistic % AdiSig
HRPACO-ACS -1.050 0.333 -3.150 0.002  0.010
HRPACO-EDHACO  -1.933 0.333 -5.800 0 0
HRPACO-MMAS -2.950 0.333 -8.850 0 0
ACS-EDHACO -0.883 0.333 -2.650 0.08 0.048
ACS-MMAS -1.900 0.333 -5.700 0 0
EDHACO-MMAS -1.017 0.333 -3.050 0.002 0.014

C. PERFORMANCE TEST OF HRPACO

In this section, the first part shows the performance compari-
son between HRPACO and traditional ant colony algorithms
in TSP. in the second part. The effectiveness of the mechanism
in HRPACO was analyzed. In the third part, HRPACO is com-
pared with the latest improved ant colony algorithm in TSP
to demonstrate the performance advantages of HRPACO.

1) COMPARATIVE ANALYSIS OF HRPACO AND
TRADITIONAL ANT COLONY ALGORITHMS

To compare the performance of ACS, MMAS, and HRPACO
in multiple directions, 12 TSP instances of different scales
were selected in this paper. Each TSP instance is executed
15 times. Each experiment was performed by 2,000 iterations.
The best solution over all executions (Best), the average
solution (Mean), standard deviation (dev), the minimum error
rate (Error rate), convergence iteration (Convergence) are
applied to evaluate the performance. The experimental data
is in Table 6. The standard deviation is calculated as

N
1 2
dev = v ; (Li — L) (15)

where N = 15, which is the number of experiments per TSP
instance, L; = the optimal solution for each experiment,
L, = the average solution for N experiments.

It can be seen from Table 6 that HRPACO is superior to
ACS and MMAS in all aspects of performance. HRPACO
is a multi-colony algorithm composed of these two single
colonies. To some extent, it also shows that the multi-colony
algorithm can make full use of the advantages of a single
colony to improve the accuracy of the solution and balance
the diversity and convergence. Table 6 can be analyzed in
more detail. For small TSP instances with less than 100 cities,
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MMAS did not find the standard optimal solutions, but
HRPACO and ACS can easily find the standard optimal
solutions. In addition, HRPACO can find the standard optimal
solutions faster than ACS. This indicates that the reward
and punishment mechanism can bring strong convergence
ability to HRPACO. In the medium scale and large scale
TSP instances with more than 100 cities, ACS and MMAS
can hardly find the standard optimal solution, but HRPACO
can still find the standard optimal solution, such as kroB150,
ch150, kroA200, pr226 and pr264. In pr226 and pr264,
the value of HRPACO is larger in the “‘convergence” column
because HRPACO keeps jumping out of the local optimum
at a later stage until an optimal solution is found. For 1in318,
fl417 and pr439, although HRPACO does not find the stan-
dard optimal solution, the error rate of the optimal solution
obtained by HRPACO is within 1%. These results prove that
the self-evolutionary mechanis in the proposed algorithm can
effectively improve the accuracy of the solution. On the other
hand, mean and dev of HRPACO are smaller than those of
ACS and MMAS in TSP instances of different scales, which
shows that HRPACO has the ability to obtain stable and
high-quality solutions.

The error rate of different scale TSP instances is more
visually shown in Fig. 5. We can clearly see that the curve
of HRPACO is completely inside the curve of MMAS and
ACS, which shows that the error rate of the solution HRPACO
is lower than that of ACS and MMAS in different scale TSP
instances. It is further proved that HRPACO can improve the
accuracy of the solution.

HRPACO MMAS ACS

pr226

FIGURE 5. Comparison of error rates of ACS, MMAS, and HRPACO.

The convergence curves of different scales of instances
are also depicted in Fig. 6, where we take the instance
eil51, ch150, pr264 and pr439 as examples to illustrate the
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TABLE 6. Performance comparison of HRPACO, ACS, MMAS in different TSP Instances.

TSP

Opt ACO Best Mean Dev Error rate Convergence
Instances
ACS 426 428 1.08 0 1092
Eil51 426 MMAS 428 431 2.94 0.46 1582
HRPACO 426 427 0.49 0 128
ACS 538 543 4.58 0 1528
Eil76 538 MMAS 543 550 3.46 0.92 1765
HRPACO 538 539 0.46 0 260
ACS 21282 21316 43.53 0 1538
kroA100 21282 MMAS 21349 21568 151.51 031 1990
HRPACO 21282 21296 15.26 0 312
ACS 26161 26341 90.22 0.1 923
kroB150 26130 MMAS 26878 27197 236.03 2.86 1953
HRPACO 26130 26218 76.23 0 815
ACS 6543 6577 21.86 0.22 1125
ch150 6528 MMAS 6655 6744 66.59 1.94 1481
HRPACO 6528 6540 8.12 0 1075
ACS 29495 29626 138.85 0.43 1297
kroA200 29368 MMAS 29803 30359 353.64 1.48 1424
HRPACO 29368 29424 37.69 0 1444
ACS 80618 80881 337.15 0.3 1332
pr226 80369 MMAS 81852 82531 409.15 1.84 1148
HRPACO 80381 80502 92.18 0 1801
ACS 49645 50335 881.84 1.03 1773
pr264 49135 MMAS 51430 52662 621.24 4.67 1741
HRPACO 49135 49204 71.60 0 1459
ACS 43139 43650 297.14 2.64 1921
lin318 42029 MMAS 44794 45285 534.43 6.57 1881
HRPACO 42335 42687 90.68 0.73 1559
ACS 12193 12330 254.28 2.8 1989
1417 11861 MMAS 12664 13116 254.267 6.77 1890
HRPACO 11969 12001 13.66 0.91 353
ACS 109037 110650 4540.90 1.7 1906
prd39 107217 MMAS 117104 122830 6935.30 9.22 1808
HRPACO 108132 109089 680.54 0.85 1928
ACS 89652 91044 1487.30 3.37 1986
att532 86729 MMAS 93211 95398 2861.00 7.47 1878
HRPACO 88056 90070 442.84 1.53 1722
%60 ‘ T WA scales. In addition, Fig. 6 also shows that in ch150, pr264 and
o I VS pr439, HRPACO can find a better solution than ACS and
520 .
o o MMAS. These results show that the algorithm has good
£ a0 g o000 global optimization ability and convergence. This also further
150 7500 explains the advantages of multi-colony algorithms and the
” 1 o0 effectiveness of the interaction mechanism proposed in this
4200 500 1000 1500 2000 65000 500 1000 1500 2000 paper'
Iteration Iteration 1 101 1 1 1
() cil51 (b) eh150 To verify Fhe autl.lentl(flty of the optimal SOlutIOI'l obtained
\ by the algorithm, Fig. 7 illustrates the tours of optimal solu-
%10 x10° . . . .
i e s tions found by our algorithm in several TSP instances.
——HRPACO ——HRPACO
6.5 ——ACS —ACS
1.6
g° 5. 2) PERFORMANCE ANALYSIS OF MECHANISMS IN HRPACO
“eshy - In this subsection, the influence of Reward and punish-
— . . . .
5 " ment mechanism based on high-frequency path minin and
is | the self-evolutionary mechanis is evaluated. The indepen-
’ 0 e oo X0 e e dent experiments have been repeated 15 times in pr264 and
(c) pr264 (d) pr439 lin318, and the performance of mechanism can be discussed

FIGURE 6. Comparison of the convergence of ACS, MMAS, and HRPACO.

convergence ability of our proposed algorithm. As can be
seen in Fig. 6, HRPACO shows faster convergence speed than
ACS and MMAS in these four TSP instances of different
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depending on the experimental results. The variable con-
trolling approach can be used to validate the performance
of each mechanism and their contribution in HRPACO.
The experimental analysis is carried out from the following
aspects: the optimal solution (Best), the average solution
(Mean), the minimum error rate (Error rate), convergence
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FIGURE 7. Best tours for each TSP instance found by HRPACO.

TABLE 7. Performance analysis of algorithms with different mechanisms.

Error

Instances ACO Best Mean rate(%) Convergence

HRPACO 49135 49204 0 1459
Pr264 HRPACO-1 49243 49347 0.22 1726
HRPACO-2 49368 49497 0.47 1539
HRPACO-3 49444 49704 0.63 1670
ACS 49645 50335 1.03 1773
MMAS 51430 52662 4.67 1741
HRPACO 42335 42687 0.73 1559
HRPACO-1 42589 42817 1.33 1955
HRPACO-2 42774 42941 1.77 1644

Lin318
HRPACO-3 42948 43131 2.19 1612
ACS 43139 43650 2.64 1921
MMAS 44794 45285 6.57 1881

iteration (Convergence). The experimental data is in Table 7.
HRPACO-1 is an improved multi-colony algorithm with
self-evolutionary mechanism but lack of reward and punish-
ment mechanism. HRPACO-2 is an improved multi-colony
algorithm with reward and punishment mechanism but lack
of self-evolutionary mechanism. HRPACO-3 is an improved
multi-colony algorithm without these two communication
mechanisms.

First, each mechanism is analyzed to prove the promotion
of the algorithm. It can be seen from Fig. 8 that the conver-
gence curves of the four improved algorithms are faster than
those of ACS and MMAS in pr264 and 1in318. In addition,
it can be seen from Table 7 that the optimal and average
solutions of the four improved algorithms are still better
than those of ACS and MMAS in pr264 and lin318. These
results show that the reward and punishment mechanism and
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self-evolutionary mechanism are effective in optimizing the
algorithm. The performance of multi-colony algorithm with-
out communication mechanism is also improved compared
with single colony.

Next, the main role of each mechanism is analyzed in
detail. As can be seen in Table 7, the optimal and average
solutions of HRPACO-3 are the worst of the four improved
algorithms, because this is only the superposition of simple
single colony. In addition, the optimal and average solu-
tions of HRPACO-1 are better than those of HRPACO-2
and HRPACO-3 in pr264 and 1in318. This shows that the
self-evolutionary mechanism can help the algorithm to jump
out and get a more accurate solution. As can be seen in Fig. 8,
the convergence speed of HRPACO-2 is faster than that of
HRPACO-1 and HRPACO-3 in pr264 and 1lin318. At the same
time, the convergence accuracy of HRPACO-2 is better than
that of HRPACO-3. These results show that the reward and
punishment mechanism can effectively balance diversity and
convergence. Finally, Fig. 8 and Table 7 show that HRPACO
is better than HRPACO-1, HRPACO-2 and HRPACO-3 in all
metrics. Therefore, the reward and punishment mechanism
and the self-evolutionar mechanism improve the performance
of the algorithm together, and make HRPACO have the high
precision solution and strong convergence speed.

, x10* ‘
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——HRPACO-1
6.5 —HRPACO-2|
——HRPACO-3
MMAS
c 6f ACS
i)
c
(]
5 L\—\h‘—\—
45 . . .
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Iteration
(a) pr264
1 4
65 ‘>< 0
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——HRPACO-1
6 ——HRPACO-2
——HRPACO-3
MMAS
s 55 ACS
j=2)
j =
Q
- 5t
450\
4
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(b) lin318

FIGURE 8. Comparison of convergence of algorithms with different
mechanisms.

3) COMPARISON WITH THE LATEST IMPROVED
ALGORITHMS IN TSP

To further illustrating the performance of the proposed algo-
rithm, HRPACO is also compared with other optimization
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TABLE 8. Comparison with other optimization algorithms in TSP.

ACO Eil51  Eil76  KroAl00 KroB150 Chi50  KroA200 Lin318  Prd39
Tt 426 538 21282 26130 6528 29368 02029 107217
Best 426 538 21282 26130 6528 20368 42335 108132
HRPACO  Mean 427 539 21296 26218 6540 20424 42687 109089
PD Best(%) 0 0 0 0 0 0 0.73 0.85
Best 426 538 21282 26328 ; 29694 43291 -
(]52]31}19‘)*[2% Wi 431 545 21355 26873 ) 30391 439263 -
PD Best(%) 0 0 0 0.76 : 111 3.00 -
Best 426 538 21282 ) 6570 29533 - )
P(g‘oclc;;?%]’t Mean 427 539 21327 ) 6601 29645 - ]
PD Best(%) 0 0 0 ) 0.64 0.56 ] )
Best 426 538 21282 26130 ; 29391 02461 -
(1;3109/;[05% Wiz 427 539 21383 26241 : 29485 4933 -
PD Best(%) 0 0 0 0 ) 0.07 1.03 )
HMMA Best 438 549 21371 26585 6654 29999 45349 114094
Corypy  Mean 450 558 21425 26971 6749 31405 46548 116885
PD Best(%) 281 204 041 1.74 1.93 2.14 7.89 6.41
AS-SA-opt f/[est 426 538 21283 ; 6533 29370 ; )
(2018)[40] can - - - - - - - -
PD Best(%) 0 0 0.005 ) 0.08 0.007 - )
HACO Efes:n 426 = 21283 : 6531 20372 : :
QOINE ppy Begios) 0 0 0.005 ] 0.05 0.01 i ]
DM Lo 428 558 21298 26601 . 30481 44118 112105
Qororey  Mean 436 572 22024 27575 ; 31828 45460 116379
PD Best(%) 047 371 007 1.80 ) 3.70 497 455
FOA Best 426 540 21282 3 6558 ; - i
cotg  Mean 427 544 21357 ] 6618 ] - ]
PD Best(%) 0 037 0 ] 0.45 ] i ]
ABe Lo 429 550 i 26799 ; 30161 . :
cotpns  Men 433 554 ; 26988 ; 30229 - -
PD Best(%) 0.15 091 - 252 ) 2.63 . ;

algorithms. The selected algorithms have been released in
the last few years and have various levels of performance
improvements. Besides, the criteria for comparing algorithms
selected in this paper can be illustrated by the determi-
nation of parameters. The parameter values of the smart
algorithm are closely related to the actual problem and the
size of the problem. The author usually uses experimental
tests to find the best set of parameters to achieve the best
results. Moreover, the range of parameters options is the
same between similar algorithms. The parameter values of
the selected similar algorithms in this paper are within the
same range. The selection of TSPs is based on the same
TSP instances between HRPACO and the comparison algo-
rithms. Therefore, the comparison among the optimization
algorithms in this paper is fair. Table 8 shows the data of
HRPACO and other improved algorithms. EDHACO, PACO-
30pt, and PCCACO are improved multi-colony ant colony
algorithms. HMMA, AS-SA-Opt, and HACO are hybrid
algorithms based on ant colony algorithm. DSMO, FOA, and
ABC are other intelligent algorithms. The data refers to its
relevant literature, and the number in parentheses after the
algorithm name indicates the location of the reference. Best
is the optimal path length of the relevant algorithm, Mean is
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the average path length of the algorithm, and PD_Best(%) is
the minimum error rate of the algorithm.

It can be seen from Table 8 that HRPACO can obtain
higher precision solution than other optimization algorithms.
In small scale and medium scale TSP instances with less than
300 cities, HRPACO can find the standard optimal solution.
For example, in ch150 and kroA200, only HRPACO can find
the standard optimal solution. In addition, for large scale TSP
instances with more than 300 cities, the solution obtained by
HRPACO is closer to the standard optimal solution, and the
error rate is basically kept within 1%.

Through a series of experimental analysis, we can see that
the HRPACO has certain advantages over other optimization
algorithms. HRPACO not only accelerates the convergence
speed, but also improves the accuracy of the solution.

D. APPLICATION RESEARCH OF THE ALGORITHM

1) ANALYSIS OF SIMULATION RESULTS OF PATH PLANNING
In this section, the algorithm proposed in this paper will carry
out simulation experiments in different complex obstacle

environments (20 x 20, 40 x 40, 70 x 70), and also compare
with ACS.
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The reasonable environment representation and appropri-
ate search algorithm can plan a more satisfactory path with
less time cost. The methods of environment modeling usually
include visibility graph, free space method, Maklink diagram,
grid method and Voronoi diagram. Because of the advantages
of the grid method, such as high precision and easy to imple-
ment, this paper will use the most classical grid method.

The results of Fig. 9 show that the convergence speed of
HRPACO is obviously faster than that of ACS in a simple
obstacle environment of 20 x 20 scale (starting point s = 1,
ending point G = 400), although two algorithms can reach
the ending point in a shorter path. The results of Fig. 10 and
Fig. 11 show that the path chosen by HRPACO is shorter
than that of ACS in the complex obstacle environment of
40 x 40 (starting point s = 1, ending point G = 1600), 70 x 70
(starting point s = 1, ending point G = 2500), which shows
that the optimization ability of HRPACO is better than that
of ACS. In addition, Fig. 12 shows the comparison results of
simulation experiments under the 70 x 70 complex obstacle
environment when the starting point and the ending point are
special locations (the starting point S = 4003 and the ending
point G = 1463). The results show that the optimization
ability and convergence speed of HRPACO are still better
than ACS.

—%-ACS —HRPACO

—ACS
—HRPACO

1

(a) Path planning diagram

100 200 300 400 500
Iteration

(b) Convergence curve

FIGURE 9. Obstacle environment (20 x 20).
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FIGURE 11. Obstacle environment (70 x 70).
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0 10 20 30 40 50 60 70 Iteration

(a) Path planning diagram (b) Convergence curve
FIGURE 12. Obstacle environment for special starting and ending point
(70 x 70).

TABLE 9. Performance comparison of two algorithms in different
environments.

Obstacle Algorithm Best Mean Dev Convergence
environment
20%20 HRPACO 31.55 32.42 091 9
(1,400) ACS 31.55 32.78 0.92 259
40x40 HRPACO 60.42 61.80 1.13 225
(1,1600) ACS 61.25 63.27 1.23 285
70x70 HRPACO 111.53 115.89 333 360
(1,4900) ACS 126.12 134.52 5.30 478
70x70 HRPACO 70.01 70.97 0.62 303
(4003,1463) ACS 71.66 74.19 1.23 314
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FIGURE 10. Obstacle environment (40 x 40).

Table 9 shows the experimental data obtained from 20 runs
of HRPACO and ACS in each obstacle environment. The
experimental analysis is carried out from the following
aspects: the optimal solution (Best), the average solution
(Mean), standard deviation (dev), the convergence iteration
(Convergence). The numbers in parentheses after the scale of
the obstacle are the start and end points. It can be seen from
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Table 9 that with the improvement of the complexity of the
obstacle environment, the performance of HRPACO is still
better than that of ACS in all metrics. The comprehensive
experimental results show that the path planning ability of
HRPACO is stronger and it can reach the destination more
quickly and accurately in the map of different scales and dif-
ferent complex obstacles. In addition, its performance will not
be affected by the start and end points of different positions,
and its stability is high.

2) RESEARCH ON THE PRACTICAL APPLICATION OF THE
ALGORITHM

In order to reflect the effect of the algorithm proposed in
autonomous path planning on static map, the actual topo-
graphic map of the experimental environment in this paper
is established, as shown in Fig. 13 a. The PGM version of the

155473



IEEE Access

H. Pan et al.: High-Frequency Path Mining-Based Reward and Punishment Mechanism for Multi-Colony Ant Colony Optimization

(a) Actual scene (b) PGM version of static map

FIGURE 13. Real maps of path planning.

environment map can be obtained by using the map building
algorithm in ROS for actual mapping. The black border of the
outer part of the map is a wall or a door, and the black square
in the middle is the set obstacle, as shown in Fig. 13 b. Then
the map is transformed into grid map as shown in Fig. 14,
which can be better simulated in MATLAB, so as to compare
the algorithm proposed in this paper with ACS.

The starting point coordinate of the path planning is (0, 20),
and the target point coordinate is (60, 83). ACS and HRPACO
are used for path planning. Fig. 14 shows the simulation
results of HRPACO and ACS. ACS can smoothly bypass
obstacles in path planning, but the planned path has many
setbacks, resulting in path redundancy. However, the path
chosen by HRPACO is better than ACS.

---ACS —HRPACO
100

80

60

40

20

0
0 20 40 60 80

FIGURE 14. Paths of HRPACO and ACS in the grid map.

To sum up, even in the complex real environment, when
using HRPACO for path planning, the robot can effectively
avoid obstacles and accurately reach the designated destina-
tion. Therefore, HRPACO is feasible and effective in robot
path planning.

VI. CONCLUSION

The traditional ant colony algorithm is easy to fall into the
problem of local optimization, lack of guidance and poor self
-adaptability. Therefore, this paper proposes a multi-colony
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algorithm based on reward and punishment mechanism of fre-
quent path mining, which is composed of ACS and MMAS.
Firstly, the evolutionary degree of the colony is judged
according to the similarity between the minimum spanning
tree and the optimal solution, so as to adjust the frequency
of colony communication adaptively. Then, in the early stage
of the algorithm, due to the difference of search space and
search experience between colonies, choosing the reward and
punishment mechanism based on frequent path mining can
effectively improve the performance of the algorithm. More
specifically, the path on the minimum spanning tree is pun-
ished according to the support in the association rules, so as
to reduce the pheromone accumulated on the corresponding
path and promote the colony to expand the search space. The
association rules expose the potential connections between
the paths. According to the lift of association rules, reward
the path of effective strong association, so that the colony
can save search time and accelerate convergence speed. The
reward and punishment mechanisms cooperate with each
other, effectively balancing the diversity and convergence of
the algorithm.

In the later stage of the algorithm, because the optimal solu-
tions of sub-colonies are more and more similar, the informa-
tion exchange between colonies cannot achieve the expected
effect. Therefore, we adopt the self-evolutionary mechanism,
and the Gaussian filter is used to dynamically smooth the
pheromone matrix of the sub-colony, so that the colony can
jump out of the local optimum quickly and get a more
accurate solution.

The experimental results of TSP show that the convergence
speed and precision of HRPACO are better than those of
traditional ant colony algorithms, other improved ant colony
algorithm and other optimization algorithms, especially for
large-scale problems. The results of path planning show that
the algorithm proposed can be used not only in the general
obstacle environment, but also in special obstacle environ-
ment. Due to the long computation time in solving complex
optimization problems, the HRPACO algorithm needs to be
further investigated to reduce the computation time. In order
to make the algorithm better applied in the actual scene,
the next step is to discuss the multi-objective path planning
problem.
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