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ABSTRACT Amulti-modal urban transportation network provides travelers with diversified and convenient
travel options. The study of multi-modal traffic assignment encounters great challenges from the common-
line problem, route correlation, and the variability of travel tools. This article starts with the construction of
super-networks to solve the common-line problem of multi-modal system. From the dimensions of time, fee,
comfort, and transfer penalty, a multi-modal generalized travel cost function is proposed to reflect the impact
of travel mode and transfer on route choice. Based on C-logit model, considering multi-modal capacity
constraint and route correlation, a nonlinear programming model equivalent to the multi-modal stochastic
user equilibrium is set up. The corresponding solving algorithm is designed by combining the augmented
Lagrangian multiplier method and the successive weight average algorithm. Finally, the effectiveness of the
proposed model and algorithms is verified through a numerical example, and the traffic assignment approach
is applied in some typical scenarios. The multi-modal transportation network equilibrium approach proposed
in this article takes into account the capacity constraints of different travel modes and solves the path
overlapping problem in combined modes. It provides a basis and tool to formulate the traffic management
strategy for public transport and combined mode trips.

INDEX TERMS Traffic assignment, multi-modal, stochastic user equilibrium, capacity constraints, C-logit.

I. INTRODUCTION
With the continuous development of transportation, urban
travel has changed from a single mode to a diversified and
complex multi-modal mode. Multi-modal travel and trans-
portation systems have becomemature. In order to predict the
traffic flow effectively and exactly in the complex transporta-
tion network, it is necessary to study the traffic assignment
model under multi-modal conditions.

Since Wardrop put forward the principle of user equilib-
rium (UE) and system optimization (SO) in 1952 [1], traf-
fic assignment has become the research focus in the field
of transportation, and the principle and method of traffic
assignment have been constantly improved. The Wardrop
user equilibrium principle is also called deterministic user
equilibrium, which assumes that travelers know exactly the

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

network traffic status. In fact, it is impossible for travelers to
know the actual network information exactly. To improve this
unrealistic assumption, Daganzo and Sheffi proposed the the-
ory of stochastic assignment in 1977 assuming a randomness
bias between users’ estimation of network and the reality [2].

With the in-depth study of traffic theory, scholars have dis-
covered some further problems. The first one is that the road
capacity cannot be limited adequately by the BPR (Bureau
of Public Road) function, which is commonly used in the
travel time estimation. The second one is the irrationality
of Logit method commonly used in stochastic traffic assign-
ment, because Logit model has the independence of irrelevant
alternatives (IIA). In addition, with the transition from a sin-
gle mode to a multi-modal mode, traffic assignment includes
not only route choices, but also choices of mode and transfer
point.

In terms of road capacity constraints, a large number of
solutions have been proposed to keep the road traffic flow
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within the capacity limit. These solutions are mainly divided
into two categories: advance in the BPR function and capacity
restriction for the assignment model.

To improve the BPR function, Daganzo used Davidson
function instead of BPR function [3]. The Davidson function
is a progressive function that adopts the idea of queuing
theory. When the traffic flow reaches the capacity limit of
road, the travel time will be very long. Yang considered the
queuing phenomenon when the capacity exceeds the limit,
and found that the travel time will be infinite when the traffic
flow exceeds the capacity [4]. Zudhy re-calibrated the BPR
function, which improves the problem that the original BPR
function has little change in the saturation state [5].

Adding a capacity constraint to the assignment model
is relatively direct, but it will make the commonly used
Frank-Wolfe (F-W) method invalid. In order to solve F-W
failure, scholars introduced the penalty function to con-
vert the capacity constraint into a non-capacity constraint.
For example, Cheng adopted the internal penalty function
method [6], and Nie adopted the external penalty function
method [7]. Another method is the augmented Lagrangian
multiplier method (ALM), which can solve nonlinear pro-
gramming problems well. Larsson used ALM to solve the
assignment problem with capacity constraint, and deduced
that Lagrangian multiplier corresponds to queuing delay [8].
Bell added capacity constraints to the SUE problem, and
proposed an equivalent Logit-SUE model with road capacity
constraints [9].

In terms of logit-based assignment method, it is easy to
understand and has obvious advantages in large networks
[10]. But due to its own structure, the Logit method has IIA
characteristics and its accuracy needs to be improved [11].
IIA characteristics reflect the lack of sensitivity of logit-based
method to network structure, resulting in excessive traffic
flow assignment to overlapping paths [11]. Therefore, many
scholars have proposed various improvements to reduce the
impact of IIA characteristics. The improved models mainly
include: C-Logit, path size logit, route perception logit, etc.
C-logit considers the impact of path overlap by adding com-
monality factors [12]. Path size logit reduces the impact of
overlapping by adding a logarithmic correction term of the
ratio of overlapping paths to overall path length [13]. Route
perception logit reduces the selective probability of overlap-
ping paths by adding correction items [14].

As for the content of traffic assignment, the multi-modal
traffic assignment involves not only route choice but also
mode choice at the same time, because travelers usually make
integrated travel choices in the multi-modal transportation
system. At the beginning of multi-modal, transportation was
underdeveloped. Combined mode trips only accounted for a
small proportion. Therefore, the study of multi-modal traffic
assignment focused on the combined model of mode split
and traffic assignment. Florian et al. studied the traffic equi-
librium problem of two modes of bus and car [15]. They
develop a trip distribution, mode split, and traffic assign-
ment model based on Wardrop’s UE principle, and finally

established an equivalent minimization model to solve the
problem. Lam et al. studied the combined model of trip dis-
tribution and traffic assignment in multi-modal and estab-
lished an equivalent convex optimization model, assuming
that the impedance on the road segment is caused by multiple
modes [16]. Abrahamsson et al. studied the reverse nested
logit combination model that includes three stages of trip
distribution, mode split and traffic assignment [17]. CEA
studied the trip distribution, mode split and traffic assignment
combined model considering the impact of congestion on
cars and buses, in which the demand model is a hierarchical
model [18]. In order to study the traveler’s choice behavior of
intercity buses and trains in the multi-modal urban economic
circle transportation network, Li et al. established a combined
model of mode split and traffic assignment [19].

With the encouragement of transportation policies and the
construction of transfer facilities, combined mode trips have
greatly increased. There are more and more researches on
multi-modal traffic assignment including combined mode
trips. In multi-modal trips with combined mode, travelers
face a choice between pure mode and combined mode. If the
combined mode is selected, the transfer point and route
need to be decided. Travel choices are usually modeled by
demand model or network model. The modelling approaches
to address the travel choices in multi-modal transportation
network can be divided into three categories [20].

The first category considers route choice only, and takes
the choices of the combined mode and the transfer point just
as a part of the network route choice. It assumes that the
network is subject to congestion effect and the route choice
is subject to the UE principle. The cost of the combined
mode route is considered to be the same as the cost of other
routes. Lo proposed the use of state-augmented multi-modal
network (SAM) network to solve the problem of transfer and
nonlinear structure in multi-modal trip, and built the SUE
model based on SAM network model [21]. Gentile [22] et al.
simplified cordon congestion pricing and suboptimal pricing
by using hypergraph for network modeling and considered
multi-modal assignment as route choice. Xiao et al. combined
the activity-time-space (ATS) network and SAM network to
construct ATS-SAMnetwork. By expressing travel choices in
different sections of ATS-SAM super network, a reliability-
based user equilibrium model is proposed for scheduling
daily activity-travel patterns in multi-modal transit networks
under uncertainty [23]. Si et al. studied the UE model in
multi-modal networks, based on the principle of minimum
generalized travel cost in the mode split stage, and the prin-
ciple of shortest travel time in the route choice stage, and
finally constructed an equivalent variational inequality (VI)
function to solve it [24]. Wu et al. expressed the mode split
and route choice as a nested logit model and established an
equivalent VI model [25]. Liu et al. studied the multi-modal
probit-based SUE model under elastic demand considering
congestion pricing and P+R facility layout [26].

The second category regards the combined mode as an
independent mode. Travelers can choose combined mode
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trips in the mode split model. Once they have selected the
mode, they will choose the route in the pure mode sub-
network or the combined mode network. This kind of models
allows the user perceived cost of the combined mode to be
different from that of the pure mode, but the perceived costs
for all combined mode routes are equal, regardless of the cho-
sen transfer nodes. Hamdouch et al. used the binomial logit
function solution method to divide in a multi-modal network,
and studied the traffic assignment methods for UE and SO
principle [27]. Li et al. [19] and Song et al. [28] applied
the logit-based model to solve the mode split, assuming that
each mode internally satisfies the UE principle, and finally
constructed an equivalent VI model. Zhang et al. [29] studied
the multi-modal network design problem, and constructed
the VI model as the equivalent multi-modal user equilibrium
nonlinear programming problem (MUE-NLP) model in the
lower layer model. In order to maintain the continuity of
mode split and route choice, Wu and Lam [30] chose a logit-
SUE-based path selection model and constructed an equiv-
alent VI model. Kitthamkesorn et al. [31] used nested-logit
model for mode split, and cross-nested-logit model for traffic
assignment. In addition, Ryu et al. [32] transformed the mode
split into an elastic demand problem by making appropriate
modifications to the network, and then designed a route-based
projection gradient algorithm.

The third category is an extension of the second category.
In this kind, the combined mode trip contains a detailed
transfer point choice in demand sub-model. Lam et al. [33]
divided travel choices into mode split, transfer point choice,
and route choice in the car and P+R dual-mode network.
Logit-based model was used in the three parts. Li et al. [34]
studied the multi-modal equilibrium model under elastic
demand, and used logit model to solve the mode split.
The choice of transfer point and route conforms to the UE
principle.

Existing research has achieved many results in multi-
modal traffic assignment. However, it is found that the fol-
lowing three points can be improved.

1) For the multi-modal traffic assignment containing com-
bined mode trips, dividing travel choice into multiple stages
is too complex. This kind of division is not appropriate for
large-scale road network, and will weaken the relationships
among the stages in travel choice. Besides, there are still
some drawbacks in the route choice model, such as the multi-
modal common-line problem, the complexity of multi-modal
perceived cost, and so on.

2) Logit model is mainly used to split the travel flow, but
the premise of logit model is that the selection branches are
independent. However, most of the time there will be corre-
lation between routes because there are many overlap links,
and when logit model is still used for assignment, too much
flow will be allocated to those overlap links. When there
is a combined mode, the travel modes are not independent
from each other, and the overlapping effect between routes
is more obvious. The logit model needs to be improved in
multi-modal traffic assignment.

3) Capacity constraint is a defect in the traditional traffic
assignment model, and affects the accuracy of assignment
results. The impact of capacity constraint needs to be further
considered in multi-modal traffic assignment. All kinds of
travel tools have capacity constraints, and no one is consis-
tent. Therefore, in the multi-modal traffic assignment, it’s not
the right way to solve all the capacity constraints by a single
method.

In the face of these problems, this article provides a set
of solutions. First, a multi-modal transfer network model is
proposed to solve the multi-modal common-line problem,
and lays the foundation for a multi-modal SUE model based
on route choice. Then, the generalized travel costs of different
modes are quantified from the dimensions of time, fee, com-
fort, and transfer penalty, to reflect the traveler’s perception
of different travel modes and routes. Moreover, the C-logit
model is adopted to overcome the IIA characteristics of logit
model. Finally, after analyzing the capacity constraints of dif-
ferent modes, a multi-modal SUEmodel considering capacity
constraints and route correlations is established.

The structure of the remainder of the article is as follows.
Section 2 studies the multi-modal transfer network model.
Section 3 studies the multi-modal generalized travel cost
function. Based on the consideration of capacity constraints
and route correlations, a multi-modal SUE model and cor-
responding solution algorithm are proposed in Section 4.
Section 5 demonstrates the effectiveness of the traffic assign-
ment approach through a numerical example, and the pro-
posed approach is applied in typical scenarios.

II. MULTI-MODAL TRANSPORTATION NETWORK MODEL
The urban transportation network model is the basis for
the intuitive display, scientific calculation and data analysis
of urban traffic system. Multi-modal transportation network
includes multiple modes of transportation and inter-mode
transfer. The network structure can fully express not only sin-
gle mode trip but also combined mode trip. According to the
structure requirement, we can use super-network to describe
the multi-modal transportation network. Multi-modal super-
network is composed of different sub-networks and transfer
links between sub-networks.

The multi-modal super-network is represented as
G = (N ,L), N is the set of nodes and L is the set of links.
The node set includes car node, bus node, subway node
and P+R node. The line set can be divided into travel link
and transfer link. Travel link includes car link, bus link, and
subway link. Transfer link includes the transfer link within
the public transportation network and the transfer link among
multi-modals.

An example is given to illustrate a typical multi-modal
super network. Among a group of O-D pairs, there are
three sub-networks, namely, car network, bus network and
subway network, as well as transfer arcs and transfer
facilities (as show in Fig. 1). The car network consists
of 9 nodes and 12 edges. The bus network consists of 6 nodes
and 3 bus lines. The subway network consists of 2 nodes
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FIGURE 1. Networks of different traffic modes.

and 1 line. In addition, the P+R transfer facilities and
transfer links between different modes are also included.
It is obvious that different subnetworks have distinct net-
work structures. The network structure of Fig 1 can be
described as super-network shown in Fig 2. The multi-
modal super-network contains all modes and inter-mode
transfers, and can describe any travel choice through the
hyper-path.

Multi-modal super-network integrates all modes of net-
work, transfers within public transit mode and inter-mode
transfers. If the effectiveness of path is not limited, some
unreasonable paths in the multi-modal network will be found
in the path search, while actually the selective probability of
these paths is close to zero.

Effective multi-modal paths should observe the following
rules:

(1) There are no circle and repeated link in the effective
path.

FIGURE 2. Multi-modal transportation super-network.

(2) The links in an effective path can only come from two
modes at most. The car links can only appear at the beginning
or the end, and the subway links can not appear intermittently.

(3) There are limits on the number of transfer links in the
effective path, and there are no consecutive transfer links.

III. MULTI-MODAL GENERALIZED TRAVEL COST
FUNCTION
A. PARAMETER AND VARIABLE DEFINITIONS
ta travel time on link a (min);
t0a free-flow travel time on link a (min);
xa flow on link a (pcu/h);
Ca capacity on link a (pcu/h);
α1, β1 parameters of bpr function, α1 = 0.15, β1 = 4;
xca flow of cars on link a (pcu/h);
xba flow of buses on link a (pcu/h);
ψ conversion coefficient between car and bus;
pa fuel fee on link a (yuan);
la length of link a (km);
ρ fuel fee per unit mile (yuan/km);
Td waiting time before boarding (min);
fl bus service frequency of line l (veh/h);
va passenger volume waiting on the station

(person/h);
vd passenger volume remaining in the bus

(person/h);
Ul bus operational capability of line l(person/h);
α2, β2, o calibration parameters of waiting time function;
Tz perceived travel time in the crowded bus (min);
E standing area in the transit carriage (m2);
xb passenger volume in the bus on link b(person);
s seat capacity in the carriage (person)
α3, β3 calibration parameters of comfort loss;
K rs set of routes between r and s;
R, S sets of origins and destinations, respectively;
f rsk flow on route k between r and s (pcu/h);
qrs travel demand between r and s (pcu/h);
prsk route choice probability of route k between r

and s;
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θ positive calibrated parameter which is used to
measure the cost sensitivity on route choices

crsk generalized travel cost on route k between r and
s (Yuan);

CF rsk commonality factor on route k between r and s;
Ga(xa) generalized travel cost function of link a

(Yuan);
δrsa,k route and road incidence variable, δrsa,k = 1 if

link a is on route k between r and s, otherwise
δrsa,k = 0;

ϕ correction parameters of commonality factor;
Lkl length of the shared links between routes k and

l (km);
Lk ,Ll length of route k and l, respectively (km);
A set of links;
D set of links with capacity constraints;
Gcark generalized travel cost by car on route k (Yuan);
Gbusk generalized travel cost by bus on route k (Yuan);
Gsubwayk generalized travel cost by subway on route k

(Yuan);
αt value of travel time (Yuan/min);
αd value of waiting time (Yuan/min);
αz value of comfort loss (Yuan/min);
αc value of transfer penalty (Yuan/min).

B. MULTI-MODAL GENERALIZED TRAVEL COST FUNCTION
When travelers make travel choices, they always choose the
route with the lowest travel cost. In the pure mode trip, people
only need to make route choice, and most of the travel cost
merely includes travel time. In themulti-modal transportation
system, travelers consider the travel costs of different travel
modes comprehensively. In this article, generalized travel
costs are defined to reflect the travel costs of different traffic
modes.

Different travel modes bring different feelings to trav-
elers, and their distinctions are mainly reflected through
four dimensions: travel time, travel fee, comfort loss and
transfer penalty. Travel time and travel fee can be objec-
tively measured, while comfort loss and transfer penalty
bring subjective feelings and are difficult to count. The
comfort level is brought by different traffic modes. The car
has comfortable seats and cannot be disturbed by others
on the travel, so the comfort level is the highest. How-
ever, passengers in bus or subway are vulnerable to inter-
ference from others, they have to reduce their own space
or even lose their seats due to overcrowding. Transfer
behaviors include the transfer between public transit lines,
and the transfer between different traffic modes. Transfer
may increase the walking distance and reduce the proba-
bility of finding a seat, so most travelers have an aversion
to it.

The definition of generalized travel cost enables the route
impedance of different modes to be compared, and can
be used as the basis of mode choice and route choice for
travelers.

1) GENERALIZED TRAVEL COST IN THE CAR NETWORK
The car’s travel cost consists of travel time, fuel fee and
parking fee. The generalized travel cost by car on route k,
which is measured in terms of equivalent money units [35],
can be expressed as:

Gcark = αt
∑
a∈A

taδa,k +
∑
a∈A

paδa,k + Ip (1)

a: TRAVEL TIME
When there are excess vehicles on the road, it will cause road
congestion and make the car’s driving time longer. The travel
time function of car on the road is usually expressed by the
BPR function [10].

ta = t0a [1+ α1(
xa
Ca

)β1 ] (2)

Cars and buses will interfere with each other on the same
road at the same time. To simplify the study, we convert the
buses to cars.

xa = xca + ψx
b
a (3)

b: FUEL FEE
Travelers have to pay for fuel, assuming that fuel fee is related
merely to mileage.

pa = la · ρ (4)

c: PARKING FEE
When choosing a car to travel, travelers need to take the
parking problem into account, which involves parking fee.
we assume the parking fee as a constant Ip.

2) GENERALIZED TRAVEL COST IN THE BUS NETWORK
The bus’s travel cost consists of ticket fee, waiting time, travel
time, comfort loss and transfer penalty. The generalized travel
cost by bus on route k can be formulated as:

Gbusk = αt
∑
a∈A

taδa,k + αdTd + αzTz + αcTc + Il (5)

a: TICKET FEE
Let the fee of the bus line l be Il . It shall be paid every time
when travelers get on the bus.

b: WAITING TIME
As the demand for bus increases, the queue length at the
station will be lengthened, resulting in a continuous extends
of the passengers’ average waiting time at the station. It is
assumed that in addition to the service frequency, the num-
ber of waiting passengers at the station and the number of
remaining passengers in the bus will both affect the waiting
time [36].

Td =
1
fl
+ α2[(va + β2vd )/Ul]o (6)

158866 VOLUME 8, 2020



J.-X. Zhu et al.: Traffic Assignment Approach for Multi-Modal Transportation Networks

c: TRAVEL TIME
Because the bus and the car are mixed on the road, the travel
time function in-vehicle link is calculated according to the
time function in the car network.

d: COMFORT LOSS
As more and more passengers get into the bus, travelers will
feel that the time inside the bus is longer due to the increasing
crowding, and the comfort loss will increase the travelers’
perceived in-vehicle time [37].

Tz = ta[α3(
max(0, xb − s)

E
)β3 ] (7)

e: TRANSFER PENALTY
Transfer penalty Tc refers to the quantification of the travel-
ers’ additional psychological burden caused by the transfer
between different traffic modes or different lines.

3) GENERALIZED TRAVEL COST IN THE SUBWAY NETWORK
The travel cost of subway is similar to that of bus. It also con-
tains the ticket fee, the waiting time before boarding, the in-
vehicle travel time, the comfort loss and the transfer penalty.
The differences between subway and bus are as follows.

1. In the subway system, the ticket fee is mainly determined
by the distance between the starting and ending points, with-
out considering the number of transfers. The ticket fee Il is
fixed when the O-D points are determined.

2. The travel time of subway is relatively fixed and in
accordance with the schedule. The travel time of subway
includes: travel time ts on the link s, and waiting time ts0 at
any station. The congestion of subway is taken into account
in terms of the comfort loss and waiting time before boarding.

The generalized travel cost by subway on route k can be
formulated as

Gsubwayk = αt
∑
s∈A

(ts + ts0 )δs,k + αdTd + αzTz + αcTc + Il

(8)

4) GENERALIZED TRAVEL COST FUNCTION OF COMBINED
MODE

1. Generalized Travel Cost Function of Combined Public
Transit Mode

The combined public transit mode refers to the transfer
mode from the bus network to the subway network or from
the subway to the bus. When travelers adopt this travel mode,
the generalized travel cost can be divided into three parts
according to the travel process: the cost of bus, the cost of
subway, and the transfer cost between the two modes. Here
only the transfer cost between the two modes required to
be studied on account of the generalized cost functions of
two pure modes being analyzed in the previous section. The
transfer cost mainly includes two parts, one is the walking
time on transfer links, and the other is the psychological
penalty brought by transfer. These costs do not change with
the traffic volume, and are defined as constants in this article.

For simplicity, the two costs are collectively named as public
transit transfer cost Tg.

2) Generalized Travel Cost Function of Combined Mode
of Car and Public Transit

The combined mode of car and public transit refers to the
transfer mode between car and public transit at the P+R facil-
ity. Similar to the combined public transit mode, its cost can
be divided into three parts: the cost of car, the cost of bus or
subway, and the transfer cost between car and public transit.
Here we only need to analyze the transfer cost between car
and public transit. The transfer cost includes two parts: the
travel time on transfer links and the psychological penalty,
which are regarded as constants. These two parts of costs are
collectively referred to as P+R transfer cost Tr .

IV. THE MULTI-MODAL TRAFFIC ASSIGNMENT MODEL
CONSIDERING CAPACITY CONSTRAINTS AND ROUTE
CORRELATIONS
Since the SUE is more realistic than UE and Logit assignment
technology has its advantages in large networks, the multi-
modal traffic assignment is studied based on the Logit-based
SUEmodel in this article. But the Logit-based stochastic user
equilibrium model still has two drawbacks to be concerned.

1) In the assignment model, the BPR function is constantly
used for the travel time of vehicle on the road. Whereas
BPR is a polynomial function fitted with a large amount of
measured data, it performs a weak ability to limit the capacity
constraints.

2) Logit-based assignment technology is insensitive to
network structure, and has IIA characteristics. In the multi-
modal transportation network, there are same links in several
routes, and the real time of these routes cannot be irrelevant.
This will lead the logit-based model to allocate too much
traffic flow on the common lines.

In view of these two problems, we improve the multi-
modal traffic assignment model from the analysis of the
characteristics of capacity constraints and route correlations
in the multi-modal transportation system.

A. CAPACITY CONSTRAINTS AND ROUTE CORRELATIONS
ANALYSIS
1) CAPACITY LIMITATION ANALYSIS
Each mode has the capacity constraint in the multi-modal
transportation system. If the capacity constraint is not con-
sidered, the outcomes of traffic assignment may be quite far
from the reality, especially in the case of a congested network.

For a car network, if we do not consider the capacity
constraint, the traffic volume allocated to critical roads is
likely to exceed the road capacity, and even reach two or three
times over the limit [38], while the other roads may not be
allocated with traffic volume. In fact, it is impossible for the
traffic volume to exceed the capacity of the road. Once the
traffic demand exceeds the capacity, the queue will occur on
the adjacent upstream road.
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For public transit, the congestion effect caused by capacity
constraint is mainly reflected in two aspects:

¬Although the desired bus is coming, some passengers are
unable to board the bus due to capacity constraint, which will
result in an increase in passengers’ waiting time.

­The congestion degree of the bus carriage is beyond the
passengers’ tolerance of comfort. In particular, whether you
can find a seat or a comfortable standing space has a great
influence on the passenger’s willingness to take the bus.

2) ROUTE CORRELATIONS ANALYSIS
In order to solve the adverse impact of route correlation,
scholars have proposed many improvement methods, includ-
ing C-Logit, path size logit, route perception logit, etc.
Among them, C-logit model identifies the correlation degree
of correlative route through commonality factors. It maintains
the same single-layer pattern as polynomial logit. It conforms
to the real route choice behavior of travelers. However, all the
models are used to solve the problem of route correlations in
pure-mode.

In a multi-modal transport system, traffic assignment
includes not only route choice but also mode choice. When
every mode is independent, you can directly use logit to
divide. But when there is a combined mode, the route in the
combined mode is not independent, and is related to the two
single modes of transfer.

B. MULTI-MODAL STOCHASTIC USER EQUILIBRIUM
PRINCIPLE ANALYSIS
Based on the Wardrop’s first principle, we propose the SUE
principle in multi-modal assignment: all travelers will make
mode and route choice with the lowest generalized travel
cost. Every traveler’s choice of mode and route will affect
the choices of other travelers. When the travel cost of a
mode or route changes, the number of travelers who choose
this mode or route will change accordingly. When the multi-
modal network reaches an equilibrium states, no traveler can
unilaterally reduce the minimum generalized travel cost by
changing mode and route.

According to the multi-modal assignment principle and the
characteristics analyzed in section 4.1, the multi-modal SUE
principle considering capacity constraints and route correla-
tions is set up in Formulas (9) - (13).

f ′sk = qrsprsk , ∀k ∈ K
rs, r ∈ R, s ∈ S (9)

prsk =
exp

(
−θ

(
crsk + CFrsk

))∑
l∈K rs

exp
(
−θ

(
crsl + CFrsl

)) ,
∀k ∈ K rs, r ∈ R, s ∈ S (10)

crsk =
∑
a

Ga(xa)δrsa,k ,

∀a ∈ A, ∀r ∈ R, ∀s ∈ S,∀k ∈ K rs (11)

CF rsk = ϕ ln
∑
l∈K rs

(
Lkl

√
Lk
√
Ll
),

∀k ∈ K rs, r ∈ R, s ∈ S (12)

xa =
∑
r,s

∑
k

f rsk δ
rs
a,k ≤ Ca,

∀a ∈ D, ∀r ∈ R, ∀s ∈ S, ∀k ∈ Krs (13)

Formula (9) is the calculation formula of path flow with
the SUE principle. Formula (10) refers to the route choice
probability of C-logit model, in which adds a commonality
factor reflecting the degree of route correlation. Formula (11)
is the calculation formula of route generalized travel cost.
Formula (12) is the calculation formula of the commonality
factor. Formula (13) is the limitation of capacity constraint.

The model proposed in this article directly makes the
route choice in the multi-modal network based on the SUE
principle, and let the choice of the combined mode and the
transfer point be a part of the network route choicemodel. The
traditional study of multi-modal traffic assignment focused
on the combined model of mode split and traffic assignment.
When the traditional combined model conducts mode split
and traffic assignment according to the SUE principle, the
entire routes of road network reach equilibrium ultimately.
It is consistent with the established equilibrium state. How-
ever, the combined model is difficult to discuss the route cor-
relation problem when there are combined mode trips in the
multi-modal assignment. Our multi-modal traffic assignment
model analyzes the correlation degree of routes and allocates
the volumes directly, so it solves the correlation problem of
combined mode in the mode split.

C. NONLINEAR PROGRAM FORMULATION
An equivalent nonlinear program formulation for the C-
logit SUE traffic assignment model considering capacity con-
straints and route correlations can be expressed as follows:

min z(f ) =
∑
a∈A

∫ xa

0
Ga(ω)dω

+
1
θ

∑
r,s

∑
k

f rsk ln f rsk +
∑
r,s

∑
k

f rsk CF
rs
k (14a)∑

k

f rsk = qrs, r ∈ R, s ∈ S (14b)

f rsk ≥ 0, ∀k, r, s (14c)

xa =
∑
r,s

∑
k

f rsk δ
rs
a,k ≤ Ca,∀a ∈ D,∀r ∈ R,∀s ∈ S,

∀k ∈ Krs (14d)

Proposition 1: The solution of the C-logit SUE model con-
sidering capacity constraints and route correlations satisfies
the C-logit route choice probability.

Proof: Construct Lagrangian functions for (14a), (14b),
(14c), and (14d).

L = z(f )+
∑
r,s

µrs(qrs −
∑
k

f rsk )+
∑
a

da(xa − Ca)

+λ
∑
r,s

∑
k

f rsk (15)
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where:

L0 = z(f )+
∑
r,s

µrs(qrs −
∑
k

f rsk )+
∑
a

da(xa − Ca) (16)

µrs(r ∈ R, s ∈ S), λ and da(a ∈ D) are Lagrangian
multipliers to limitation (14b), (14c) and (14d), respectively.

According to the Karush–Kuhn–Tucker (KKT) conditions
in nonlinear programming theory, the Lagrangian function
must meet the following criteria at the extreme point:{

∇f L0 = 0 if f rsk > 0
∇f L = 0 if f rsk = 0

(17a)

da(xa − Ca) = 0, a ∈ D (17b)

da ≥ 0, a ∈ D (17c)

λ ≤ 0 (17d)

where:

∇f L0 =
∑
r,s

∑
k

(
∑
a

Ga (xa) δrsak +
1
θ

(
ln f rsk + 1

)
+CFrsk − µ

rs
+

∑
a

daδrsak ) = 0 (18)

∇f L =
∑
r,s

∑
k

(
∑
a

Ga (xa) δrsak +
1
θ

(
ln f rsk + 1

)
+ CFrsk

−µrs +
∑
a

daδrsak + λ) = 0 (19)

Let c̃rsk =
∑
a
G̃a(xa)δakrs , G̃a(xa) = Ga(xa) + da, where

c̃rsk represents a more generalized route travel cost. Formu-
las (17b) and (17c) ensure that when xa = Ca, da ≥ 0.
Lagrangian multiplier da denotes the equilibrium waiting
time in the queue.

Formula (18) is simplified as

1
θ
(ln f rsk + 1)+ c̃rsk + CF

rs
k − µrs = 0;

Formula (19) is simplified as

1
θ
(ln f rsk + 1)+ c̃rsk + CF

rs
k − µrs = −λ.

From formula (17d) we can obtain:

1
θ
(ln f rsk + 1)+ c̃rsk + CF

rs
k − µrs ≥ 0.

Formula (17a) is equivalent to:
1
θ
(ln f rsk + 1)+ c̃rsk + CF

rs
k − µrs = 0 if f rsk > 0

1
θ
(ln f rsk + 1)+ c̃rsk + CF

rs
k − µrs ≥ 0 if f rsk = 0

(20)

From formula (20), it can be obtained that when
f rsk > 0, 1

θ
(ln f rsk + 1) + c̃rsk + CF rsk = µrs, that is

f rsk = exp(θµrs − 1) exp(−θ(c̃rsk + CF rsk )). Put these pos-
itive route flows into formula (14b), exp(θµrs − 1) =
qrs/

∑
k∈EK rs

exp(−θ (c̃rsk + CF
rs
k )). EK

rs is a set of routes with

positive route flow, EK rs can be replaced by K rs if all route

flow is positive. Therefore, C-logit route choice probability
can be obtained:

f rsk = qrs
exp(−θ(c̃rsk + CF

rs
k ))∑

l∈EK rs
exp(−θ(c̃rsl + CF

rs
l ))

(21)

This completes the proof.
Proposition 2: The solution of the C-logit SUE model con-

sidering capacity constraints and route correlations is unique.
Proof: If the objective function and the constraint set are

convex, the optimal programming problem is strictly convex
optimization. For convex optimization problem, the local
minimum point is the global minimum point. In addition, the
first derivative necessary condition of minimum point is the
sufficient condition of convex optimization problem.

Therefore, it is just required to prove that the programming
problem (14a)-(14d) is a convex optimization problem.

The constraints are linear according to the analysis of
Formulas (14a)-(14d). Linear functions are both convex and
concave functions, so the model conforms to the requirement
that ‘constraint set’ is a convex set.

Now it is necessary to prove the objective function

min z(f ) =
∑
a∈A

∫ xa

0
Ga(ω)dω +

1
θ

∑
r,s

∑
k

f rsk ln f rsk

+

∑
r,s

∑
k

f rsk CF
rs
k

is a convex function.
According to the nonlinear programming theory, we can

establish the Hessian matrix of the objective function and
prove the positive definiteness of Hessian matrix to demon-
strate that the objective function is a convex function.

First, the objective function takes the partial derivative of
variable f :

∂Z
∂f rsk
=

∑
r,s

∑
k

(
∑
a

Ga(xa)δakrs +
1
θ
(ln f rsk + 1)+ CF rsk )

The generalized travel cost of link is only related to its own
traffic flow, so ∂Ga(xa)

∂xb
= 0.

Then
∂Ga(xa)
∂f mnl

=
∂Ga(xa)
∂xb

∂xb
∂f mnl

=
∂Ga(xa)
∂xb

· δblrs = 0

∂f rsk
∂f mnl

=

{
1 if m = r, n = s, l = k
0 otherwise

so

∂2Z
∂f rsk ∂f

mn
l
=


dGa
dxb
+

1
θ

1
f mnl

if m = r, n = s, l = k, a = b

0 otherwise

Therefore, the Hessian matrix of the objective function Z is
a diagonal matrix. Since 1

f mnl
> 0, and the generalized travel

cost function increases monotonically with the flow, that is,
the Hessian matrix of the objective function Z is positive
definite, and the objective function is strictly convex. Thus,
the solution of the model is unique. This completes the proof.
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V. SOLUTION ALGORITHM
The augmented Lagrangian multiplier (ALM) is adopted
to solve the traffic assignment problem with capacity con-
straints, which can be viewed as an extension to the penalty
method.

The ALM algorithm consists of four main steps:
Step 1. Define the augmented Lagrangian function and

initialize the Lagrangian multiplier vector and the penalty
parameter;

Step 2. Solve the Lagrangian multiplier and the uncon-
strained problem with penalty parameter;

Step 3. Determine whether the stopping criterion has been
met;

Step 4. Update Lagrangian multiplier vector and penalty
parameter repeatedly.

Since the augmented Lagrangian functions are strictly con-
vex for each Lagrangian multiplier and penalty parameter, all
existing algorithms for solving classical traffic assignment
problems can be used in Step 2. In Step 4, if the dual con-
straint is not reduced to a sufficiently unfeasible level, the
value of the penalty parameter will increase [10]. Readers
who are interested in the proofs of the convergence of the
ALM algorithm may refer to Larsson and Partriksson [8].

In Step 2, the MSWA (method of successive weight aver-
age) algorithm is adopted, which is an improved algorithm
of MSA (method of successive average). MSA algorithm
is an iterative algorithm, which obtains the final solution
by the weighted average of several iterations. In solving
the assignment problem, a set of auxiliary traffic volume of
every link are obtained in each iteration. Then calculate the
weighted average of the current traffic volume and auxiliary
traffic volume of each link for the next cycle. This method
is simple to use and has strong applicability, but the conver-
gence speed is slow. MSWA changes the step size setting to
give greater weight to the auxiliary travel volume from the
latter. Liu et al. [39] and Meng et al. [40] prove that MSWA
converges faster than MSA in dealing with SUE problems.
In addition, when facing with large-scale systems, we can
use the second-order cone program to meet accuracy and
efficiency requirements simultaneously [41].

To sum up, the ALM algorithm is used as surrounding loop
to solve the problem of link capacity constraints, and MSWA
algorithm is used to solve the traffic assignment of C-logit
model.

The augmented Lagrangian function of Formulas
(14a)-(14d) is shown in Formula (22).

Lρ(f , µ) = z(f )+
∑
a

1
2ρ

{
max 2[0, µa + ρ(xa − Ca)]− µ2

a

}
(22)

µ is a Lagrangian multiplier vector with dual
constraints.

The specific steps of ALM algorithm are as follows:
Step 1: Initialization. Select the initial value of µ, then set

ρ1(ρ1 > 0) and iteration n = 1.

Use the depth-first search algorithm to search out all paths,
and then use the rules of effective paths to filter out the path
set. And calculate the commonality factor of each path.

Step 2: Solving subproblem——C-logit model. Let the
link cost function be defined asGa(xa)+max{0, µ1

a+ρ(xa−
Ca)}, a ∈ D, solve the traffic assignment problem with
unconstraint, and get the solution of link flow.

Step 2.1: Initialization. Set the iteration numberm = 0 and
let each link flow x(0)a = 0;
Step 2.2: Calculate the generalized cost of each path

G̃(m)
l = 0 according to the link generalized cost function;

calculate the generalized cost of all paths in the path set, and
get the generalized cost of the shortest path min{c̃rsk +CF

rs
k };

Step 2.3: Filter out the valid route from the path set. The
decision condition is the route generalized cost c̃rsk +CF

rs
k ≤

(1+ σ ) min{c̃rsk + CF
rs
k }, σ > 0;

Step 2.4: The C-logit model is used to allocate the traffic
flow on the valid path, and then obtain the auxiliary link flow
y(m)a ;

Step 2.5: Calculate the current traffic volume x(m+1)a of
each link by MSWA algorithm.

x(m+1)a = x(m)a + χ
(m)(y(m)a − x

(m)
a )

χ (m)
=

n
n∑
i=1

i

Step 2.6: Stop criteria. If satisfied

ϕ =

√∑
a∈A

(x(m+1)a − x(m)a )2
/(∑

a∈A

x(m)a

)
≤ ε,

(where ε is the convergence criteria), then x(m+1)a is the solu-
tion, continue to Step 3; otherwise, set m=m+1, and return to
Step 2.2.

Step 3: Update multiplier vector and penalty parameter.

µn+1a = max
{
0, µna + ρ [xa(ρ,µ)− Ca]

}
, a ∈ D

ρn+1 =



kρn,

√∑
a

max 2{−µna/ρ
n, xna − Ca}

>γ

√∑
a

max2{−µn−1a /ρn−1, xn−1a −Ca}

ρn, Otherwise

Step 4: If
√ ∑
a∈A|xa>Ca

(xa − Ca)2 ≤ ε, stop the iteration and

(xn, µn) is the solution. Otherwise, turn to Step 2.

VI. CASE STUDY
A. A TESTING ROAD NETWORK
Take the road network shown in Fig. 2 as an example and
assume an OD pair with a demand of 2400 person/h, includ-
ing three modes of transportation: car, bus and subway.
In Fig. 2, the links between nodes 1 to 9 represent the car
network, the links between nodes 10 to 16 represent the bus
network, and nodes 17 to 18 represent the subway network.
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Bus network consists of three lines, L1:10-13-16, L2:10-11-
12, L3:11-14-15-16, and subway network has only one line,
L4:17-18.

The values of the parameters in the multi-modal general-
ized cost function and the traffic assignment model are shown
in Table 1.

TABLE 1. Parameter values.

The detailed information of public transit is shown in
Table 2.

TABLE 2. Transit line information.

Details of the road network are shown in Table 3.

TABLE 3. Road network information.

B. RESULT ANALYSIS
The depth-first algorithm is used to search all the paths
and then filter according to the definition of the effective
paths. The road network contains 6 pure mode effective paths

for cars and 3 pure mode effective paths for buses, there
are 2 effective paths of car and public transit combined mode,
and 1 effective path of public transit combined mode. Details
of the paths are shown in Table 4.

TABLE 4. Effective paths information.

For this road network, MATLAB is used to design the
MSWA algorithm program for SUE model under non-
capacity constraint, and the ALM algorithm embedded
MSWA algorithm program for the SUEmodel under capacity
constraints with different ϕ

The comparative results of the solution are shown in
Table 5.

According to the analysis of the Table 5, we can get the
following information.

1. The capacity constraints can ensure that the traffic flow
on the road does not exceed its capacity. The change of ϕ will
influence the result of flow distribution, and the bigger the
value is, the greater the impact on the result will be. It indi-
cates that the model can effectively adjust the impact of route
correlation on the flow distribution. Therefore, the model and
algorithm can effectively reflect the capacity constraint and
route correlation on the impact of traffic flow.

2. In any case, the flow of P+R-13 is always zero, and
people who transfer from car to public transit always choose
subway at the P+R node. It shows that the subway has a great
advantage over the public transport at the same starting point
and ending point.

3. Under the condition of capacity constraint, the maxi-
mum flow of road network is determined by capacity, and it
does not change with the variation of commonality factors.
It indicates that commonality factors cannot influence the
traffic flow of critical sections in the crowded environment.

4. In the calculation example, the commonality factor of
the route obviously affects the number of people who transfer
from car to public transit. Because the commonality factor of
the combined mode route is smaller than that of single car
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TABLE 5. Comparison of results with various constraints and ϕ.

mode, when the value of ϕ is bigger, the combinedmode route
diverts more traffic flow from car mode.

C. TYPICAL SCENARIO APPLICATION
Since public transit and P+R modes are better than cars in
terms of carbon emissions and overall capacity, the general
idea for improving the operation of urban transport is to
increase the proportion of public transit and P+R trips, and
limit car mode trips. The complexity of P +R mode is that it
has route correlation with other modes such as car and public
transit. It is necessary to observe the proportion change of car
and public transit under different measures.

Increasing the parking rate is usually taken as a way to
reduce the proportion of car mode trip. Increasing the ser-
vice frequency of public transit is often used to reduce the

waiting time caused by capacity constraint and comfort loss.
In order to verify the guidance of our model for multi-modal
traffic management, the parking rate of cars and the service
frequency of public transportation are selected as variables
for sensitivity analysis.

To reflect the influence of various traffic management
measures on the travelers’ choice of mode, the sensitivity
analysis of the parameters is carried out when ϕ = 5.

1) PARKING RATE
Based on the previous example, assuming an average parking
time of 5 hours per vehicle, the car trips, P+R trips, and
public transit trips are shown in Table 6 when parking rate
is increased for all parking lots.

TABLE 6. The change of mode choice with increasing parking rate.

As can be seen from Table 6, there is no effect on the
flow of cars on the road network when parking rate less
than 5Yuan/h, since the road resources are in short supply and
the demand is still greater than the capacity constraint of the
road network. In order to improve the transportation network
operation state and the speed of road operation, parking rate
should be set above 6 Yuan/h. The sensitivity analysis of
parking rate can also verify that the traffic assignment model
considering capacity limitation is more effective for traffic
management.

With the increase of parking rate, the traffic volume of
P+Rmode is also decreasing. In order to encourage travelers
to select P+R mode, the parking rate for car trips is raised
to 8 Yuan/h, and the impact of P+R reduction policies on
mode choice in different degrees is shown in Table 7.

TABLE 7. The change of mode choice with the decrease of P + R parking
rate.

As can be seen from Table 7, when the P+R parking rate
is reduced under the high parking rate of cars, there will be a
large number of traffic diversion from cars. When the P+R
parking rate is reduced to 3 Yuan/hour, the travel volume
of the P+R mode reaches 376, accounting for 15.8% of the
total travel volume. Therefore, reasonable car parking rate
and P+R parking rate can have a great impact on traffic mode
choice and network operation.
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TABLE 8. The changes of mode choice with increasing service frequency
of public transit.

2) SERVICE FREQUENCY OF PUBLIC TRANSIT
Based on the previous cases, with the increase of public
transit service frequency (the same frequency of bus and
subway), the flow changes of the mode choice are shown in
Table 8.

From Table 8, we can find that with the increase of the
service frequency of public transit, the volume of car trips
decreases continuously. As the service frequency increases,
car travelers will be attracted to the P+R mode. But as the
service frequency continues to increase, the P+R travelers
will be attracted to the bus mode. The increase of the service
frequency of public transit can effectively reduce car trips and
has a positive impact on the operation of the road network,
so public transit should be reasonably promoted.

VII. CONCLUSION
The multi-modal traffic assignment problem with combined
mode trips is a complex problem, which cannot be solved by
the simple combination of mode split and traffic assignment.
At present, Logit model is mainly used in multi-modal equi-
librium problem, but the IIA characteristic is more obvious
in mode choice because of the combined mode. Furthermore,
in a multi-modal system, the capacity of each mode should
be considered separately.

In this article, a set of multi-modal SUE assignment
method is proposed. To solve the multi-modal common-line
problem, we use super-network to describe the multi-modal
network. In order to maintain the consistency of mode split
and route correlations, a path-based assignment model is
chosen. Meanwhile, the generalized travel cost function is
defined in four dimensions to describe travelers’ perceived
costs and enhance the impact of travel modes and transfer
on the route model. Based on the analysis of multi-modal
capacity constraint and route correlation, a multi-modal SUE
model is established, an equivalent nonlinear programming
model is proposed to solve the equilibrium problem, and a
solution algorithm combining ALM algorithm and MSWA
algorithm is designed.

The multi-modal traffic assignment model can be widely
used. In this study, the model is applied in some typi-
cal scenarios, and the following conclusions can be drawn.
1) Increasing parking rate can effectively reduce the propor-
tion of car trips, while setting P+R parking rate discount can
significantly increase the proportion of P+R trips. 2) Increas-
ing the service frequency of public transit can improve
the proportion of public transit, but the effect is limited.

In practice, reasonable service frequency of public transit
should be set in combination with operating costs. Further-
more, the model can also be applied to public transit network
planning, P+R facility location, congestion toll design and
other travel management issues.

There are still some ideal assumptions worth improv-
ing. The subsequent research can incorporate travel demand
changes in real time with traffic operating conditions. In addi-
tion, every traveler has different attributes, such as travelers’
perception decision-making mechanism [42], and we should
consider the multiclass user in future.
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