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ABSTRACT Computer-aided diagnosis (CAD) systems of breast cancer histopathological images automated
classification can help reduce the manual observation workload of pathologists. In the classification
of breast cancer histopathology images, due to the small number and high-resolution of the training
samples, the patch-based image classification methods have become very necessary. However, adopting a
patches-based classification method is very challenging, since the patch-level datasets extracted from whole
slide images (WSIs) contain many mislabeled patches. Existing patch-based classification methods have
paid little attention to addressing the mislabeled patches for improving the performance of classification.
To solve this problem, we propose a novel approach, named DenseNet121-AnoGAN, for classifying breast
histopathological images into benign and malignant classes. The proposed approach consists of two major
parts: using an unsupervised anomaly detection with generative adversarial networks (AnoGAN) to screen
mislabeled patches and using densely connected convolutional network (DenseNet) to extract multi-layered
features of the discriminative patches. The performance of the proposed approach is evaluated on the publicly
available BreaKHis dataset using 5-fold cross validation. The proposed DenseNet121-AnoGAN can be better
suited to coarse-grained high-resolution images and achieved satisfactory classification performance in 40X
and 100X images. The best accuracy of 99.13% and the best F 1., of 99.38% have been obtained at the
image level for the 40X magnification factor. We have also investigated the performance of AnoGAN on the
other classification networks, including AlexNet, VGG16, VGG19, and ResNet50. Our experiments show
that whether it is at the patient-level accuracy or at the image-level accuracy, the classification networks with
AnoGAN have provided better performance than the classification networks without AnoGAN.

INDEX TERMS Breast cancer histopathological images, densely connected convolutional networks,
discriminative patches, generative adversarial networks, image classification.

I. INTRODUCTION

Breast cancer is the top cancer in women, impacting
2.1 million women each year, and also causes the greatest
number of cancer-related deaths among women. Breast
cancer is a serious disease that can start in almost any organ or
tissue of the body when abnormal cells grow uncontrollably,
go beyond their usual boundaries to invade adjoining parts
of the body or spread to other organs [1]. According to the
data provided by the American Cancer Society, in 2020 in
U.S., there will be an estimated 276,480 new cases of
invasive breast cancer and 48,530 new cases of non-invasive
breast cancer expected to be diagnosed in women.
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About 42,170 women in U.S. are expected to die in 2020 from
breast cancer [2].

Due to the high death rate of breast cancer, women
are suggested to do regular screenings via mammograms
and computerized tomography (CT) [3]. If abnormal cells
are found, biopsy procedure is performed to diagnose the
abnormality in breast. Usually, the collected sample is stained
with hematoxylin and eosin (H&E). Hematoxylin reacts to
Deoxyribonucleic Acid (DNA) and it stains purple or blue
color to the nuclei, while Eosin reacts to proteins and it stains
pink color to other structures [4].

Diagnosis from a histopathological image is considered as
the gold standard in diagnosing all kinds of cancer, including
breast cancer [5]-[7]. However, histopathological analysis
is a very time-consuming professional task that depends on
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the experience of the pathologist, and the diagnosis can be
influenced by factors such as the pathologist’s fatigue and
decreased attention [7], [8]. Therefore, there is an urgent
need for computer-aided diagnosis (CAD) systems to provide
an objective assessment to pathologists and improve the
diagnostic efficiency [9], [10].

With the advancements in medical image processing
and deep learning, classification of breast histopathological
images has become an important area for research [11], [12].
Due to the high-resolution breast cancer histopathological
images, the exiting traditional machine learning methods and
the deep neural network models used to directly analyze
the whole slide images (WSIs) have caused a very complex
architecture that hard to train [13]. During the past few
decades, some researchers proposed the strategies that relied
on the segmentation of nucleus, and then used the extracted
handcrafted features to train a classifier [12], [14]-[16].
Kowal et al. [14] segmented the nucleus by color-based
clustering, and George et al. [15] used the circular Hough
transform to detect the location of the nucleus, then refined
feature-based candidates via watersheds algorithm [17].
These studies allowed to extract features that are usually
related to morphology, topology, and texture. The calculated
features can then be used to train one or more classifiers.
Kowal et al. [14] achieved an accuracy rate of 84%-93% on
500 images from 50 patients and George et al. [15] achieved
an accuracy between 72% and 97% on 92 images. In addition
to the nuclei-related information, Belsare et al. [16] also
considered to segment the epithelial layer around the
cell cavity by using the spatio-color-texture graph, and
statistical texture features were used to train the final
classifier. Belsare et al. [16] reported the accuracy rates
between 70% and 100% of 70 breast histology H&E
datasets from 40X magnification level. Spanhol et al. [18]
constructed a public dataset called BreaKHis and explored
the effectiveness of six state-of-the-art handcrafted fea-
tures descriptors, i.e., Local Binary Pattern (LBP) [19],
Completes Local Binary Pattern (CLBP) [20], Local Phase
Quantization (LPQ) [21], Gray-Level Co-Occurrence Matrix
(GLCM) [22], Parameter-Free Threshold Adjacency Statis-
tics (PFTAS) [23], and Oriented FAST and Rotated BRIEF
(ORB) [24]. Then they made experiment on four different
classifiers and reported the accuracy between 80% and 85%.

The results obtained from different handcrafted features
given above were considered to be relatively acceptable
results, but highly unstable. As a matter of fact, the main
limitation of these traditional methods is that the quality
of the model depends on the extracted features, however,
obtaining highly representative features is a very complicated
task. Even if we choose the most appropriate descriptor,
or combine various descriptors together to improve their
recognition ability, the results obtained are still relatively low
and unstable between different magnification levels [25].

Recently, the convolutional neural network (CNN) has
been employed in visual classification system [26]-[29].
In the classification of breast cancer histopathology images,
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the number of samples is small and the size of images
is large, which makes it difficult or even impossible to
train a deep learning model based on CNN. In addition,
directly resizing the whole histopathology images to the
input size for the deep learning model will lose a host of
detailed feature information. Consequently, some researchers
proposed the patch-based image classification methods to
solve this problem. Spanhol et al. [30] adopted the random
extracting patches strategy and the sliding window strategy
to extract the image patches of the BreakHis dataset. They
trained AlexNet [31] based on the extracted image patches as
input and combined the patch-level classification results with
three fusion rules for final classification. Aratjo et al. [32]
proposed a convolutional neural network (CNN) architecture,
which is designed to extract features from patch-level dataset
of 512 x 512 pixels. By training the network, images were
classified into four classes, normal, benign, in situ carcinoma,
and invasive carcinoma, and into two classes, carcinoma,
and non-carcinoma. The image patches extraction strategy
enabled CNN to train the WSIs with a certain resolution.
Hou et al. [33] proposed a patch-level convolutional neural
network (CNN) for high-resolution WSIs classification
which has two-level model. The first level (patch-level)
model is an Expectation Maximization (EM) that can
automatically identify patches for patch-level CNN training,
and the second level (image-level) model is multiclass logistic
regression or support vector machine (SVM). Alom et al. [34]
proposed a method to classify breast cancer histopathology
images using the Inception Recurrent Residual Convolutional
Neural Network (IRRCNN) model. Random patches were
cropped to create a patch dataset for training and testing the
IRRCNN model, then used the Winner Take ALL (WTA)
method [35] to generate the final classification results.

Although the above researches show that patch-based
image classification methods have been widely used in
various breast cancer histopathology datasets. Adopting a
patch-based classification method is very challenging. This
is because labeled data is critical to the performance of the
deep learning approaches. Automated image classification
tasks require large amounts of annotated data. Because
of the complexity of breast cancer histopathology images,
the annotation process is laborious and costly. As only
the image-level label is given in the datasets, the label
of the whole input histopathological images is assigned to
the corresponding generated patches. However, there are
benign areas in the malignant WSIs, which makes the
patch-level label maybe not consistent with the image-level
label, and only a small part of extracted image patches is
correctly labeled. This can result in training with mislabeled
patches. When the training model receives the incorrect
label information, the classification performance will be
reduced.

To address these mislabeled patches and further improve
the accuracy of classification. We propose a novel
approach, named DenseNetl21-AnoGAN, for classifying
histopathological images into benign and malignant classes.
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FIGURE 1. Overview of the proposed framework used for classification of breast cancer histopathological images.

The proposed approach consists of two major parts: using an
unsupervised anomaly detection with generative adversarial
networks (AnoGAN) [36] to screen mislabeled patches
as well as using densely connected convolutional network
(DenseNet) [37] to extract multi-layered features of the
discriminative patches. The main contributions of our work
can be summarized as follow:

1) We propose a screening patches method based on
an unsupervised anomaly detection with generative
adversarial networks (AnoGAN). We use benign patches
to train AnoGAN. The data distribution of benign
patches can be obtained by AnoGAN and it will generate
a fake patch with a probability distribution similar to that
of the benign patch. By defining the threshold of residual
loss and discrimination loss between the malignant patch
to be tested and fake patch, this well-trained AnoGAN
can yield the high anomaly score of the malignant
patches. However, the anomaly score of mislabeled
patches in malignant patches is low, which can screen
the most discriminative histopathological image patches
and improve the classification performance of the
subsequent network.

2) We design a breast cancer histopathological images
classification method based on DenseNetl121. We note
that the presented research rarely involves state-of-
the-art network architecture, e.g. DenseNet. DenseNet
achieves multi-scale feature extraction by integrating
convolutional neural networks into dense blocks.

3) Experiments were conducted on the BreaKHis dataset
using 5-fold cross validation. The results demonstrate
that the proposed approach for breast cancer histopathol-
ogy image classification has an excellent performance
in both image-level and patient-level classification. The
best accuracy of 99.13% and the best F' 1 3¢y 0f 99.38%
have been obtained at the image level for the 40X
magnification factor.
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The rest of this paper is organized as follows: in Section II,
we give the information about the dataset and describe the
proposed method. Section III provides the experiments and
results. Discussions are shown in Section IV. In Section V,
we summarize the conclusion of this paper.

Il. METHODOLOGY
As shown in FIGURE 1, the proposed approach mainly
includes three main steps, described as below.

1) Pre-processing: To solve the stain variability of
BreaKHis dataset, the stain normalization pre-
processing of histopathological images is firstly carried
out. Secondly, to increase the number of training
samples, we use patch extraction and data augmentation
algorithm on benign images and use patch extraction
algorithm on malignant images.

2) Screening patches: We use benign patches to train
AnoGAN, which will generate a fake patch G(z) of
random sample z with a probability distribution similar
to that of the benign patch. The trained parameters of the
generator and discriminator are kept fixed. We calculate
the anomaly score between the malignant patch to be
tested and fake patch. This well-trained AnoGAN can
yield the high anomaly score of the malignant patches
and yield the low anomaly score of mislabeled patches
in malignant patches. The patches labeled correctly in
malignant are processed with data augmentation.

3) Classification: We use the discriminative patches to train
DenseNet121. During testing, 100 random patches with
the size of 224 x 224 pixels are cropped from each
image in the testing set. These patches are passed to the
well-trained DenseNet121, and we use majority voting
for obtaining the final image label from the individual
patch classifications.

In this section, we introduce the detail of the main tech-
nologies for the classification of breast cancer histopatholog-
ical images used in the overall framework.
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FIGURE 2. H&E stained images from BreaKHis, (A): Adenosis, (B): Fibroadenoma, (C): Phyllodes Tumor, (D): Tabular adenoma, (E): ductal
carcinoma, (F): lobular carcinoma, (G): Mucinous carcinoma, (H): Papillary carcinoma.

A. DATASET

The dataset used in this work is BreaKHis, the latest public
breast cancer histopathological images dataset, which was
collected through a clinical study in 2014. During this period,
all patients referred to the P&D Laboratory (Brazil) with a
clinical indication of breast cancer were invited to participate
this study [18]. The institutional review board approved
the study and all patients signed written informed consent.
All data were anonymized. Samples were generated from
breast tissue biopsy slides and stained with hematoxylin
and eosin (H&E). The samples were collected by a surgical
open biopsy (SOB), prepared for histological research and
labeled by pathologists of the P&D laboratory. Each case
was diagnosed by an experienced pathologist and confirmed
by immunohistochemical analysis and other complementary
exams [38].

To date, BreaKHis dataset is composed of 7909 histopatho-
logical biopsy images collected from 82 patients. Images
were acquired in three-channel RGB color space, with a
dimension of 700 x 460 using four magnification factors
(40X, 100X, 200X, and 400X). Each images is labeled as
either benign or malignant categories, and also distributed
into eight sub-categories: Adenosis (A), Fibroadenoma
(F), Phyllodes Tumor (PT), and Tubular Adenoma (TA)
for benign images and Ductal Carcinoma (DC), Lobular
Carcinoma (LC), Mucinous Carcinoma (MC) and Papillary
Carcinoma (PC) for malignant ones. The distribution of
BreakHis images and patients into four magnification levels
for both main tumor categories and each sub-category is
provided in TABLE 1. FIGURE 2 shows samples from eight
sub-categories breast tumors in 40X magnification factor.

B. STAIN NORMALIZATION PRE-PROCESSING

A deep learning-based method for the classification of breast
cancer histopathology images, which relies on training set to
capture a wide range of changes to distinguish the differences
between intra-class and inter-class. Due to the color response
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TABLE 1. Image and patient distribution among the main categories and
each sub-category.

. Magnification .
Main category| Sub-category Patient
40X | 100X|200X [400X
Adenosis 114 (113 [111 |106 |4
. Fibroadenoma |253 |260 (264 (237 (10
Benign
Phyllodes 149 (150 (140 |130 |3
Tumor
Tubular 109 (121 (108 |115 |7
Adenoma
Ductal 864 |903 |896 |788 (38
Carcinoma
Malignant Iy ghyjar 156|170 163 [137 |5
Carcinoma
Mucinous 205 (222 |196 169 |9
Carcinoma
Papillary Carci-|145 |142 |135 |138 |6
noma

of the digital scanners, the material and manufacturing
technology of the staining supplier, and the different staining
protocol in the different labs, it may cause large color
differences in the histopathological images. Therefore, stain
normalization is a fundamental and necessary step in the
pre-processing of H&E stained breast cancer histopathology
images.

Many methods have been proposed for stain normalization
[39]-[41]. In this paper, we use a stain normalization
method proposed by Vahadane et al. [41] on BreaKHis
dataset. This method adopts a novel structure-preserving
color normalization (SPCN) scheme. It transforms the stain
separation problem into a non-negative matrix factorization
(NMF) [42] to which we add a sparseness constraint, which
is called sparse non-negative matrix factorization (SNMF).
One advantage of this method is that the color basis is
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FIGURE 3. H&E stained images normalization, (A): The target image, (B):
original image, (C): image after stain normalization.

determined in an unsupervised manner, and there is no need
to manually label the pure stains in different areas. The
working principle of SPCN is to replace the color basis of a
source image with the color of a pathologist-preferred target
image while reliably keeping the source image structural
information intact, and still maintaining its original staining
concentration. FIGURE 3 shows images before and after stain
normalization.

C. PATCH EXTRACTION AND DATA AUGMENTATION

The performance of deep learning model depends on the
large number of samples used for training. The number of
training samples for each category in the BreaKHis dataset
is limited. So we must increase the number of training
samples through patch extraction and data augmentation
algorithm to overcome the overfitting problem in the
network.

Because of the high-resolution of breast cancer histopa-
thology images, direct training will lead to excessive
memory consumption and long training time. Inspired by
Spanhol et al. [30] and Krizhevsky et al. [43], we apply patch
extraction and data augmentation algorithm to increase the
number of training samples and use these training samples
to train the proposed model. Then we use majority voting
for obtaining the final image label from the individual
classifications. It is worth mentioning that we avoid using
smaller image patches of size 32 x 32 or 64 x 64 [30].
This is because in the BreaKHis dataset, the label has been
assigned to the whole input breast cancer histopathological
image with a size of 700 x 460, and there is no guarantee that
a smaller image patch with a size of 32 x 32 or 64 x 64 will
carry sufficient diagnostic information. Therefore, we divide
the images of size 700 x 460 into the patches of size 224
x 224 that would provide a larger field of view and carry
more local discrimination features in contrast to the smaller
patches [44]-[47].

As can be seen from TABLE 1, BreaKHis dataset has a
problem with data imbalance. The imbalance ratio between
malignant and benign classes is 0.45 at the image level and
0.41 at the patient level. In classification tasks, the data
imbalance problem may cause the discrimination ability of
the computer-aided diagnosis (CAD) systems to be biased
towards the majority class. To minimize the influence of data
imbalance on the model performance, we adopt a random
patches extraction strategy. In the j# category, the number of
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patches generated from per image is defined by Equation (1):

n
DX
i=1

Nj=|-"xal, (1)
Xj

where N; is the number of patches generated from per image
in the j category, x; refers the number of the i’ category,
x; refers the number of the j™ category, and n is the number
of categories. In our experiment, we set the fixed parameter
o to 64. Then all classes have the roughly equal number of
patches.

The main advantage of using image patches in training
for each category is that it retains the local discrimination
information of the histopathological image, which helps the
model to learn local features [48]. The random image patches
generation strategy can also reduce the size of the training
images and increase the number of training samples at the
same time.

Data augmentation is an integral part of deep learning since
it helps to overcome overfitting on models by increasing
the number of training samples [43]. For breast cancer
histopathological images, pathologists can examine a tissue
slide from different angles without tampering the diagnostic
results. So these images are rotation-invariant. We use
the data augmentation algorithm to increase the prediction
accuracy of the CAD systems, while increasing the number of
training samples without changing the tissue morphology and
cell structure of the image. The data augmentation algorithm
is given in Algorithm I.

D. SCREENING PATCHES

The strategy for sampling patches from breast cancer
histopathological images is described in Section II-C. As only
image-level labels are given in the breast cancer histopatho-
logical image classification task, the label of the whole
image is usually assigned to the corresponding generated
image patches. Therefore, the patch-level labels may not
be consistent with the image-level labels. These mislabeled
patches may affect the training of subsequent network and
reduce the classification performance. To avoid mislabeled
image patches when we use patch-based classification
method, inspired by Schlegl et al. [36], we propose a
screening mislabeled patches method based on an unsuper-
vised anomaly detection with generative adversarial networks
(AnoGAN). FIGURE 4 shows the framework of screening
patches using AnoGAN.

1) GENERATIVE ADVERSARIAL NETWORK

The generative adversarial network (GAN) [49] consists of
two adversarial models, a generator G and a discriminator D.
The generator network captures the data distribution and
maps G(z) of random samples z, 1D vectors of uniformly
distributed input noise sampled from the latent space Z,
to data space. The discriminator network estimates the
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FIGURE 4. The framework of screening patches from Anomaly Detection with Generative Adversarial Networks (AnoGAN). Generative adversarial training
is performed on benign data and testing is performed on both, unseen healthy cases and anomalous data.

Algorithm 1 Data Augmentation of BreakHis Histopatholog-
ical Images

Input: Breast cancer histopathological image I; from
BreakHis after stain normalization pre-rocessing.
Output: Augmented images {I,1, 1,2, - - -, Lan}-
Functions:

RanPatchGen() represents the methods of random
patches extraction with Eq.(1);

Rotation() represents the methods of rotation with %
variations with Qin {0, 1, ..., 7};

Filp() represents the methods of horizontal and vertical
reflection.
Step 1:

Take histopathological image I; after stain normaliza-
tion from training set;
Step 2:

Apply random patches extraction alogotithm on image
Iy:

RanPatchGen() = {I1, Ix2, . .
Step 3:

Apply affine
k1, Iz, - - s Tk}

for Ij; = I : Ij, do

Rotation()
Filp()

end for

Break;

B Ikn}

transformations on image patches

probability that a sample comes from the real data rather
than the generator network. During the training process,
the generator network is optimized by the results of the
discriminator network to improve the generating ability,and
generates the image as much closer to x as possible
to “fool” the discriminator network. At the same time,
the discriminator network also optimizes itself to be better
at flagging the generated samples. Goodfellow er al. [49]
compared the generative adversarial network (GAN) to the
minimax two-player game between the generator G and the
discriminator D.
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Let x be data representing an image. For the generator
network, let z be a latent space vector sampled from uniform
distribution. G(z) refers the generator function which maps z
to data space. The generator can generate fake samples from
the estimated distribution p, by estimating the training data
comes from pg,,. D(x) represents the probability that x came
from the training data rather than the generator. D(G(2)) is
the probability that the output of the generator G is a real
image. As Goodfellow et al. [49] described, a discriminator D
tries to maximize the probability of classifying reals and fakes
(logD(x)), and a generator G simultaneously tried to fool a
discriminator D via minimizing log(1 — D(G(z))). Therefore,
we can find D and G through the following two-player
minimax game, with the value function V (G, D) [49]:

mGlnmng(D’ G) = Ex’”l’dam(x) [log D(x)]
+E v [log(l = D(GR@))]  (2)

In order to screen the most discriminative breast can-
cer histopathological image patches in malignant images,
the data distribution of benign image patches can be obtained
by GAN, and when we use this GAN to learn the data
distribution of malignant image patches, there are obvious
differences, which provides the possibility to screen the most
discriminative histopathological image patches and improve
the classification performance of the subsequent network.

2) MAPPING NEW IMAGES TO THE LATENT SPACE

When adversarial training is completed, the generator has
learned the mapping G(z) = z — x from the latent space
representations z to the benign image patches x. However,
GAN does not automatically generate the inverse mapping
u(x) = x — z from the test image patches x to the latent
space representations z for free, and it needs to find z
iteratively [36]. The transition of the latent space is smooth.
In other words, the images generated from two points at close
distances in the latent space are very similar [50]. Given a
malignant image patch x, we aim to find a point z in the
latent space, which corresponds to the image G(z) that is
visually most similar to the malignant image patch x and that
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FIGURE 5. Structure diagram of breast cancer histopathology image classification based on DenseNet.

is located on the data distribution of benign image patches.
Inspired by the feature matching [51], in order to find the
best z, the following steps are used:

Step1: Define loss function, which represents the loss of
latent space vector mapping to the image patches.

Step2: Randomly sample z; from the latent space distribu-
tion Z and feed z; into a well-trained generator to obtain the
generated image G(z;). Use the loss function to calculate the
loss.

Step3: Calculate the gradient of the loss function about z1,
and use the gradient descent method to continuously update
the coefficients of z;. During the iteration process via y =
1,2, ..., T backpropagation steps to optimize the position
of z in the latent space Z. Until finding the most similar
image G(zr).

3) LOSS FUNCTION
We use a loss function that maps malignant image patches to
the latent space. This loss function includes two components,
a residual loss and a discrimination loss.

Residual Loss The residual loss is used to measure the
dissimilarity between the generated image G(z),) and the
malignant image patches X.

LResidual(Zy) = Z ’x -G (Zy)‘ 3)

For an ideal normal query situation, the image patches x
and G(z, ) are the same. In this case, the residual loss is zero.

Discrimination Loss Inspired by the proposed feature
matching technique, we regard the discriminator as a feature
extractor, and the output of a certain layer of the discriminator
is used as the function £ (-) to specify the statistics of an input
image. The discriminator loss reflects the difference of the
extracted features by the discriminator on the two feature
maps.

Lpiseriminatorzy) = Y [f ) = £(G (z))] )

To map to the latent space, we define the total loss as the
weighted sum of residual loss and discrimination loss:

L(Zy )=(1—=A) - LResidual (Zy )+(X) - Lpiscriminator (Zy ) (5)

Thus, an anomaly score, which expresses the fit of a query
image x to the model of benign image patches, can be directly
obtained from the total loss function in Eq.(5). This model
yields a large anomaly score for malignant image patches
whereas a small anomaly score for benign image patches.
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E. DENSELY CONNECTED CONVOLUTIONAL NETWORK
TOPOLOGY

Densely connected convolutional network (DenseNet) [37]
combines the advantages of ResNet [52] and Highway [53]
to alleviate the vanishing-gradient problem in deep neural
networks. The idea of DenseNet is to ensure maximum
information flow between layers in the network. so we
directly connect all layers (with matching feature-map sizes).
The patch-level breast cancer histopathology images clas-
sification algorithm includes: input the most discriminative
patches screened by AnoGAN, use DenseNet to extract
features, and softmax classifier. First, the preprocessed
image patches are used as the input of the model. During
the training, DenseNet can extract the features of the
patches. Finally, the extracted feature vector is sent to the
softmax classifier to complete the classification of breast
cancer histopathology images. The structure of breast cancer
histopathology image classification model used DenseNet is
shown in FIGURE 5.

The dense block is the main part of DenseNet. The main
characteristic is that each layer connects to every other layer
in a feed-forward fashion and passes its own feature maps to
all subsequent layers. It can promote better information and
gradient flow, alleviate the vanishing-gradient problem, and
the network can converge better [37]. Assuming that an image
patch xq passes through the DenseNet, the network comprises
L layers, each layer implements a non-linear transformation
H (-), and x; is the output of the [”* layer. The output of the
1" layer is given in Eq.(6):

xi = Hj ([xo, x1, ..., x1—1]), (6)
where [xg, x1, ..., x;—1] refers to the concatenation of the
feature-maps produced in layer O, 1, ..., [ — 1. H(-) includes
three consecutive operations: batch normalization (BN) [54],
rectified linear unit (ReLU) [55] and convolution (Conv).
If each function H;(-) produces k feature maps, the /" layer
consequently has kyp + k x (I — 1) input feature maps,
where ko is the number of channels in the input layer.
The hyperparameter k is also called growth rate of the
DenseNet. FIGURE 6 illustrates the structure of dense block
schematically.

DenseNet is divided into multiple dense blocks. These lay-
ers between dense blocks are called transition layers, which
take care of down-sampling applying a batch normalization,
a1l x 1 convolution, and a 2 x 2 average pooling.
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FIGURE 6. A 4-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

We define the i input image patch x; with the label y;.
The DenseNet optimization is supervised by the softmax
loss(L) [56] which can be written as

=ZLVZ—log

i i

@)
j

where f; denotes the j’h element (j € [1, K], K is the number
of classes) of the vector of class scores f, and N is the number
of training image patches.

Compared with the traditional convolutional neural net-
work, dense connectivity strengthens the feature propagation
of breast cancer histopathological images, improves the
information flow between the various layers, and greatly
enhances the feature reuse. Therefore, the DenseNet can
automatically learn the discriminative features in breast
cancer histopathological images and increase the accuracy of
classification.

Ill. EXPERIMENTS AND RESULTS

A. PERFORMANCE EVALUATION

The purpose of the proposed BreaKHis dataset is to form
the benchmark of breast cancer CAD systems. For this
reason, BreaKHis authors proposed two classification level
evaluation metrics [18].

The first one is patient level accuracy that reflects the
achieved performance in a patient-wise level. Let N, be the
number of pathological images of each patient, N,, be the
number of correctly classified images of each patient, and N,
be the total number of patients. The patient score for each
patient is as follows:

PatientScore =

N,
L 8)
np
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_
H;
The global patient level accuracy as:
: > PatientScore
PatientLevelAccuracy = =N O]
p

In the second case, the evaluation metric is image level
accuracy. Let N,y be the number of breast cancer images of
testing set. If the CAD systems classify correctly N, breast
cancer images, the image level accuracy is:

ImageLevelAccuracy = (10)

all

Conventionally, during cancer diagnosis, malignant case is
considered to be positive while benign case is considered to
be negative. The sensitivity (also called recall) of the CAD
systems is more important in clinically diagnosis. Therefore,
we not only use the first two evaluation metrics but also other
evaluation metrics such as precision, recall, 1. are used
to evaluate the performance of breast cancer classification.
The metrics are calculated respectively as follows:

o TruePositives
Precision = — — (11D
TruePositives + FalsePositives
TruePositives
Recall = (12)

TruePositives + FalseNegatives

2 x Recall x Precision
Flscore = (13)

Recall + Precision

In order to visualize the classification performance, we also
use the confusion matrix that is a specific contingency table.

B. EXPERIMENTAL PROTOCOL

Following the standard labeling conventions used in med-
ical research, the label ‘“‘positive” refers to malignant
images, and “‘negative” refers to benign images [38]. For
further reducing the color inconsistency and improving
efficiency in learning high-level features, stain normal-
ization pre-processing method described in Section II-B
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TABLE 2. AnoGAN architecture for screening the discriminative patches.

Modules Layers Output Size Layer configurations
of AnoGAN
Input: 100 x 100 x 1 x 1
1x1
Transposed 512 x7x7 7 x 7 Trans Conv,
Convolution stride=1, BN, ReLU
G ¢
e Transposed | 256 x 14 x 14 4 % 4 Trans Conv,
Convolution stride=2, padding = 1,
BN, ReLU
Transposed 128 x 28 x 28 4 x 4 Trans Conv,
Convolution stride=2, padding = 1,
BN, ReLU
Transposed 64 x 56 x 56 4 x 4 Trans Conv,
Convolution stride=2, padding = 1,
BN, ReLU
Transposed 3 x 112 x 112 4 x 4 Trans Conv,
Convolution stride=2, padding = 1,
BN, ReLU
Transposed 3 x 224 x 224 4 x 4 Trans Conv,
Convolution stride=2, padding = 1,
Tanh
Input: 3 x 3 x 224 x 224
224 x 224
Convolution 64 x 112 x 112 4 x 4 Conv, stride=2,
padding =1,
L LeakyReLU
Discriminator
Convolution 128 x 56 x 56 4 x 4 Conv, stride=2,
padding = 1, BN,
LeakyReLU
Convolution 256 x 28 x 28 4 x 4 Conv, stride=2,
padding = 1, BN,
LeakyReLU
Convolution 512 x 14 x 14 4 x 4 Conv, stride=2,
padding = 1, BN,
LeakyReLU
Convolution 1024 x 7 x 7 4 x 4 Conv, stride=2,
padding = 1, BN,
LeakyReLU
Convolution 2048 x 1 x 1 7 x 7 Conv, stride=1
Fully 1x1 sigmoid
Connected

was employed on BreaKHis datasets. In order to prevent
generating random results, we used 5-fold cross validation to
evaluate the proposed method for each magnification factor.
We divided the BreaKHis dataset into five folds and each fold
contained 20% of the overall samples. During training four of
the folds were used as the training set whereas the remaining
set was used for testing.

We applied the random patches extraction strategy men-
tioned in Section II-C on the training set, so a roughly equal
number of patches were generated for each category could
we get. The size of the patches is 224 x 224 pixels because
it has been shown to be particularly relevant to CNN-based
classification [44]-[47].

For screening the most discriminative patches, we applied
the data augmentation algorithm described in Section II-C on
benign patches for training AnoGAN. The malignant patches
were sent to the well-trained AnoGAN for testing, and the dis-
criminative malignant patches were screened by the anomaly
score. Then we used affine transformations mentioned in
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TABLE 3. Densely Connected Convolutional Networks121 (DenseNet121)
architecture for BreakHis patches. The growth rate for DenseNet121 is

k = 32. Note that each “conv” layer shown in the table corresponds the
sequence BN-ReLU-Conv.

Layers Output size Layer configurations of
DenseNet-121(k = 32)
Input: 224 x 224 x 3 224 x 224 x 3
Convolution 112 x 112 x 64 7 x 7 conw, stride =2
Max Pooling 56 x 56 x 64 3 X 3 max pool, stride
=2
Dense Block(1) 56 X 56 x 256
1 x 1conv
6
3 X 3 conv
56 x 56 x 128 1 x 1 conv, stride = 1
Transition Layer(1)
28 x 28 x 128 2 x 2 average pool,
stride = 2
Dense Block(2) 28 x 28 x 512
1 x 1conv
x 12
3 X 3 conv
28 x 28 x 256 1 X 1 conw, stride = 1
Transition Layer(2)
14 x 14 x 256 2 X 2 average pool,

stride = 2

Dense Block(3) 14 x 14 x 1024

1 x 1 conv

3 X 3 conv

. 14 x 14 x 512 1 x 1 conw, stride = 1
Transition Layer(3)
7 x7Tx512 2 x 2 average pool,
stride = 2
Dense Block(4) 7 x7x 1024
1 x 1 conv
x 16
3 X 3 conv
1 x 1 x 1024 7 x 7 global average
Classification Layer pool, stride = 1
1x2 fully connected
1 x2 softmax

Algorithm 1 to increase the number of malignant patches.
Finally, we used the discriminative patches for training
DenseNet121. During testing, 100 random patches with the
size of 224 x 224 pixels were cropped from each image in
the testing set. These patches were passed to the well-trained
DenseNet121 and the class label of the image was obtained
by majority voting from the individual patch classifications.
TABLE 2 shows the details of AnoGAN architectures and
TABLE 3 shows the details of DenseNet121 architectures.
Firstly, we performed 200 epochs utilizing Adam optimizer
with the learning rate 0.001 for training AnoGAN. The
trained parameters of the generator and discriminator were
kept fixed. We ran 500 backpropagation steps for mapping
malignant patches to the latent space. We set A = 0.1 in
Equations (5) (0.1 is an empirical value found in the original
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TABLE 4. The mean and standard deviations of classification accuracy of DenseNet121 on BreakHis (without and with data balance). The best mean

results are in bold.

Magnification factors

Accuracy (in %) Patch extraction strategy Method
40X 100X 200X 400X

. Random patches strategy with data DenseNet121 7243 £2.5 7209 £ 1.2 68.65 £ 1.8 67.98 £4.3

Patient level imbalance
Random patches strategy with data DenseNet121 92.02 £ 0.9 90.21 + 2.4 81.94 £ 1.7 80.09 £ 0.7

balance

Random patches strategy with data DenseNet121 7443 £39 70.09 £ 0.5 69.65 + 2.8 6498 £2.3

Image level imbalance
Random patches strategy with data DenseNet121 94.26 + 3.2 92.71 + 0.4 83.90 + 2.8 82.74 £ 1.5

balance

TABLE 5. The mean and standard deviations of classification accuracy of DenseNet121 on BreakHis (without and with AnoGAN). The best mean results

are in bold.

Magnification factors

Accuracy (in %) Method
40X 100X 200X 400X

) DenseNet121 92.02 + 0.9 90.21 +24 8194+ 1.7 80.09 + 0.7

Patient level
DenseNet121-AnoGAN 96.32 + 1.3 95.98 + 0.9 86.91 + 2.0 85.16 = 1.3
DenseNet121 94.26 + 3.2 92.71 +£ 0.4 83.90 £ 2.8 8274 + 1.5

Image level
DenseNet121-AnoGAN 99.13 + 0.2 96.39 + 0.7 86.38 + 1.2 85.20 + 2.1

TABLE 6. The mean and standard deviations of precision, recall, and F1,.,. computed from DenseNet121 on BreaKHis (without and with AnoGAN). The

best mean results are in bold.

Magnification factors Method Precision (in %) Recall/Selryls)itivity (in Flgcore(in %)
(4
40X DenseNet121 96.81 + 0.4 95.39 + 0.7 96.08 + 0.3
DenseNet121-AnoGAN 99.53 + 0.1 99.16 + 0.3 99.38 + 0.4
100X DenseNet121 95.11+0.5 96.39 + 0.2 96.48 + 0.3
DenseNet121-AnoGAN 97.87 + 0.2 97.89 + 0.6 98.02 + 0.2
200X DenseNet121 87.98 +0.3 88.66 + 0.7 87.92 4+ 04
DenseNet121-AnoGAN 87.09 + 1.1 92.22 4+ 0.6 90.12 + 0.5
400X DenseNet121 80.97 + 04 79.83 £ 0.6 80.39 + 0.2
DenseNet121-AnoGAN 81.37 + 14 91.55 + 0.5 87.63 + 0.6

paper [36]). Secondly, we used Adam optimizer with a batch
size of 64 to train the classification model. The learning
rate was set as 0.001. Our experiments were implemented in
Python using Pytorch as deep learning framework backend
and conducted on three NVIDIA GeForce GTX 1080 Ti
GPUs with 24GB RAM.

C. EXPERIMENTAL RESULTS

This section presents the experimental results of the
proposed approach evaluated on the BreaKHis dataset.
In Section III-C-1, we verify the classification of BreakHis
dataset affected by data imbalance. Section III-C-2 presents
the performance of the proposed model (DenseNetl21-
AnoGAN). Additionally, the performance of AnoGAN on the
existing classification networks is evaluated and presented in
Section III-C-3.

1) THE IMPACT OF DATA IMBALANCE ON THE
PERFORMANCE OF THE DENSENET

In this section, we experimentally evaluate the impact of
data imbalance on the DenseNetl21 performance in the
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breast cancer histopathological images classification task.
First, the random patches extraction strategy and data
augmentation algorithm described in Section II-C were
performed on the training set to obtain roughly equal numbers
of patches in both classes (benign and malignant) of size
224 x 224. These patches were used to train DenseNet121.
Second, we randomly extracted 64 patches with the size
of 224 x 224 from each image in the training set and
used the affine transformations mentioned in Algorithm 1 to
increase the number of training samples. DenseNet121 was
trained with the training patches unevenly distributed to
the two classes (benign and malignant). TABLE 4 shows
the accuracy performance of the two experiments. In the
case of the BreakHis dataset, especially the majority class
consists of the images of malignant tissue. It can be seen
that high data imbalance significantly affects the performance
of DenseNet121, slight data imbalance is actually beneficial
for the performance of DenseNetl21. This conclusion is
consistent with Koziarski [57]. Therefore, we also applied
the random patches extraction strategy and data augmentation
algorithm described in Section II-C in subsequent experi-
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FIGURE 7. Confusion matrices of DenseNet121-AnoGAN model which has the best score in the BreaKHis testing set among
5-fold cross validation, (A): Confusion matrix of 40X magnification, (B): Confusion matrix of 100X magnification, (C): Confusion
matrix of 200X magnification, (D): Confusion matrix of 400X magnification.

ments. It can solve the problem of high data imbalance and
increase the number of training samples.

2) THE PROPOSED MODEL RESULTS

DenseNet121-AnoGAN is a novel network for breast cancer
histopathological images classification which can screen
the discriminative patches and improve the performance of
classification. In order to verify the effect of using the
proposed approach, we conducted two sets of experiments.
In the first set of experiments, we did not use AnoGAN
for patches screening, and all patches were trained based on
the DenseNet121. In the second set of experiments, the dis-
criminative patches were screened by AnoGAN. Then we
used these discriminative patches to train the DenseNet121.
TABLE 5 provides the accuracy performance of two sets
of experiments at the corresponding magnification factors.
It can be noticed that there is a significant improvement
in the performance of DenseNetl2]1 when AnoGAN is
employed. For breast cancer histopathological images with
magnification factors of 40X, 100X, 200X, and 400X,
whether it is at the patient-level accuracy or at the image-level
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accuracy, the classification network with AnoGAN screening
the discriminative patches has further improved the accuracy
of the classification network without using AnoGAN for
patches screening. The best accuracy of 99.13% has been
obtained at the image level for the 40X magnification factor.
In TABLE 6, the assessment of the proposed model based
on evaluation metrics like precision, recall, and F1., are
further presented. At 40X magnification factor, we achieved
the best precision of 99.53%, the best recall of 99.16%, and
the best F 1.0z 0f 99.38%.

A false negative means that a subject with breast cancer
is misclassified as not having the disease on the basis of
the classification model. The subject is given a misleading
result that she is free of breast cancer and thus does not
undergo more suitable diagnostic tests. FIGURE 7 shows
the confusion matrices of the DenseNet121-AnoGAN model
which has the best score in testing set among 5-fold cross
validation. In the confusion matrices, we can see that
the proposed model produces few false negatives at all
magnification factors, which proves that the proposed model
can further improve the performance of the computer-aided
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FIGURE 8. The receiver operating characteristic (ROC) curves of DenseNet121-AnoGAN models based on BreakHis dataset, (A): ROC
curve of 40X magnification, (B): ROC curve of 100X magnification, (C): ROC curve of 200X magnification, (D): ROC curve of 400X

magnification.

diagnosis (CAD) systems of breast cancer. The performance
of DenseNet121-AnoGAN is further analyzed by using
receiver operating characteristic (ROC) curves corresponding
to each magnification factor (see FIGURE 8).

3) ANOGAN ON THE EXISTING CLASSIFICATION NETWORKS
RESULTS

In this section, we presented the performance of the method
of screening patches by AnoGAN on the other classifi-
cation networks. We tested AlexNet [31], VGGI16 [58],
VGG19 [58], and ResNet50 [52] on the original patches as
well as the discriminative patches screening by AnoGAN.
The experimental results are shown in TABLE 7 (the best
mean results are in bold). From the experimental results, it can
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be seen that all the classification networks with AnoGAN
to screen patches achieve better performance than the
classification networks without AnoGAN. While comparing
the performance of the classification network, it can be
observed that the ResNet50-AnoGAN achieves the overall
best accuracy of 86.72% at the patient level and ResNet50-
AnoGAN achieves the overall best accuracy of 87.02% at
the image level. In the task of breast cancer histopathological
images classification, these classification networks only learn
low-level features, such as colors, textures, and edges. How-
ever, DenseNet121 can concatenate features from different
layers, strengthen features propagation, encourage feature
reuse, and also has the narrow layers which means that the
model has fewer parameters to train, so DenseNet121 makes
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TABLE 7. The mean and standard deviations of classification accuracy of the existing classification networks on BreaKHis (without and with AnoGAN).

The best mean results are in bold.

Magnification factors

Accuracy (in %) Method
40X 100X 200X 400X
AlexNet 76.04 +2.3 74.19 + 3.1 72.65 + 1.0 70.83 2.5
AlexNet-AnoGAN 80.83 £3.2 81.19 £2.7 76.32 +£29 7371 +£1.2
VGGI16 81.24 +2.8 80.94 £+ 3.1 78.62 + 3.1 76.79 + 4.0
) VGG16-AnoGAN 8392+1.2 82.87 £2.6 83.39 + 0.7 78.19 + 3.5
Patient level
VGG19 78.46 + 3.1 76.79 + 1.9 75.05 +2.2 71.84 £ 1.7
VGG19-AnoGAN 83.52 £2.7 8249 +1.9 76.39 + 1.6 75.61 £2.3
ResNet50 85.74 £ 1.9 82.09 £ 0.9 78.65 +2.4 79.08 £ 1.2
ResNet50-AnoGAN 86.72 + 2.0 84.61 + 1.1 82.09 +2.9 82.11 + 2.4
AlexNet 7434+ 1.3 71.85+238 63.68 +2.3 62.08 + 2.5
AlexNet-AnoGAN 75.62 + 2.1 7291 + 1.7 68.32 +2.4 69.89 + 3.2
VGGI16 82.64 +1.9 83.09 £ 2.0 81.05 +£2.1 80.18 2.3
VGG16-AnoGAN 84.22+£0.9 84.21 + 1.2 82.65 +2.3 80.13 + 14
Image level
VGG19 79.63 +2.3 81.01 £ 1.4 72.57 £ 2.5 73.82 + 3.1
VGG19-AnoGAN 83.64 £ 0.7 84.01 £ 1.9 78.07 £ 1.5 74.89 +2.0
ResNet50 84.64 + 0.8 83.09 + 1.8 84.06 £+ 2.8 80.71 3.4
ResNet50-AnoGAN 87.02 + 1.2 84.12+0.9 8232+ 14 82.19 + 1.6

the classification task easier and more efficient to train than
any other network.

IV. DISCUSSION

Breast cancer is one of the common types among hundreds
of cancer diseases. The incidence of this disease is increasing
day by day, especially among women. If the disease is not
diagnosed in time, the mortality rate will be fairly high. In this
work, we propose a novel approach for the classification of
breast cancer histopathology images, named DenseNet121-
AnoGAN. Many researchers have conducted studies on
the BreakHis dataset. The performance comparison of the
proposed model with the existing studies using the BreaKHis
dataset is shown in TABLE 8.

Compared with all the studies given in TABLE 8§, our
proposed model obtained the best performance for 40X and
100X histopathology images. In particular, the accuracy at the
image level of our proposed model for the 40X magnification
factor is 99.13%, the best precision is 99.53%, the best recall
i$ 99.16%, and the best F 1., 1 99.38%. The classification
performance of our proposed model has clearly outperformed
the methodologies of Spanhol et al. [18], Spanhol et al. [30],
Spanhol et al. [59], and Kumar and Rao [60]. As can be
seen from TABLE 8, our proposed model has the best
performance in low-level magnifications i.e. 40X and 100X
compared with the methodologies of Gupta and Bhavsar [61],
Sudharshan et al. [38], and Gour et al. [62].

This is the first attempt that we use AnoGAN for
screening discriminative patches to deal with the mislabeled
patches. We use benign patches to train AnoGAN. The
data distribution of benign patches can be obtained by
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AnoGAN and it will generate a fake patch with a probability
distribution similar to that of the benign patch. By defining
the threshold of residual loss and discrimination loss between
the malignant patch to be tested and fake patch, this
well-trained AnoGAN can yield the high anomaly score
of the malignant patches. However, the anomaly score of
mislabeled patches in malignant patches is low. Therefore,
we can use the obvious differences produced by AnoGAN
to screen the discriminative patches in malignant patches
and improve the classification performance of the subsequent
network. Compared with the patch-based image classifica-
tion methods, the proposed approach named DenseNet121-
AnoGAN can effectively solve the problem of mislabeled
patches in malignant patches and improve the classification
performance. Nuclei and tissue organization are related to
the diagnosing process [32]. As the magnification increases,
the number of nuclei you are able to see in the patches
will decrease, resulting in incomplete nuclei edge-related
features extracted. The classification network is based on
the extracted features from different scales, including nuclei
and tissues organization. If the classification network cannot
extract these relevant features at high-level magnifications,
the accuracy of classification network will decline. Although
compared with the existing studies, the proposed model is
insufficient in the classification performance of high-level
magnifications, our proposed DenseNetl21-AnoGAN can
be better suited coarse-grained high-resolution images from
breast tissue biopsy slides stained with hematoxylin and eosin
(H&E) and achieved satisfactory classification performance
at 40X and 100X magnifications. It has laid a foundation for
helping pathologists to diagnose diseases in the future.
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TABLE 8. Performance comparison with existing studies using the BreaKHis dataset in terms of patient level accuracy and image level accuracy.

Magnification factors

Accuracy(in %) Authors Year Preprocessing Model
40X 100X 200X 400X
Descriptor: PFTAS
Spanhol et 2016 None 838 +4.1 82.1+49 85.1+3.1 823 +38
al. [18] Classifier: QDA
Spanhol et 2016 Res(350 x 230) Pre-trained AlexNet 88.6 +5.6 845+24 853+ 3.8 81.7+49
al. [30] Model
Patient level Spanhol et 2017 None DeCAF Model 84.0 £6.9 83.9+59 86.3 £3.5 82.1+24
al. [59]
Kumar et al. 2018 None New Designed CNN 83 +3.2 81 +42 842434 81 +24
[60] Model
Gupta et al. 2018 Res Sequential framework 94.71 £ 0.88 959 +42 96.76 £ 1.09  89.11 £+ 0.12
[61] with deep multi-layered
features
Descriptor: PFTAS
Sudharshan 2019 None 92.1£59 89.1+£52 872+ 43 82.7+3.0
et al. [38] Classifier: NPMIL
Gour et al. 2020 DA(Rot, Flip) ResHist Model 87.4+33 88.1+£29 925+28 87.7+24
[62]
Proposed DA(Rot, Flip) DenseNet121-AnoGAN 96.32 + 1.3 95.98 + 0.9 86.91 + 2.0 85.16 +£ 1.3
Model
Spanholer al. 2016 Res(350 x 230) Pre-trained AlexNet 89.6 + 6.5 85.0+4.38 84.0+32 80.8 £ 3.1
[30] Model
Spanhol et 2017 None DeCAF Model 84.6+29 84.8 +42 842+ 1.7 81.6 £3.7
Image level al. [59]
Kumar et al. 2018 None New Designed CNN 82 +128 86.2 + 4.6 84.6 +3 84 +4
[60] Model
Descriptor: PFTAS
Sudharshan 2019 None 87.8 +5.6 85.6+43 80.8 +2.8 829+4.1
et al. [38] Classifier: NPMIL
Gour et al. 2020 SN + DA(Rot, ResHist Model 87.4+3.0 87.2+35 91.1+23 86.2 £ 2.1
[62] Flip)
Proposed SN+DA(Rot, DenseNet121-AnoGAN 99.13 + 0.2 96.39 + 0.7 86.38 = 1.2 85.20 + 2.1
Flip) Model

Note that "Res" refers to resizing original images to a new size, "DA" refers to data augmentation, "Rot" refers to rotation, "Flip" refers to flipping, "SN"

refers to stain normalization.

Note that "PFTAS" refers to Parameter-Free Threshold Adjacency Statistics, "QDA" refers to Quadratic Linear Analysis, "NPMIL" refers to Non-parametric

Multi-instance learning.

V. CONCLUSION

In this paper, we propose a novel approach, named
DenseNet121-AnoGAN, for the classification of breast
cancer histopathology images, which screens patches based
on an unsupervised anomaly detection with generative
adversarial networks (AnoGAN). The proposed model can
effectively solve the problem of mislabeled patches when
we adopt a patch-based classification method and improve
the performance of classification. We have experimentally
evaluated the proposed model for binary classification
using 5-fold cross validation in the BreaKHis dataset at
four different magnification factors (40X, 100X, 200X,
400X). The best accuracy of 99.13% and the best F'lgcore
of 99.38% have been obtained at the image level for the 40X
magnification factor. In addition, we have also preliminarily
explored the impact of data imbalance on the classification
network and investigated the performance of the method of
screening patches by AnoGAN on the other classification net-
works, including AlexNet, VGG16, VGG19, and ResNet50.
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For breast cancer histopathological images with the magni-
fication factors of 40X, 100X, 200X, and 400X, our exper-
iments show that whether it is at the patient-level accuracy
or the image-level accuracy, the method of screening the
discriminative patches by AnoGAN has further improved the
accuracy of the method without using AnoGAN for patches
screening.

Although the proposed model is very effective for
breast cancer diagnosis in low-level magnifications i.e.
40X and 100X, future work can explore different acti-
vation functions in the final layer of CNN architectures,
the optimization of the hyperparameters, and the size
of patches to improve the accuracy at high-level mag-
nification. Furthermore, the problem of data imbalance
is ubiquitous in the medical domain, we should explore
some approaches for dealing with data imbalance in the
future.Before being used for clinical diagnosing, we need to
validated on the other breast cancer histopathological image
datasets.
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