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ABSTRACT In modern railway systems, video surveillance and machine vision analysis have been widely
used to detect perimeter intrusions. For pan—tilt—-zoom (PTZ) cameras, the machine vision system needs
to detect adjustments in PTZ cameras and then automatically determine the new alarm region in real
time. In this paper, we propose a deep multi-task learning based algorithm for simultaneous vanishing
point (VP) detection and rail segmentation, which can identify camera adjustment from changes in VP, and
then automatically determine the alarm region from segmented rails. The multi-task based neural network
consists of a feature extraction base network and three sub-task networks. The first sub-task network is a
convolution regression network for VP detection. The second sub-task network utilizes an encoder-decoder
structure for vanishing region (VR, a fixed region centered on VP) segmentation. The third sub-task network
shares the encoder-decoder structure with the VR segmentation task and is used for rail segmentation. The
VR segmentation task is activated only at the training stage, serving as an auxiliary task to enhance feature
learning ability and increase VP detection accuracy. To further improve the accuracies of VP detection and
rail segmentation, low-level features is modulated by high-level semantic information before feeding to the
decoder stage. With the help of shared feature extraction and auxiliary training, the proposed VP prediction
method needs very small training dataset and outperforms other methods in both efficiency and accuracy.

INDEX TERMS Vanishing point detection, rail segmentation, intrusion detection, multi-task learning, deep

learning.

I. INTRODUCTION

Video surveillance system (VSS) is an important subsystem
in modern railways which are susceptible to many types of
intruding foreign objects, e.g., trespassing passengers and
terrorists, landslide or falling cargo from overhead bridge.
Intelligent video analysis has been widely used to detect
objects intruding into the track region of railway. The general
procedure of intrusion detection based on intelligent video
analysis consists of four sequential steps: manual determi-
nation of alarm region that is often defined as rail track
zone between leftmost and rightmost rails, intruding object
detection by separating foreground objects from background
[1], normal train object exclusion and final intrusion detection
by deciding whether foreground object locates inside the
alarm region or not, as shown in Fig.1. Due to the fact that
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many cameras installed along railway lines are pan—tilt—zoom
(PTZ) cameras and their monitoring scenes may be adjusted
from time to time by different staff, it is desirable for VSS
to be able to detect the change of monitoring scene and then
determine the alarm region automatically in real-time. In this
paper, we propose to estimate the position changes of main
vanishing point (VP) to detect monitoring scene adjustment
and then segment rails to find the alarm region. The proposed
intrusion detection procedure is illustrated in Fig.2.

VP, defined as a point where the parallel lines in the 3D
world intersect in the 2D image plane, contains rich scene
information and is essential for a good understanding of 3D
geometry. The traditional VP detection approaches consist of
multiple steps, including handcrafted feature extraction and
decision strategies, and have been used in many applications.
For example, in automatic driving, VP can provide fun-
damental information about road geometry for vison-based
navigation, such as road region extraction [2] and road sign
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FIGURE 1. The detection of objects intruding into railway. Inside the
yellow triangle is the alarm region. The objects in red bounding box are
located inside alarm region and regarded as intrusions.

recognition [3]. VP was also used in camera calibration in
[4] where three orthogonal VPs were estimated based on
the Manhattan world assumption. In [5], dominant VPs were
detected in landscape images for image retrieval. Recently,
deep learning based technology has been proposed to real-
ize end-to-end VP detection. Deep learning was first used
to detect VP in [6], where image was divided into equal
size blocks and used convolutional neural network (CNN) to
directly predict which block contains a VP. CNN was also
used to predict the dominate VP in natural landscape images
that lack obvious edges or lines [7]. Deep learning approach
learns feature representation through the end-to-end super-
vised training, which is a data-driven method and performs
better than handcrafted features of traditional methods in
many applications. Deep learning is also widely applied in
intelligent monitoring and inspection system for high-speed
railway to ensure the safe operation of railway [8]-[13].

For VSS in railways, applying VP detection methods
faces two major difficulties. First, complications arise due
to the low image quality in unstable illumination condi-
tions, non-Manhattan lines typical in curved railway sections
and occlusion of running trains. In these situations, directly
predicting VP with handcrafted or CNN-outputted features
is unstable and has poor accuracy, making the training of
the underlying algorithm non-trivial. Second, VP detection,
alarm region extraction and object detection for numerous
cameras have to be done in real time. Thus, more efficient
processing framework has to be used to remove redundant
operations in these processing steps. In this paper, we pro-
pose a deep multi-task learning framework for simultane-
ous VP detection and rail segmentation. This framework
can improve feature presentation and model generalization
through complementary information from related tasks. The
VP detection accuracy is further increased by adding a
vanishing region (VR, a fixed size region centered at VP)

segmentation task, which is an auxiliary training task. Sharing
feature representations between different tasks can prevent
over-fitting and save computing resources. The extracted
features can be further used by subsequent object detection,
significantly improving the efficiency. Experimental results
show that the proposed algorithm outperforms existing algo-
rithms.
The contributions of this paper include:

1) A deep multi-task learning framework integrating
regression task and segmentation task is proposed to
detect VP and rails only through a forward pass.

The auxiliary task VR segmentation is added to
improve the performance of VP detection. The VR seg-
mentation task, removed in the test phase, shares the
feature with rail segmentation in up-sampling process,
which only adds a small amount of computation load.
At the same time, the low-level features reused in the
up-sampling stage are modulated by relative high-level
semantic information to improve both the detection and
segmentation accuracy.

Our new algorithm is superior to other VP detection
algorithms on railway scenes and its processing speed
meets real-time requirements.

The alarm region is extracted automatically with
detected VP and rails. It is beneficial to reliable intru-
sion detection and safer railway operation.

2)

3)

4)

The rest of the paper is organized as follows. The Section II
introduces the related works about VP detection and deep
multi-task leaning. The multi-task learning framework is
described in Section III. The Section IV shows the experi-
mental results and Section V draws conclusions.

Il. RELATED WORKS

This section provides a brief review on existing works
related to the two main topics covered in this paper, namely:
VP detection and multi-task learning.

A. VP DETECTION

Traditional VP detection methods rely on handcrafted fea-
tures and voting or clustering processes. The authors of [2]
computed dominant texture orientation at each pixel using
Gabor filters. VP was estimated with soft-voting after dis-
carding unrelated pixels. The authors of [14] and [15] uti-
lized the improved Weber Local Descriptor to compute the
texture and orientation features, and then located VP by a
linear-voting scheme. In [3], authors proposed a probabilistic
voting procedure to find VP from intersections of multiple
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FIGURE 2. The flow of automatic intrusion detection. The alarm region is recalculated automatically depending on vanishing point

detection and rail segmentation.
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line segments. In [16], the J-Linkage algorithm was used to
compute a set of VP candidates from detected edges, and
final VP was refined using EM algorithm. In [17] and [18],
the highway scene was divided into rough road region, sky
region and vertical region with a dark channel prior based
segmentation method and vertical envelope lines analysis.
Then, road lines were extracted with several own-defined
constraints and VP was estimated through mean-shift clus-
tering. VP detection on railway platform scene was first
studied in [19]. Main straight lines were detected by Canny
edge detector and Hough transform. The geometric structure
information of the railway platform was utilized during line
clustering. Although the above-mentioned traditional meth-
ods achieved satisfied results in corresponding applications,
these methods are prone to accumulate errors because of
multi-step processing. Handcrafted features are also fragile
and susceptible to noise. Deep learning as an end-to-end
manner can learn powerful features from data [20], [21]
and has shown excellent performance in many applications.
VP detection was transformed as a CNN classification task
in [6] and [22]. The input image was divided into equal size
blocks and each block acted as a sample to be classified,
then the block containing VP was target class. In this method,
high prediction accuracy requires small block size. However,
if the size is too small, the computation is time-consuming
and not affordable. In [23], authors proposed an end-to-end
neural network for simultaneous VP detection and road mark
recognition through multi-task learning. The whole image
was divided into four rectangles defined by VP position and
four image corners, and VP was located at the intersection
of the four rectangles. So, VP prediction was transformed
as a pixel-level prediction task and an auxiliary task that
could also provide global information for other tasks. This
method is proved to be suitable for images captured by
vehicle camera, where scene structure is relatively fixed and
simple. Compared with the traditional methods or the classifi-
cation network, regression CNN that directly predicted VP’s
coordinates was more accurate [24]. ResNet was used in [25],
because it was beneficial to preserve geometric information
of input data with fewer pooling layers and fully connected
layers. A multi-task framework that combined classification
network and regression network to predict VP in natural land-
scape image was proposed in [7]. The classification network
predicted which image block contains VP, and the regression
network predicted the coordinates of VP.

B. MULTI-TASK LEARNING

Multi-task learning (MTL) methods can obtain multi-task
predictions simultaneously by a forward pass. MTL benefits
from the extra information in the related tasks [26], [27].
The most commonly used MTL structure in deep learning
is hard parameter sharing structure [28]. In this structure, all
tasks share multiple feature representation layers and keep
several task-specific output layers. MTL realizes implicit data
augmentation because different tasks have different noise pat-
terns, which could improve generalization ability. Auxiliary
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information from related tasks in MTL makes some important
features easy to learn or more focused. MTL prefers feature
representation to all tasks and acts as a regularization to pre-
vent over-fitting. In computer vision, multi-class classifica-
tion can be viewed as an MTL that integrating multiple binary
classification tasks, such as handwritten digits classification
[29], but MTL mostly focuses on producing different types
of outputs including class probability and specific regression
value. In object detection, Fast R-CNN [30] simultaneously
predicted class probability and offsets for each region of inter-
est (ROI), and all ROIs shared feature representation. Faster
R-CNN [31] introduced a Region Proposal Network (RPN) to
generate ROI and RPN shared convolutional features with the
detection network instead of training two separate networks.
Experiments showed that both of the detection accuracy and
speed were increased. Mask R-CNN [32] added a branch
for predicting an object mask based on Faster R-CNN. Both
object detection and instance segmentation could be achieved
by only a small amount of increased computational cost. The
framework made segmentation task easier to train because of
existing object detection task. It could easily be extended to
human pose estimation further. A framework called Hyper-
Face was proposed for simultaneous face detection, land-
mark localization, pose estimation and gender recognition in
[33]. The results showed that the MTL boosted individual
performance through learning more discriminative features.
Authors in [34] payed attention to the training problem in
MTL. Generally, multi-task loss is a weighted linear sum of
each task loss, but the weights are difficult to select manually.
To solve this problem, the authors in [34] took Bayesian
probabilistic theory into deep MTL and utilized homoscedas-
tic uncertainty, also called task uncertainty, which is task-
dependent, to guide the learning of each task weight. In most
situations, related tasks as auxiliary tasks are used to boost
main task performance and will be removed during the testing
phase. For example, head pose estimation and facial attribute
inference were used to improve the robustness of the face
key point detection in [35], especially when there existed
severe occlusion and pose variation. The results showed that
multi-task model were more efficient and effective than cas-
caded deep models. For human pose estimation [36], body
part detection was added to the original body key-point
regression task. The detection task improved the regression
accuracy of the main task. The joint training converged to
a better minimum and enhanced the generalization ability.
MTL is also applied in high-speed railway inspection. In [13],
it realized railway ties and fasteners inspection. A deep
multi-task neural network that integrates a material classifier
and a denoising autoencoder was used to detect insulator
surface defect [12].

Ill. THE PROPOSED FRAMEWORK

Images from VSS in railways are mostly of low quality and
have to be processed in multiple real-time tasks, includ-
ing VP detection, track segmentation and intrusion detec-
tion. However, existing methods cannot share or reuse the
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FIGURE 3. The proposed deep multi-task learning framework for simultaneous VP detection and rail segmentation. DouConv2d and
Conv2d represent double and one convolutional layer respectively. ResConv2d represents residual connection block.

information in these independent tasks to accelerate the
training and testing stages. In this work, we propose an
end-to-end deep multi-task learning framework that realizes
simultaneous VP detection and rail segmentation. The pro-
posed framework contains three tasks, i.e., VP detection,
rail segmentation and VR segmentation. As shown in Fig.3.
and Table 1, the network structure consists of shared feature
extraction layers and task-specific layers. The shared layers
include two convolutional layers (DouConv2d) and four lay-
ers of residual connection block (ResConv2d) [21], forming
a feature-extracting base network. While VP is predicted by
a convolution regression network using the output of the base
network, two segmentation tasks share an encoder-decoder
structure and employ a few task-specific layers to generate
segmentation results. Low-level features are reused in the
decoder part through long-skip connections to supplement
detailed information for segmentation. Meanwhile, in order to
eliminate noisy information in low-level features, the seman-
tic embedding branch (SEB) [37] is introduced to modulate
the low-level features with high-level semantic informa-
tion. VR segmentation acts as an auxiliary task to improve
VP detection accuracy and will be removed during the testing
phase.

A. VP REGRESSION

The base network for VP regression contains two convo-
lutional layers (DouConv2d) and four residual connection
blocks (ResConv2d) and is shared between different tasks,
as shown in Table 1. VP regression-specific layers consist
of one max-pooling layer, two convolutional layers, one
average-pooling layer and one fully connected layer that
directly outputs the coordinates of the VP, as shown in
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FIGURE 4. Residual connection unit. F(x) is residual mapping and H(x) is
identity mapping. Residual connection blocks (ResConv2d) is formed by
three cascaded residual connection units.

the last row of Table 1. Each ResConv2d block in Fig.3.
is formed by three cascaded residual connection units showed
in Fig. 4. The residual connections in ResConv2d are shortcut
connections between convolutional layers, fitting them to
residual mappings F(x), as shown in Fig.4. It is easier to
learn residual mapping that approximates to zero rather than
original identity mapping H(x). If input x has different size
or channel with residual F(x), the x should firstly go through
a convolutional layer to get desired size or channel before
addition.

B. RAIL SEGMENTATION

The encoder-decoder structure is used for rail segmentation to
combine the shared feature extraction layers and task layers.
The base network encodes the input information, while the
decoder part and task layers map the encoded low-resolution
semantic features into original input size. In the decoding
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TABLE 1. The proposed network structure contains shared base network (encoder part), decoder and three task-specific layers.

input block channel stride
3*300*300 DouConv2d 16 1
shared base 16*300*300 ResConv2d(D 16 1
network 16*300*300 ResConv2d(® 16 2
encoder 16*150*150 ResConv2d(3) 32 2
32%75%75 ResConv2d@® 64 2
32%75%75, 64*38*38 SEB(D 32 1
64%38*38 Upsample - -
96*76*76 DouConv2d 64 1
16*150*150, 32*75*75, 64*38+*38 SEBQ® 16 1
decoder 64*76*76 Upsample - -
80*152*%152 DouConv2d 32 1
16*300%300, 16*150*150, 32*75*75, 64*38%38 SEBQ® 16 1
32%152*%152 Upsample - -
48*304*304 DouConv2d 16 1
VR segmentation 16*304*304 DouConv2d 16 1
16*304*304 Conv2d 2 1
rail segmentation 16*304*304 DouConv2d 16 1
16*304*304 Conv2d 2 1
64%38*38 Max Pooling - 2
VP regression 64*%19%19 DouConv2d 64 2
64*%10%10 Average Pooling - 1
64*1 Fully Connected layer - -

The kernel sizes of Max Pooling and Average Pooling are 3 and 10 respectively. The Conv2d block consists of Conv 3*3, batch normalization

and ReLu. A DouConv2d block is cascaded with two Conv2d blocks.

process, if only the high-level semantic features are used,
the detailed information will be lost, resulting in inaccurate
predictions. Since low-level features generated by encod-
ing process contain more detailed information, we concate-
nate multiple low-level features with up-sampled high-level
semantic features and then feed them into subsequent convo-
lution layers. Until the size of up-sampled feature is the same
as the one of original input, pixel-level predictions are real-
ized through the last convolution layer. As shown in Table 1,
the size of up-sampled output is 304*304, 4 pixels more
than the original size, so the ground-truth image should pad
2 pixels around each border. Because the low-level features
are noisy and we hope the reused low-level information is
relatively semantic, the information modulation module SEB
[37] is introduced by adding multi-level semantic informa-
tion to low-level features. In this case, the inputs of each
SEB consist of only one lower-level feature Lf and several
higher-level features Hf;, i € {1,2,..., L}, that come from
the outputs of ResConv2ds, as shown in Table 1 and Fig.3.
There are L = 1, 2,3 higher-level features for three SEB
modules respectively, as shown in blue dotted lines in Fig.3.
The only one lower-level feature Lf is shown in the black
solid line in Fig.3. Thus, the output of each SEB is the
superposition of lower-level features modulated by several
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higher-level features:

L
out = Y Lf x F(Hf).
i=1

F (Hf;) = Upsample(Conv2d(Hf;)). (1)

where operation X represents element-wise multiplication.
The Conv2d(Hf;) has the same number of convolution kernels
as the channels of Lf for element-wise multiplication in (1).
The details of the SEBQ®) in Fig.3 is shown in Fig.5.

C. VR SEGMENTATION

The VR segmentation is an auxiliary task, used to improve
VP detection accuracy in the training phase and will be
removed during the test phase. Since VR is a fixed area
centered on the VP, the information of VR can be very helpful
to VP prediction. Because VR segmentation and the rail seg-
mentation almost share the whole encoder-decoder structure,
except for the last few convolution layers, so the framework
is still computationally efficient.

D. LOSS FUNCTION OF MULTI-TASK LEARNING
In the process of multi-task learning, the proposed network
model is optimized with respect to three objective losses.
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FIGURE 5. The details of the SEBQ) in Fig 3. The input contains one
lower-level feature from ResConv2d®) and two higher-level features that
are ResConv2d(3) and ResConv2d@.

Here we use the weighted linear sum of losses for each
individual task as the total loss function:

Liotal(W) = a1 Lvp(W) + a2 Lyr (W) + a3Lt(W)  (2)

where oy, oy, @3 are weights and W represents network
parameters. In general, weight selection affects the perfor-
mance of each task significantly and has to be made with
great cautions. Here we adopt Bayesian probabilistic theory
and treat weights as independent variables that can be learned
through training [34]. We assume that the multiple learn-
ing tasks have homoscedastic uncertainty and can be mod-
eled by Gaussian likelihood. The homoscedastic uncertainty
is approximately constant and depends on different tasks
instead of input data, which is also called task uncertainty.
For a regression task, the likelihood fits a Gaussian
distribution with a variance oyp and a mean given by net-
work output. The likelihoods of classification tasks are rep-
resented as a scaled version of the model output with scalars
OVR, Orail Squashed through a Softmax function. According to
the above-mentioned assumptions and the derivations of [34],
the final adaptive weighted loss can be formulated as follows:

Liotai (W, oyp, OVR, Orail)

= Ly W)+ - Lyr(W) + —— Lo (W)

209p OVR Orail

+ logoyp + logoyr + log orail 3)
the last three terms in (3) can be regarded as regulariza-
tion terms for the variables oyp, ovR, Oril. In order to avoid
zero denominator in (3), we define syp = log 0\2,-13, SVR =
log o\z,R, Smil = log crfdil, so the final formulation for
multi-task loss function is:

Liotat(W, svpP, SVR, Srail)

Lyp(W) +
ex

1
—Lyr(W
p(svr) vR(W)

2 exp(svp)
1 SVP SVR Srail
—LagiW)+ — + — + — 4
+exp(5rail) rail(W) + 5 + > + > 4)
each optimal weight can be learned through the loss function
optimization process during network training. We set initial

values syp = SVR = Sril = 5, which were also used in [34].

163020

In our case, VP regression task adopts SmoothL1 loss:

Lyp(p, 1) = ) Smwi(pi — 1),

ie{x,y}
SmpLi(pi — 1;) = (pi = 10) iFlpi _ il <
|pi — til — 0.5 otherwise
T, T,
=4 =3 &)

here (Tx,Ty) are absolute coordinates, (w,h) are image
size, p; is the predicted value and #; is the ground truth.
SmoothL1 loss is often used in object detection, which can
avoid gradient explosion in training. Moreover, the VP coor-
dinates are normalized in loss computation, resulting in a
fast convergence. Image segmentation is a pixel-level clas-
sification task. In our case, it is a binary classification task
and the loss function adopts cross entropy. Because of unbal-
anced object and background pixels, we adopt weighted cross
entropy:

LVR(pv 1) = Lrail(p’ r)
=— Y Bpilnti+(—p)In(1 —1;)  (6)

iew*h
where p; is the predicted value and #; is the ground truth, (w, h)
are image size and B is set to 5 empirically.

IV. EXPERIMENTS AND RESULTS
A. DATASET
Images in the dataset used in this paper come from three
sources. First, we collect 3800 images captured by 12 cam-
eras installed on the Shanghai-Ningbo Railway Line near the
Shanghai Honggiao Station, China. The cameras are fixed on
catenary posts, about 2.5 meters above the rail surface. There
exists illumination change, camera jitter, background dynam-
ics and train occlusion in these images, as shown in Columns
1-3 of Fig. 6(a). Second, we collect 750 images from two PTZ
cameras, fixed temporarily on tripods at Nanjing Railway
Line during nighttime and Beijing Ring Railway Test Base
during daytime, respectively, as shown in Columns 4-5 of
Fig. 6(a). Third, we download 500 images of railway scenes
from Google Image and Baidu Image. These web pictures
have not only various railway scenes but also different color
styles, as shown in last column of Fig. 6(a). In the experiment,
we collected most of the typical railway scenes. The dataset
contain:
1) different weather conditions: sunny, rainy, foggy and
wind
2) different line types: straight line and curved line
3) different surrounding environment: cross bridge, tun-
nel, buildings, target occlusion
4) different light conditions: day and night
5) different style scenes from website: different color style
and different content
For each image in the collected dataset, the VP position
and rails are labeled manually. Since the alarm region is the
area between the two outermost rails, only two outermost rails
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(a) Collected dataset. Columns 1-3: Images from cameras installed
along the railway line. Columns 4-5: Images from PTZ cameras on
the railway scene. Column 6: Images from webslte

RN

NFIEN
IIIII.II

(b) Dataset labels. The original images are shown in the first row. The
second row shows two outermost rails determining the alarm region.
VR is shown in the last row.

FIGURE 6. Dataset.

are labeled, as shown in Fig. 6(b). VR is labeled as a square
region centered on VP, the size of which is 0.1 times of input
image size. We resize the input images to 300*300, so the
VR size is 30*30, as shown in Fig. 6(b). In order to simulate
the camera angle changes on the fixed scenes, images whose
VPs are more than 30 pixels away from the image center
are horizontally flipped. There are totally 5400 images for
training and 1000 images for testing.

B. METRIC

VP detection accuracy is defined as the proportion of testing
samples whose predicted VP falls into the neighborhood of
ground truth:

|
=y Zl(xi,)’i,fi,fi),
i=1

o |1 il <eand yi—il <e
I(xi, yi, Xi, ¥i) = 0 othelrwisle o "

where x; and y; are predicted coordinate of VP, x; and y; are
ground truth, and e is the error range that defines the size
of the neighborhood, or the error tolerance level. In order
to evaluate the performance of the VP regression model for
different error tolerance levels, we select three error ranges,
i.e., 0.05, 0.1, and 0.15. For input image of size 300*300,
the absolute errors are 15, 30 and 45 pixels respectively.

For rail segmentation, although only the leftmost and right-
most rails in the scene are labeled, the unlabeled rails will
also be detected since the network can learn the general rail
features during the training. Almost all the unwanted but
detected rails are located between the leftmost and rightmost
rails and do not affect our alarm region extraction. The outer-
most rails are closely related to True Positive and False Nega-
tive. For this reason, we adopt Recall as the rail segmentation
accuracy to measure completeness of the two outermost rails
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that will be used to determine the alarm region:

TP
Recall = —— ®)
TP + FN

where TP is true positive, FN is false negative.

C. EXPERIMENTAL RESULTS AND MODEL ANALYSIS

For all experiments, we use an initial learning rate of 0.01,
weight decay rate of 0.95, regularization term of 0.0001 and
batch size of 16. The network parameters are randomly ini-
tialized and the visual VP detection results on various scenes,
including straight rail lines, curved rail lines, nighttime and
train objects scenes, are shown in Fig. 7. For each sample
image in Fig. 7, the original image containing VP ground
truth (blue circle) and detection result (red rectangle), rail
ground truth and the rail segmentation result are listed from
left to right. It can be seen that, although only leftmost and
rightmost rails in the main line are labeled in ground truth,
the trained network can detect other rails. Some feature maps
of the ResConv2d@ in Fig. 3 are showed in Fig. 8. It can
be found that convolution kernels are sensitive to different
objects, such as VP in the second column, rails in the columns
6-7 and both objects in columns 3-5.

To analyze the impacts of the auxiliary training task and
the information modulation module SEB on VP detection and
rail segmentation, we compared the following four network
structures on the railway dataset:

1) VP regression task/rail segmentation, marked as
VPreg/RAILseg

2) VP regression and rail segmentation, marked as
(VPreg, RAILseg)

3) VP regression, rail segmentation and VR segmentation,
marked as (VPreg, RAILseg, VRseg)

4) VPregression, rail segmentation, VR segmentation and
SEB module, marked as (VPreg, RAILseg, VRseg,
SEB)

The comparisons for VP prediction and rail segmentation are
shown in Table 2 and Table 3 respectively, where Ag o5, Ag.1
and Ao 15 stand for error ranges of 0.05, 0.1 and 0.15, used
in (7) to evaluate the accuracy of VP prediction, respectively.

As shown in Table 2, the introduction of multi-task training

and SEB module can improve VP prediction. This is due
to the fact that auxiliary training makes the model easier
to learn relevant features. This process is further strength-
ened by adding SEB modules that introduces semantics into
low-level information. We add the setup (VPreg, RAILseg,
SEB) to further compare the effects of VRseg and SEB
in VP detection. The SEB module has greater effects than
VRreg. At the same time, the SEB module enhances the
segmentation performance, as shown in Table 3. Because
the low-level information is noisy, unrelated information can
be discarded after semantic modulation. The memory usage
and computation load of the network are shown in Table 4.
Because of the shared feature extraction layers, the auxiliary
task only occupies 10.29% of the memory usage and 7.5% of
the floating-point operations during training.
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FIGURE 7. VP detection and rail segmentation results on various scenes. The result for each sample image
contains the original image, ground truth of two outermost rails and segmented rails. The red rectangles and
blue circles in original images are predicted VP and ground truth respectively. Fist row: scenes of straight rail
lines; Second row: scenes of curved rail lines; Third row: scenes in nighttime; Last row: scenes with trains.

FIGURE 8. Feature maps from deep multi-task leaning model.

TABLE 2. The influence of auxiliary training and information modulation
module SEB for VP detection.

Network architecture VP prediction

Ao.os Aol Aouas

VPreg 0.44 0.79 0.88

(VPreg, RAILseg) 0.51 0.81 0.89
(VPreg, RAILseg, VRseg) 0.55 0.80 0.95
(VPreg, RAILseg, SEB) 0.56 0.83 0.97

(VPreg, RAILseg, VRseg, SEB) 0.57 0.87 0.97

D. COMPARISON WITH OTHER VP DETECTION METHODS
The proposed VP detection method is also compared with
single regression network (SRN) [24], dominate VP detection
network (DON) [7], region prediction network (RPN) [23]
and Hough transform method (HFT) [19]. The SRN used
similar residual network as ours for feature extraction. DON
used a two-stream network that fused multi-level features at
different stages and formulated VP detection with a regres-
sion task and a classification task. RPN defined four rectangle
regions according to VP and image corners and classified
each pixel into one of these classes. The network is similar
to our encoder-decoder network without SEB. Final VP is
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TABLE 3. The influence of auxiliary training and information modulation
module SEB for rail segmentation.

Network architecture Recall
RAILseg 0.85
(VPreg, RAILseg) 0.85
(VPreg, RAILseg, VRseg) 0.85

(VPreg, RAILseg, VRseg, SEB) 0.86

TABLE 4. The memory usage and computation load for different phases.

Memory size(MB)  GFlops
Train 335.87 5.86
Test 301.3 5.42
Test (VP regression only) 156.82 245

the intersection of the predicted regions. The performances
of different VP detection algorithms on our railway dataset
are shown in Fig. 9(a). Some prediction examples are shown
in Fig. 9(b).

It can be seen that, among all five methods, HFT and
DON have the worst performances. The traditional method
HFT is based on edge detection and Hough Transform and is
prone to accumulated errors, resulting in a worse performance
compared with other end-to-end neural networks. Although
it is an unsupervised method, it still needs prior knowledge
from samples to set up proper restrictions and parameters
manually, so it is only suitable for uniform scenes. For the
two-stream structure of DON, there exists the problem of
unbalanced samples in classification task, especially when
block size is small and thus VP hardly locates near the bottom
of image. SRN and RPN have similar performances, espe-
cially for medium and large tolerance errors. The prediction
result of RPN relies on the intersection of different regions.
If predictions were noisy, the final computed VP was noisy
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(b) Examples of VP detection results. The VP computed by HFT in
left sample of the last row was not found inside image because of
strong noise.

FIGURE 9. Compared with different VP detection methods (HFT, SRN,
DON, RPN) on railway test data.

as well. This method was mainly applied to on-board camera
images for automatic driving where the scenes are relatively
uniform with only one VP. However, the railway scenes are
much more complicated because of two facts: (1) railway
cameras are installed on much higher positions and can
see wider and further surrounding environment; (2) there
are abundant distractions, such as catenary posts and over-
head lines and beams. SRN has similar performance as our
method at small error tolerance level. However, at medium
and large error tolerance levels, our method achieves better
performance. Compared with SRN, multi-task learning of our

VOLUME 8, 2020

method introduces implicit data augmentation and regular-
ization terms, so over-fitting can be prevented by balancing
different noise patterns, resulting in a better generalization.
Besides railway dataset, we also evaluate the effectiveness
of our method on 600 highway images selected from [22],
as shown in Fig. 10(a). It can be seen from Fig. 10(b) that the
proposed model achieves the highest test accuracy among all
five methods on the highway dataset as well. Compared with
other network structures, the deeper network structure and
multi-task training of our method enhance the feature rep-
resentation and generalization abilities. It can also be found
that, because the road scenes are more uniform, parameter
tuning in HFT is easier and higher detection accuracy can be

achieved.
s i e S

(a) Sample images of highway test dataset.

—8— HFT  —¢ SRN —#— DON RPN —k— ours

Accuracy A.
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0.05 0.10 0.15
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(b) The comparison results.

FIGURE 10. Compared with different VP detection methods (HFT, SRN,
DON, RPN) on highway test dataset.

In the system configuration of pytorch 0.4-win10-NVIDIA
GeForce GTX 1080 Ti, we only compare the speed of deep
learning based VP detection methods. Because they run
on GPU and are faster than HFT by one order of mag-
nitude, which only runs on CPU. The SRN(389 FPS) and
DON(402 FPS) have similar speed with ours(345 FPS). The
RPN(199 FPS) is obviously lower than others, because the
network contains a time-consuming decoder part.

E. APPLICATION OF THE PROPOSED METHOD IN
RAILWAY PERIMETER INTRUSION DETECTION

The detection of foreign object intrusion into railway lines
requires the knowledge of alarm region that can be deter-
mined by using the leftmost and rightmost rails. As shown
in Fig. 11(a), it is difficult for the traditional Hough transform
based method to distinguish rails from overhead lines and
catenary posts, while the results of VP detection and rail
segmentation produced by the proposed method can provide
accurate information.

Alarm region extraction process based on VP and rail seg-
mentation consists of a series of morphological operations,
such as connected region analysis and convex hull analysis.
The procedure is summarized as follows:
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(a) Hough-based (red line) and deep learning-based (blue line) rail

extraction.

(b) Alarm region extraction based on morphological operations. Red
circle represents VP. Black border polygon is convex hull. Yellow
polygon is final alarm region.

(c) Extracted alarm region in railway.

FIGURE 11. Railway perimeter intrusion detection based on VP detection
and rail segmentation.

1) Open operation for de-noising

2) Connected region analysis for removing small regions
or regions above the VP

3) Convex hull analysis: the major generated shapes are
black border polygons in Fig. 11(b), red circles are
predicted VPs.

4) The complete railway area is extracted according
to the relative position of the convex hull endpoint
and the image border, as shown in yellow polygons
in Fig 11(b). The final extracted alarm region in railway
is shown in Fig 11(c).

V. CONCLUSION

This paper proposed a multi-task learning framework for
simultaneous detection of VP and rails. It has small compu-
tation load, which is of paramount importance for real-time
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processing. In the applications of railway perimeter intrusion
detection, the detected VP and rails can be used in alarm
region determination, and VP position can also be used to
guide adaptive multi-scale object detection. By introducing
multiple relevant learning tasks and learning more indepen-
dent noise patterns, the proposed deep network can greatly
improve its generalization ability, which is very important for
applications with very small dataset. For the case of VP at the
intersection of curves, it is difficult for traditional HFT based
method that depends on extracted features, such as edges, and
special defined constraints, while the proposed algorithm can
still detect VP reliably. For cases where VP is located outside
of the image, existing deep learning methods may fail to
detect VP, while the proposed method can still be used for rail
segmentation and alarm region determination. The existing
image database basically covers most of typical application
conditions, listed in Section IV-A. However, there is still a
lack of samples under extreme weather conditions such as
rainstorm, snowstorm and fog, which are difficult to obtain
and will continue to be collected in the future. The vision
image is sensitive to light changes and viewpoint, so multi-
source data fusion is worth exploring, such as lidar data and
vision data fusion used in traffic sign detection [38]. More
questions about multi-task learning, such as optimal separa-
tion between shared network and task-specific networks, and
the interaction among tasks, need further study.
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