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ABSTRACT Individual commute time recognition is essential for traffic demandmanagement. However, this
problem has yet to be studied. In this study, we propose a hierarchical semantic model (HSM) to recognize
individual commute time. To the best of our knowledge, this work is the first to integrates large scale travellers
commute time prediction at an individual level. HSM consists of a low and a high semantic layer. The low
semantic layer models spatial, temporal and environmental information, whereas the high semantic layer
recognises commute time using the hidden Markov model on the basis of the low semantic layer outputs.
Experimental results demonstrate the effectiveness of our proposed model for individual commute time
recognition.

INDEX TERMS Commute time recognition, hierarchical semantic model, traffic demand management.

I. INTRODUCTION
The recognition of individual commute time can improve the
efficiency of transportation systems. This topic is crucial to
the study of traffic demand management.

Commuters have diverse commuting behaviour. Some of
them have a fixed commuting mode, as shown in Fig. 1.
The commute time of some workers, such as civil servants,
doctors and comapny employees, does not change in a short
period. Other workers, such as couriers, have no apparent
characteristics. In this study, we aim to recognise the com-
mute time of people with a fixed commuting pattern which
have a high degree of confidence in traffic demand forecast-
ing at an individual level.

Datasets used in related research are concentrated on com-
muting behaviour at the group level instead of the individual
level. For example, Toole et al. [1] used call detail records
from mobile phones in conjunction with open and crowd
sourced geospatial data, census records and surveys to esti-
mate travel demand and infrastructure use. To predict the
behaviour of travellers accurately, we use mobile phones as
carriers and form our dataset by collecting the sensor data of
the subjects for up to a month.We call this dataset commuting
data from phone sensors (CPS) and apply it to our research.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

From the sensor data, we can obtain low semantic data
which include the basic actions and frequent locations of
individuals. High semantic data, which consist of home and
work locations and meaningful commute-related indoor and
outdoor transition, are extracted. We use hierarchical clus-
tering to obtain frequent visiting sites and use the Gaussian
mixturemodel(GMM) and the hiddenMarkovmodel (HMM)
to identify human actions simultaneously.

The main contributions of this study are as follows:
(1) We collect an utterly new dataset named CPS for indi-

vidual commuting analysis based on phone sensor data.
(2)To the best of our knowledge, this study is the first

to propose a hierarchical semantic model for commute time
recognition at an individual level.

(3) An end-to-end framework is proposed to recognize an
individual’s commute time.

The rest of this paper is organized as follows: In Section II,
related work is reviewed. In Section III and Section IV,
we present our proposed method. In Section V, we discuss
our data and experiments in detail. Lastly, we summarize and
conclude the study in Section VI.

II. RELATED WORK
In the literature, a common method for predicting commute
time is to study themajor factors that affect commute time in a
specific commute scenario and predict the average commute
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FIGURE 1. Daily commute activity travel pattern. ’H’ means home,
whereas ’W’ means workplace. ’Stay location’ represents the locations
where the individual may stay during the commute. ’Round trip Line’
indicates the out-of-town situation that an individual may have when
staying at home or in the workplace. Individual commuting behaviour is
dynamic. For most commuters, ’Stay Location’ is a non-option because
the home and workplace are fixed. But our method can recognise the
locations where the individual stays during the commute.

time of the corresponding group by modelling these factors.
For example, Ford et al. [3] predicted commute time by
studying the major factors affecting the commute time of
people who use shared bicycles in Wall Street in New York
City. This method dicovers the major factors that affect the
commute time of the group; thus, efficient traffic manage-
ment measures are formulated on the basis of the group’s
perspective. However, this traditional method of prediction
and recognition ignores the individual needs of commuters
and cannot achieve commute time identification at the indi-
vidual level. In our method, we overcome this limitation by
modelling individual sensors data.

This work builds upon the CPS dataset described in
Section V because the data and method of commute time
recognition have not been studied yet. Nevertheless, four
topics are related to this study:(1) related datasets, (2) activity
recognition, (3) GMM-HMM model and (4) commute loca-
tion recognition. Therefore, we review them separately.

A. DATA
To the best of our knowledge, themost similar datasets to CPS
are the Actitracker dataset published byWISDMLabs [3] and
the Har dataset of UCI [4]. The Actitracker dataset collected
accelerator data from 36 mobile phone users at a frequency
of 20 Hz, totalling 1,098,207 records. Meanwhile, the Har
dtatset involved 30 subjects aged 19–48, thus having a total
of 10,299 records. CPS is different in two major aspects.
Firstly, CPS is an unlabeled dataset which simulates real-life
and samples in open scenarios, whereas the Actitracker and
Har are both labelled, and the mobile phones for sampling are
required to be fixed in a part of the subject’s body. Secondly,
CPS samples 13 kinds of sensors, thereby providing a data
foundation to identify the subjects’ environment; by contrast,
Actitracker only samples accelerometer data, and Har sam-
ples accelerometer and gyroscope data. Tbale 1 shows the
composition and relation information of the Actitracker, Har
and CPS datasets.

Although no similar work has been conducted on com-
mute time recognition, many datasets have already included

relevant information, such as travel survey databases of resi-
dents and public transportation datasets. The residents’ travel
survey databases which comprise family, personal and travel
information tables, are frequently used to construct time
assignment models in travel demand management. Alexan-
der et al. [5] generated a user travel matrix using the pri-
vate survey data of the United States for the analysis and
modelling of traffic planning and investment; Toole et al.
(2015) combined CDR and other datasets to estimate travel
demand and infrastructure usage. As one of the main com-
mute modes for commuters, public transportation datasets
provide the possibility to identify passengers’ commute time.
Chen et al. [6] used ATPS to analyse commuters’ travel
demand and optimise bus management strategies. CPS differs
from the above datasets in the sense that (1) phone sensor data
are easy to obtain, and (2) data are flexible and can reflect
the users’ environment in detail. Although the microphone
information of the user is collected and analysed in the CPS
dataset, we only extract the loudness data of the environment,
and do not save the microphone recording; thus, we do not
violate the code of ethics. Moreover, we have informed the
subjects of relevant information before the experiment and
obtained their consent.

B. ACTIVITY RECOGNITION
Sensor-based activity recognition (AR) uses various sen-
sors to measure the user’s activity status, and the avail-
able hardware devices can be divided into three categories:
(1) mobile phones, (2) wearable devices and (3) special
sensors. San-Segundo et al. [7] used multiple sensors in
mobile phones to identify six kinds of behavioural patterns,
such as running and walking. Takahiro et al. [8] improved
the accuracy of human activity recognition using ensemble
learning based on single inertial measurement unit sensors.
Ghosh et al. [9] used ultrasound sensor arrays to identify
human activities. In addition to the expansion of sophisticated
sensors, the authors in [10] developed a new strain sensor
with excellent biocompatibility; the sensor can detect various
human movements, including that of the wrist and fingers,
breathing, speaking and swallowing.

Sensor-based AR algorithms have been continuously
improved. Triboan et al. [11] proposed a semantics-based
segmentation method for sensor data sequence to identify the
complex activities of the elderly. In 2018, Hussein et al. [12]
extracted features from mobile phone accelerometers worn
by subjects, and further classified the features using ran-
dom forest classifiers to identify human activities. Similarly,
Reunanen et al. [13] presented a computational graph struc-
ture of human activity detection, which used accelerometers.
Honghe et al. [14] proposed a wavelet tensor fuzzy cluster-
ing method for multi sensor activity recognition for human
activity recognition. Hsu et al. [15] described an activity
recognition algorithm based on wearable devices, extracted
relevant features after productive human activities and then
used PCA to recognize social activities. Moreover, a multi
sensor classification and multi layer fusion model based on
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TABLE 1. Comparison of the Actitracker, Har, and CPS datasets. Three things should be noted: (1) Actitracker and Har data records are labelled, whereas
CPS belongs to unlabelled datasets; (2) Data sampling in CPS datasets depends on the sampling frequency of mobile phone sensors, and different
sensors have different sampling frequencies (details are described in Section V); (3) CPS sampling scenarios are open, and subjects have no special
requirement because they use their mobile phones in accordance with their daily habits.

entropy weight were proposed by Ming et al. [16] for human
motion recognition of wearable devices.

In our work, we refer to the method of extracting
behavioural patterns in [7] and identify six actions, namely,
running, walking, climbing up, climbing down, static and
unknown.

C. GMM-HMM MODEL
Our method uses the GMM-HMM model to calculate the
sequence of indoor and outdoor states of individuals with time
stamps and place labels.

The GMM-HMM model was launched in the 1990s and
is mainly used in the field of speech recognition. [17] first
combined the output probability of the normalised neural net-
work with the transmission probability of the HMM model.
Furthermore, Renals et al. [18] presented a combination
method of scale similarity generated by two-layer MLP and
GMM-HMM. Zhenjun et al. [19] proposed a linear spectrum
frequency conversion method based on HMM-HMM, which
can improve the naturalness and clarity of speech conversion.
Zweig et al. [20] combined PLP-GMM and hybrid systems
using the SCARF framework. Pang et al. [21] improved
system performance by embedding a competitive penalty
learning mechanism under the hidden Markov state during
model training. Yan et al. [22] used DNN for feature exten-
sion based on the GMM-HMM model. Wang et al. [23] used
the GMM-HMM model for single-channel speech separa-
tion. Zimmermann et al. [24] applied the features learned
by neural networks to the GMM-HMM speech recognition
system, and their work improved the accuracy of speech
recognition. Heck et al. [25] proposed the DPFMM–HMM
acoustic unit recogniser to enhance the performance of the
language model.

In addition to its application in speech recognition,
GMM-HMM models are used in capturing remarkable

changes in the state of the mobile robot’s motion [26], and
segmenting human activities.

D. COMMUTER LOCATION RECOGNITION
Studies related to commuter location recognition are lack-
ing. Ahas et al. [27] proposed the use of the passive loca-
tion dataset provided by Estonia’s mobile operator EMT
in 2010 to determine the home and work location of users.
They used the geographic coordinates of the data to determine
the anchor points for the home and workplace on the basis
of the standard deviation of the call’s average-start-time and
call-start-time to arrive at a specific location. In [6], the author
deduced the passengers’ home and workplace by calculating
the passenger’s ride frequency and spatially clustering the
passenger’s bus stop coordinates based on the public bus
system data—ATPS.

However, our method is different from the above studies
in the following aspects: (1) The GPS data we used is active
positioning data which can reflect user’s position accurately
and timely. (2) To the best of our knowledge, our work is
the first to suggest to cluster the GPS discrete points and
construct the time-place distribution map to determine the
user’s home and workplace.

III. HIERARCHICAL SEMANTIC MODEL
Before presenting the proposed model, we first formalize
our task. The input is a time-stamped sequence of phone
sensor datasets of length T, {G,M ,A,Gy,R} t=1T , whereas
(G,M ,A,Gy,R) represent GPS, mic, accelerometer, gyro-
scope, and rotation vectors, respectively. The output is a
sequence of indoor and outdoor states of individuals with time
stamps and place labels, {I∗t }. By calculating the time interval
between home and work location in {I∗t }, we can obtain the
individual commute time on the day.
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FIGURE 2. Hierarchical semantic structural diagram. An end-to-end framework whose input is sensor data and output is
individual commuting time.

As illustrated in Figure 2, the hierarchical semantic model
is composed of a low semantic layer and a high semantic
layer. The task of the low semantic layer is to recognise the
individual’s action state and relevant locations in accordance
with the input sequence, and the high semantic layer fuses the
two to obtain {I∗t }.

A. LOW SEMANTIC LAYER
In this work, the function of the low semantic layer lies in
data processing, individual activity recognition and regularly
visited place recognition.

We divide the GPS state into a strong state and weak state
in accordance with the number of satellites captured by GPS.
Moreover, ambient noise is similarly divided into two states.
Given that the original accelerometer data are related to the
postition of the mobile phone, we use the quaternion method
to convert raw data so that it can fit the earth’s coordinate
system.

The recognition of individual activities can be described
into three parts. Firstly, we segment the processed accelerom-
eter and gyroscope data sequence using a sliding window and
then form feature vectors by extracting features from each
window. Considering the high density and serialisation of
input data and inspired by the speech recognition algorithm,
we select the GMM–HMM model to recognise individual
activities in accordance with the eigenvector group. The
advantage of GMM-HMM over the HMM model is that the
sample points projected by GMMare not a definite classifica-
tionmarker, but a classification probability, which can predict
the action state accurately.

The locations that individuals visited are obtained by clus-
tering GPS trajectory, and an individual’s regularly visited

places are recognised by counting those locations. The begin-
ning and the end of the path can reflect an individual’s depar-
ture and destination; thus, we intercept the head and tail parts
of the GPS track for clustering. Each caught part is treated as
a set of points, and our goal is to find a centre point that can
represent the set. To solve this task, we choose the AGglom-
erative NESting algorithm (AGNES) [28] in the hierarchical
clustering method to cluster the points in this set and, the final
clustered point is considered as the recognised location. The
reason we choose the hierarchical clustering method instead
of other methods is that this method artificially designates
central points, which may cause subjective effects, before
clustering.

B. HIGH SEMANTIC LAYER
The high semantic layer fuses the information of the
individual’s basic actions and frequent locations, which
are mined from phone sensors data in the low seman-
tic layer. In this layer, basic motions and the state of
GPS/noise (ambient noise) construct a hidden Markov
group to recognise the indoor or outdoor states of indi-
viduals. Afterward, the status’ sequence is marked with
location information at a time scale, whereas the loca-
tion of home and work is recognised in accordance with
the time distribution of sites obtained in the low semantic
layer.

IV. METHODS
A. LOW SEMANTIC INFORMATION RECOGNITION
The low semantic level focuses on individuals’ basic activi-
ties and frequent location recognition.
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1) INDIVIDUAL BASIC ACTION RECOGNITION
The achievement of individual activity recognition is divided
into three parts: pre processing of sensor data, feature extrac-
tion and activity recognition.

a: DATA PRE PROCESSING
The sensor’ data used for recognising individuals’ activities
contain three kinds of sensor data: accelerometer, gyroscope
and rotation vector sensor data. Before the system works,
we use the quaternion method [29]–[31] to transform the
accelerometer sensor data.

Let the quaternion be given by the rotate sensor: (p1, p2,
p3, λ), where p1, p2, p3 represent the rotation vectors along
the coordinate axis x, y, z respectively, and λ represents the
value of the rotation vector. Accelerometer sensor raw data
composed of the component of acceleration on each axis can
be represented by the vector [ax , ay, az]. We can obtain the
unaffected coordinates using Formula (1).[

ax
′

ay
′

az
′ ]T
= M

[
ax ay az

]T
, (1)

where M is a transformation matrix used in the quater-
nion method, and it can be represented as Formula (2),
as shown at the bottom of the next page. We use matrix
M to transform the coordinate system and convert the
accelerometer data of mobile phones into carrier coordinates.
The coefficient derivation of matrix M can be referred to
Henderson et al. [32].

b: FEATURE EXTRACTION
The converted vector [a

′

x , a
′

y, a
′

z] and the gyroscope sen-
sor data are sampled at a 50 Hz rate and filtered for noise
reduction [7]. A Butterworth low pass filter with a cut-off
frequency of 0.3 Hz is used to separate the gravitational and
body motion components included in the sensor accelera-
tion signals. The rate is sufficient for capturing human body
motion, that is, than 95% of its energy is contained below
15 Hz [33]. Then, the processed sequences are grouped into
frames by fixed-width windows of 2.56 s and 50% overlap
(128 samples per frame with an overlay of 64 samples).

We use the method in [34] for feature extraction. Each
frame extracts a feature vector by computing measurements
from the time and frequency domains of inertial signals. The
feature vector consists of 561 features, including wellknown
standard measures [35], such as mean, correlation, signal
magnitude area (SMA) and autoregression coefficients[36].
In [34], new features were included: energy of different fre-
quency bands, frequency skewness, and the angle between
vectors (e.g. mean body acceleration and vector). Further
details are provided in [34].

c: ACTION STATE RECOGNITION
Complex action recognition is difficult; in general, the more
basic actions are recognised, the higher the accuracy
obtained. We identify six kinds of basic actions (running,
static, walking, climbing up, climbing down and unknown)

using the GMM-HMM model [7]. Similar to the litera-
ture [7], we construct five models to recognise five basic
actions except for unknown actions. Frames described by
561 features are represented as feature vectors divided into
minutes, in alignment with the division of an individual’s
indoor/outdoor states. The mixed Gaussian distribution gen-
erated by feature vectors is processed using GMM models.
Moreover, it is used as an input sequence of HMM models,
and the probabilities of input action corresponding to mod-
els are obtained separately by calculating the joint probability
of the sequence path of each model. Moreover, the probabili-
ties of unknown actions are recognised as an infinite negative
value.

The probabilities obtained from GMM-HMM models can
be represented as {Prun,Pmotionlessness,Pwalk ,Pup,Pdown}, and
the maximum value is expressed as follows:

P=max{Prun Pmotionlessness Pwalk Pup Pdown} (3)

We recognise the action class label on the basis of the
maximum value. However, if

P− Tunknown < 0, (4)

where Tunknown is set as a threshold to recognise the unknown
actions, the action will be recognized of unknown actions.
The output value of unknown actions becomes meagre
(almost zero) after passing through the model group, whereas
the probability of the corresponding action becomes high.
We classify running and climbing up and down into other
actions, and the six actions recognised are further classified
into four actions: static, walking, other actions, and unknown
actions.

2) FREQUENT LOCATION RECOGNITION
We use GPS to recognise the locations where the individual
frequently visits. The frequency of GPS data downsampling
to 1 Hz. Moreover, we use AGNES hierarchical cluster algo-
rithm to understand the sites that individuals often visit.

Step 1: We token the first r points and the last r points of
each trajectory. Then, the chronologically arranged points are
represented as a sequence N1, N2, · · · , Nn, and an empty set
D is used for indoor locations coordinates.
Step 2: Traversing coordinate sequence N1, N2, · · · , Nn.

For each point Ni, if set D is empty, then the indoor location
coordinates d1 = Ni are added to setD; otherwise, the indoor
location coordinates d1, d2, · · · , dm of set D is traversed, and
the Euclidean distance is calculated for each indoor location
dj using Formula (5).

lj =
√(

xNi − xdj
)2
+
(
yNi − ydj

)2 (5)

Step 3: The minimum distance l = min
j∈{1,··· ,m}

lj is taken, and

then the corresponding indoor location is ds when the distance
is within the confidence range, thus updating the coordinates
using Formula (6).

dsnew =
(ds ∗ k + Ni)
(k + 1)

, (6)
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where k is the number of GPS coordinate points Ni which
is used in indoor location coordinate ds. Then, the indoor
location coordinates are added to set D.
Step 4: Afterwards, the coordinates are updated until set

D = {d1, d2, · · · , d3} is obtained.
In conclusion, set D contains the locations where individ-

uals frequently visit during the sampling period.

B. HIGH SEMANTIC INFORMATION RECOGNITION
1) INDOOR AND OUTDOOR STATE RECOGNITION
Indoor and outdoor state division is an essential part of our
work. The locations’ time distribution obtained from the state
sequence can further recognise the home and workplace. The
hidden Markov model (HMM) [37] and the Viterbi algo-
rithm [38] are used for indoor and outdoor state recognition.
Moreover, two HMMmodels are used to make joint decisions
and obtain a sequence with high accuracy.

HMM. As described in Section 4.1, the HMM model’s
observable state is composed of four basic actions (motion-
lessness, walking, other and unknown actions) and two states
(strong and weak) of GPS and ambient noise. We describe the
observable state as a triple elements group (A,G,V ).

Our work focuses on the division of indoor and outdoor
states, and the Viterbi algorithm is used to obtain the optimal
prediction sequence of indoor and outdoor states. Concretely,
we have

δt(i) = max
1≤j≤N

[
δt−1(j)aji

]
bi(ot), i = 1, 2, . . . ,N (7)

δ1 (i) = πibi (o1) , i = 1, 2, . . . ,N (8)

ψt(i) = max
1≤j≤N

[
δt−1(j)aji

]
, i = 1, 2, . . . ,N (9)

ψ1 (i) = 0, i = 1, 2, . . . ,N (10)

aij = P
(
it+1 = qj | it = qj

)
, i = 1, 2; j = 1, 2 (11)

bj (k) = P
(
o
t
= vk | it = qj

)
, k = 1, 2, . . . , 16; j = 1, 2

(12)

where aij is the state transition probability, and b j (k) is the
observation probability. Given no prior condition, we set the
initial state probability vector π = (0.5, 0.5).
When the sequence computation terminates, we can obtain

the probability P ∗ of the optimal path and the corresponding
terminal i ∗T under the path.

P∗ = max
1≤j≤N

δT (i) (13)

i∗T = argmax
1≤i≤N

[δT (i)] (14)

Then, we retrospect the optimal path to obtain the sequence
of the path which can represented as I ∗ =

(
i ∗1, i

∗

2, . . . , i
∗
T

)
.

i ∗t = 9 t+1
(
i ∗t+1

)
(15)

I ∗ =
(
i ∗1, i

∗

2, . . . , i
∗
T

)
is the optimal prediction sequence of

indoor and outdoor states.
Misjudgment may occur in the models, and it happens dur-

ing state transitions; thus, we simultaneously use two HMM
models with different state transfer matrices A to pursue high
accuracy. Two sequences from the models are combined with
the WiFi and location information, which are provided by
the mobile phone’s WiFi module and GPS data separately.
WiFi name is the first condition for discriminating a change
in state. If the WiFi name is not changed, then we deem
the state of the individual as not altered, and vice versa.
Supposing an individual’s phone has no WiFi connection,
we calculate the Euclidean distance between the actual and
clustered locations to perceive the change of the individual’s
location; GPS data can obtain the real site, whereas the cluster
locations are recognised by the genealogical cluster algo-
rithm in Section 4.1. In summary, the sequences synthetically
judged are the final status sequences that will be used to
recognise commute time.

2) LOCATION RECOGNITION OF HOME AND WORK
The locations obtained in the sampling cycle in Section 4.1 are
be counted. We recognise the home and workplace based
on the basis of the general situation wherein home and
commute locations are the most common places for most
people. The subjects we studied had distinct characteristics
of day work and night rest. Therefore, we conduct time
interval distributionon the basis of the two locations with
the most statistics (as shown in Fig.8). In addition, the place
where time concentrates in the daytime is recognised as the
commute location. Similarly, the site where time focuses in
the evening will be remembered as the location of the home.

3) COMMUTE TIME RECOGNITION
The indoor/outdoor state sequence with time information is
marked with locations in set D (Section 4.1), and the home
and commute location information is added. The time used
between home and commute location is recognised as com-
mute time.

V. EXPERIMENTS AND DISCUSSION
A. DATASET
We provide a publicly available dataset CPS. Table 1 shows
details of the CPS. CPS contains ten individual data with
an average of 27 days, and the subjects include six gradu-
ate students and four young workers aged 22 to 30 years.
We used Huawei Mate 8 with the Android 6.0 system as
experimental device. The participants were tasked to collect
data for more than three weeks. Throughout the experiment
process, WiFi and GPS remained open. We developed an

M=

 λ2 + p12 − p22 − p32 2 (p1p2 + λp3) 2 (p1p3 − λp2)
2 (p1p2 − λp3) λ2 + p22 − p12 − p32 2 (p2p3 + λp1)
2 (p1p3 + λp2) 2 (p2p3 − λp1) λ2 + p32 − p12 − p22

 (2)
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FIGURE 3. Cluster map of a monthly travel locations.

app to collect relevant sensors data automatically. More-
over, no restrictions were imposed on the usage of the pro-
vided smartphone. The website for obtaining the dataset is
https://pan.baidu.com/s/12jKE18tpO4u2ihie4AwiNw. Please
contact us to obtain the extraction code if you need to use the
dataset.

A prior dataset (collected from subjects) was built for
training the GMM-HMM and HMM models. The previous
dataset consists of two parts: five kinds of physical activities
(i.e., static, walk, run, upstairs, and downstairs) and three
day phone sensor data for each subject. The activity data for
GMM-HMM pretraining and daily data were further divided
into two segments for HMM training.

Two places are needed to set thresholds manually; thus,
we used heuristic rules to fix them: (1)The division of states of
GPS and ambient noise. The state of GPS determined by the
number of satellites (when the number of satellites exceeds 8,
it is judged as a strong state, vice versa). Similarly, the state
of ambient noise is determined by a threshold of 60 db;
(2)Sequence length of location clustering for trajectory inter-
ception. In this study, the value of r is set to 10. Usually,
10 points are enough to determine the location. Too many
points affect the clustering centre, whereas too few points
may result in noise. In addition, the length of the input and
output sequence of HMM is 1,440 because a day is divided
into 1,440 min.

B. COMMUTE TIME RECOGNITION
The experiment was conducted on the dataset described in
Section 5.1. We present our experimental results in accor-
dance with the structure of the hierarchical semantic model.

1) LOW SEMANTIC LAYER
The role of the lower layer is data fusion. We extract the
locations information and recognise the individual’s actions
from the sensor data.

a: FREQUENT LOCATION RECOGNITION
On the basis of the method described in Section IV (frequent
location recognition), the location information about the

frequently visited places of individuals is obtained by clus-
tering GPS trajectory.

Fig. 3 is the cluster map of an individual’s frequent loca-
tions during the sampling period, and the map on the right is
an enlarged local map of the main activity area of the indi-
vidual. The frequent sites are marked with statistical times
in the maps, and the latitudes and longitudes in blue colour
represent the locus of the individual. Locations with the two
most statistics are used for further time distribution analysis.
In this map, these statistics are the points with statistical
values of 153 and 67.

According to the cluster location, Fig. 4 shows the quantita-
tive distribution of the subject’s recognised frequently visited
sites.

We compare the identified location with the standard map
coordinates of the location. Considering that the experimental
and standard coordinates of the location are latitude and
longitude coordinates, we use the Haversine formula ([For-
mula(16), as shown at the bottom of the next page]) to calcu-
late the coordinate deviation.

In the Formula (16):
r is the radius of the sphere. (r in this study refers to the

radius of the earth.)
d is the distance between the two points.
φ1, φ2: denotes the latitude of points 1 and 2.
λ1, λ2: denotes the longitude of pints 1 and 2.
Table 2 details the experimental data. One point to be

explained here is that the data deviation of some places
in the table is relatively large, because of two reasons:
1) After the subject enters the building, the GPS signal may
be weak. In this case, we can only locate the periphery of
the building, but the standard landmark is the core point
coordinate of the building. At this time, the main factor of
the location identification error is the size of the building.
Generally, within 100 meters (D-deviation less than 0.1)
is within the normal error range. In some extreme cases,
relatively large errors may occur. For example, the actual
location is a terminal of the airport, and a coordinate point
around the terminal of the location is identified. At this time,
the identification error reaches the order of 100 m. 2) The
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FIGURE 4. Location statistics.

TABLE 2. Location recognition deviation. ’D-deviation’ means ’Distance deviation’.

system may recognise the endpoint of the track before GPS
misses as a location, and the error between the target location
and the recognition location is relatively large. Neverthe-
less, the purpose of location recognition is to identify the

location information of the home and workplace, and the
other locations are secondary information, whose accuracy
does not affect the recognition accuracy of the last commuting
time.

d = 2 ∗ r ∗ arcsin
(√

haversin(φ 2−φ 1)+ cos(φ 1) ∗ cos(φ 2) ∗ havesin(λ 2−λ 1)
)

(16)
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FIGURE 5. one week’s action state recognition sequence of a subject.
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FIGURE 6. Indoor/outdoor state recognition result via two HMM models with different transform rates.

FIGURE 7. Time distribution at home and workplace.

We use the two places with the most statistics as the home
and wrokplace points. As shown in Table 2, we average
the identification errors of the two points. The maximum
average error of the experiment is 37 m, and the minimum
average error is 2 m, which belongs to the normal error range
(within 50 m).

b: ACTION STATE RECOGNITION
By processing the data of the cell phone accelerometer, rota-
tion vector sensor and gyroscope, we can identify the action
of the subjects and generate the action sequence. The length
of the action sequence is 1440, indicating that 1440 action
states are generated for each individual per day. Fig. 5 shows
the action recognition results of a certain week for a subject.

2) HIGH SEMANTIC LAYER
In this layer, we process the data output from the lower
semantic level to identify the indoor and outdoor state
sequence of individuals. By combining the sequence with
time stamp and the location data, we can derive the location
semantic information of an individual’s home and workplace
and further identify the commuting time of individuals.

a: INDOOR AND OUTDOOR STATE RECOGNITION
The HMMgroup is used to recognise the indoor/outdoor state
of the individuals after location recognition. Fig. 6 depicts a

section of two different scenarios’ recognition result via two
HMMmodels; HMM 1, which has a critical transfer matrix is
sensitive to the changes in indoor/outdoor states. By contrast,
HMM2 with a smaller transfer matrix is more insensitive
to the changes. The sequence of the indoor/outdoor state
is divided into minutes. The indoor state is represented by
value ‘1’, and outdoor state is represented by value ‘2’. More-
over, the number marked represents the clustering locations
obtained in Section 4.1. Different models obtain different
results in some special situations, and the figure shows two
different scenes that often happen in our daily life. In the
left picture, the outdoor state transition is ignored by HMM2,
resulting in the unrecognised location change from 1 to 4 at
the 500th minute of the sequence. Similarly, the right graph
shows the misidentified caused by the faster transform rate of
HMM1.

b: LOCATION RECOGNITION
The two places with the most statistics are taken as the candi-
dates for home and workplace. Given that most commuters
are in commute locations by day and at home by night,
two different sites are given the semantics of the home and
workplace in accordance with their time distribution.

We divide each day into two sections; Section A is from
the current day’s 20:00 to the next day’s 8:00, and section B
is from the current day’s 8:00 to 20:00. By comparing the time
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FIGURE 8. Commute time recognition.

proportion of two locations in the A/B period, we provide
semantic information on home (A period accounts for more
time) and workplace (B period accounts for more time).
Fig. 7 describes the time distribution of the two locations
using the statistical proportions of sites over time. Fig. 7(a)
shows the time distribution of the two places onworking days,
wheres Fig. 7(b) shows that for the rest of the day. As is shown
in Fig. 7, the time distribution of two places is remarkable
different. One of the two locations is more concentrated in
the evening, whereas the other location is concentrated during
daytime.

AVG (1-2) in Table 2 shows the recognition deviation of
home and workplace locations. We identified the home and
commute locations of eight partcipants successfully; how-
ever, those of the other two subjects were not identified
because their commute locations were not fixed. As shown
in Table 3, our method is suitable for identifying fixed sites.

c: COMMUTE TIME RECOGNITION
By combining the recognition results of indoor/outdoor state
sequence and workplace and home locations, the time used

TABLE 3. Semantic inference of indoor locations.

between home and commute location is recognised as com-
mute time. Fig. 8 shows the results of commute time recog-
nition for different subjects, the commute time spent from
home to work are drawn in red, whereas that for the work-
place to home is drawn in blue; the graph shown is not
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symmetrical. As shown in Fig. 8, many factors affect com-
mute time. Although individuals have considerable differ-
ences, commute time fluctuates within a specific range
individually. In addition, commute time is recognised as
0 min when the subjects go to work without the phone.

We thus provide a method to recognise the individual’s
commute time; this method essentially identifies the home
and the workplace and calculates the time spent in between
them. The commute time of commuters on regular working
days is stable, and our experiment shows the same results.

Results show that ourmethod is effective for commute time
recognition.

VI. CONCLUSION
We propose a method for commute time recognition by using
a hierarchical semantic model, which consists of two layers:
low and high semantic layers. As a preliminary information
fusion layer, the low semantic layer recognises the individ-
ual’s basic actions and frequent locations. On this basis,
we further identify home and commute locations to recognise
meaningful commute-related indoor/outdoor state transition
and commute time.

Our experiments show that the method is practical; how-
ever, many problems have yet to be solved. Our approach
is only applicable to people who commute regularly, and it
is not valid for people who work in an unstable workplace,
with unpredictable working hours or whose working hours
are mainly distributed in the evening. Moreover, the dataset
only contains a small range; thus, whether age, ethnicity and
other factors affect the of the GMM-HMM models’ motion
recognition effect, which leads to commute time recognition,
remains uncertain. To solve the above problems, we will con-
duct further research to achieve the commute time recognition
in complex situations.
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