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ABSTRACT Many researchers studied DQN (Deep Q-Networks) to train a game AI to beat human players,
while we trained an improved AI to reversely modify properties of 3D video games. Our ultimate objective is
to improve automatic debug for software and cloud services. However, the problem that reversely discovers
properties in online 3D Video Games in an automatic way has not been studied yet. Therefore, related
special difficulties are first discussed in the paper. RMDQN (a Reverse Method based on our active Deep
Q-Networks) is proposed to deal with the problem, and an active DQN is invented to make the reverse
procedure automatic and intelligent. The action engine of RMDQN is able to control any operational game
object like a player is playing, which makes automatic debug possible. A video demonstration is provided
to show the result of reversely modifying game properties by our method. It was proved that our method can
improve debug technology in 3D video games, and it will be applied in cloud services with fewmodifications.

INDEX TERMS Online 3D video games, reverse engineering, deep Q-Networks.

I. INTRODUCTION
Nowadays, software engineers use semi-automatic tools for
reverse engineering, including Ollydbg, Windbg, and Cheat
Engine. The traditional and general reverse procedure in
Windows operation system is shown as follows: engineers use
a debugger to attach the debuggee process. According to the
engineer experiences, recursively find suitable places to set
hardware breakpoints or software breakpoints for monitoring
computer Memory data access or for stopping code running.
Before target values or target functions are found, engineers
need to filter out many false addresses. Finally, engineers
modify target values or target functions, and sometimes set
variables and generate patches for repeating usage.

It still needs huge manual operations to manipulate debug-
ging tools and needs large brainwork to analyze computer
Memory data, register statues, stack traces, and assembly
jumps, etc. It is such a double burden to analyze assembly
code with human eyes and brains, especially for big software.
This paper selects two typical games for demonstrations: a
first-person shooting game (FPSG) and a real-time strategic
game (RTSG).

Now video games are becoming larger, some require
30G-50G Hard disk space, and the code space is also extreme
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huge. For example, RTSG requires 35G Hard disk space.
Properties in RTSG include: coordinates, munitions, fuels,
human powers, hit points of solders and vehicles, sight
ranges, damage ranges, and building time, etc. Properties
in FPSG include: health, vectors of position, teams, bone
matrix, glow, and view angles, etc. These properties can be
reversely manipulated by lockingMemory data or code injec-
tion. We used the two games for our experiments, because
simulated environments have no match with real game envi-
ronments in aspect of huge virtual addresses usages, real stack
traces, and real function import tables, etc.

DeepMind proposed a method called Deep Q-Networks
(DQN) to automatically play the Atari games. The key idea
of basic DQN is to utilize deep neural networks to replace
Q-network, and to train the Q-network to obtain Q values.
Many researchers studied DQN (or Deep Q-Learning) to
train a game AI to beat human players, while we trained
an improved AI to reversely modify properties of 3D video
games to ‘‘counter attack’’, in another word, to improve
automatic debug, but there are several difficulties and
challenges:
1. DQNs are often used in simulation environments or Atari

games from the Arcade Learning Environment, so that an
agent can easily interact with virtual ambient objects, and
obtain reward immediately. However, DQNs need more
supports in real software, because perceptions and actions
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TABLE 1. Topics of reverse engineering.

must be translated to specifications conforming to real
software settings.

2. Generally, there are many same values in different virtual
addresses of a video game in computer Memory, but only
one virtual address stores the real property value, and it
may be stored as a pointers link. Moreover, this virtual
address may change after each starting of the video game.

3. Not only virtual addresses may change each time, but
also the sequence of game functions may change, causing
Memory stack traces change. In addition, Object-oriented
programming introduces inherited classes and override
functions. Their implementation in assembly codes (vir-
tual table function) makes reverse even harder.
To tackle above difficulties and challenges, we proposed

a reverse method for discovering and modifying proper-
ties in video games, called RMDQN (Reversely Discover-
ing and modifying properties with active Deep Q-Learning).
RMDQN includes two components: action engine and
GDQN (Game DQN). Main contributions are shown as
follows:
1 A new method (RMDQN) is proposed to reversely modify

properties in 3D video games, and its reverse procedure is
automatic and intelligent.

2 RMDQN action engine is created to deal with above chal-
lenge 1 in this paper. The action engine automatically uses
a limited action space to control game objects and navigate
in the game.

3 GDQN (A new attempt to combine active learning and
improved DQN) is created to deal with challenge 2 and 3
in this paper. GDQN intelligently uses its Q-table and
action engine to interact with game objects and observes
corresponding changes. Finally, RMDQN filters out false
addresses, and goes backwards to find out the base address
of target value.

II. RELATED WORK
We categorized some typical related works about reverse
engineering as below table shows. Unlike traditional reverse
methods, most new reverse methods are based on deep
learning.

Semi-automatic tools, including Ollydbg, Windbg, and
Cheat Engine, are mature enough for reverse engineering.
However, Ollydbg seems to be frozen because its main func-
tions have not been updated since year 2014.

Academics continue updating their outcomes. Washizaki
[1] confirmed that any reverse engineering activity can be

clearly described as a pattern based on the framework from
the viewpoint of program meta-models. Shu et al. [2] pre-
sented a control reconfiguration approach to improve the
performance of two classes of dynamical systems by reverse-
engineer. Poženel et al. [3] used clickstream data to enhance
reverse engineering of Web applications. Miranda et al. [4]
used reverse engineering techniques to infer a system use case
model. It is possible to reversely generate a three-dimensional
model from a set of 2D photographs [5].

Sabir et al. [6] implemented a novel framework named as
‘‘Source to Model Framework (Src2MoF)’’ is proposed to
generate Unified Modeling Language structural (class) and
behavioral (activity) diagrams from the Java source code.
An open source transformation engine named ‘‘UML model
generator’’ is implemented using Java, which takes these
intermediate models as input, and produce high-level UML
models of the subject legacy system. El Otmani et al. [7]
proposed a process to migrate a Struts web applications into
UML (Unified Modeling Language) model.

Basile et al. [8] presented a software protection
meta-model that can be instantiated to construct a formal
knowledge base to against reverse engineering. Applications
of reverse engineering include data exploration, data secu-
rity, relational classifier engineering, and the study of the
expressiveness of query languages [9].Martins [10] described
strategies employed to leverage efficient example acquisition
and query reverse engineering.

Tomičić et al. [11] presented a form of a network-level
game cheating based on the MMORPG (Massively Multi-
Player On-Line Role-PlayingGames) client reverse engineer-
ing method within the gameManaWorld, an MMORPGwith
client/server architecture. They used the network protocol
vulnerability of a non-encrypted data traffic in order to
reverse-engineer the original data packets sent by the original
game client, and replicated these packets in a AI-based game
client which complete controls game character.

Botero et al. [12] surveyed challenges from two comple-
mentary perspectives: image processing and machine learn-
ing. These two fields of study form a firm basis for the
enhancement of efficiency and accuracy of reverse engineer-
ing processes [13]. Fyrbiak et al. [14] presented a com-
prehensive reverse engineering and manipulation framework
for gate-level netlists. It allows automating defensive design
analysis (e.g., including arbitrary Trojan detection algorithms
with minimal effort) as well as offensive reverse engineer-
ing and targeted logic insertion. Furthermore, they presented
reverse engineering algorithms to disarm and trick crypto-
graphic self-tests, and subtly leak cryptographic keys without
any a priori knowledge of the design’s internal workings.

Alam and Mukhopadhyay [15] provided an evaluation
strategy for information leakages through DNN (Deep Neural
Networks) by considering a case study on CNN classifier.

Qiu et al. [16] proposed a light-weight solution to auto-
matically identify the Android malicious samples with high
security and privacy impact. Nirumand et al. [17] presented
a framework based on Model Driven Reverse Engineering.
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In the proposed framework, some security-related informa-
tion included in an Android app is automatically extracted
and represented as a domain-specific model. Then, it is
used for analyzing security configurations and identifying
vulnerabilities in the corresponding application. The pro-
posed framework automatically identifies the Intent Spoof-
ing and Unauthorized Intent Receipt as two attacks related
to the Android application communication model. Ray
and Chowdhury [18] proposed the Reverse Engineering
Technique (RET) to improve resource allocation accuracy.
The paper used neural network based deep learning and
Levenberg-Marquardt training algorithm for resource alloca-
tion prediction.

Gharibi et al. [19] automated the tasks of analyzing the
Python source-code and extracting its structure; constructing
static call graphs from the source code; and generating a
similarity matrix of all possible execution paths in the system.

Miller et al. [20] proposed a purely unsupervised anomaly
detector (AD), based on suitable (null hypothesis) density
models for the different layers of a deep neural net and a novel
decision statistic built upon the Kullback-Leibler divergence.
Xiao et al. [21] proposed an approach of applying deep
learning to solve the problem of data type identification in
data segments. They defined 3 data types of data segment,
then designed several data segment byte feature extraction
methods to construct feature sequences, and finally presented
a deep learning-based approach with feature sequences as
input to recognize the data type byte by byte. Marchetti and
Stabili [22] proposed a method for the automatic Reverse
Engineering of Automotive Data frames. It has been designed
to analyze traffic traces containing unknown CAN (controller
area network) bus messages in order to automatically identify
and label different types of data.

Above related works deal with parts of problem of
reversely discovering and modifying properties
(challenge 2, 3), but they cannot deal with our challenge 1.
Some researchers [23]–[25] proposed scheduling and migra-
tion schemes in cloud using deep Q-learning. Based on deep
Q-learning, researchers [26], [27] proposed algorithms to
help the agent formulate a more useful strategy when playing
video games. Chen et al. [28] proposed an algorithm that
dynamically estimates the uncertainty of recent states, and
utilizes the queried demonstration data by optimizing a super-
vised loss, in addition to the usual DQN loss [29]. Todd [30]
presented an algorithm, Deep Q-learning from Demonstra-
tions (DQfD), which leverages small sets of demonstration
data to accelerate the learning process and is able to automat-
ically assess the necessary ratio of demonstration data while
learning thanks to a prioritized replay mechanism.

A core dilemma in learning [31] is the exploration-
exploitation problem and long-term credit assignment prob-
lem: in video games, it’s challenging to extensively explore
to obtain good performance, and to match the consequences
of an agents’ actions to the rewards it receives.

DoubleDQN [32], dueling architecture [33] and prioritized
experience replay are able to enhance learning efficiency and

TABLE 2. Disassembly code.

stability, which allow agents to effectively use their expe-
riences. Next, distributed DQN [34] was introduced to be
simultaneously run on many computers, which allow agents
to learn from experiences more quickly. These agents interact
with the same environment, updating data to a central mem-
ory. Another type of agents then samples the data from this
central memory.

The role of memory is to aggregate information from
previous observations (which is usually partial) and present
observations (which can reveal more information). To take
into account previous observations and present observations
into decision making, agents use memory to improve the
decision making. Recurrent neural networks such as Long-
Short TermMemory (LSTM) are used as short termmemories
in deep reinforcement learning. Recurrent Replay Distributed
DQN (R2D2) [35] combined off-policy learning with dis-
tributed training and neural network model of short-term
memory. Never Give Up (NGU) [36] was designed to modify
R2D2with another form ofmemory: episodicmemory, which
enables agents explore newer parts of the game.

Relying on undirected random actions to discover unseen
states, techniques of epsilon-greedy require large time to
explore state-action spaces, thus they do not scale well to hard
exploration problems. Many directed exploration strategies
have been proposed to overcome this limitation. Intrinsic
motivation rewards was developed for seeking novelty over
long time scales (agents use an undirected exploration strat-
egy when all states are familiar) and short time scales [37].
Recently, episodic memory and meta-controller (allows the
agent to choose a trade-off between near or long term per-
formance, as well as exploring or exploiting) [38] have been
used to speed up learning. However, all related works cannot
completely deal with all challenges in our environment.

III. FEATURES OF 3D VIDEO GAMES FROM REVERSE
PERSPECTIVE
In this section, we take the video game RTSG as a scenario,
and show how features of 3D video games and compilers
affect reverse procedures.

A. SCENARIO FOR ACCESSING A GAME PROPERTY
If a coordinate (often refers to X, Y, Z, but assuming only
X in this example) of a soldier is placed at Memory address
0 × 00000018 by game program, the relevant disassembly
code is like this:

The game program first visits 0×00001234 to get a value,
and takes this value +4 as an address. Next, it visits this
address to get a value (0× 00000010), and adds it to 8 to get
the target address. Finally, the program adds 9 to the content
of the target address, that is, coordinate increases 9.
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TABLE 3. Part of import table.

The game data structure is like this: 0 × 00001234 is the
address of a global pointer (address is fixed). This pointer
points to the data structure of a game battle, meaning that the
content of pointer 0 × 00001234 is the address of the game
battle. The +4 pointer points to a player’s data structure,
which points to the data structure of a player. The soldier built
by the player is stored in +8 places inside the data structure
of the player. Therefore, the coordinate address of the soldier
is [[0× 00001234] +4] +8.
Reverse engineering for above assembly code is the pro-

cess of finding ebx, eax, and 0× 00001234 in a reverse order
of game programs. However, the reality is not neat like above
scenario.

Not only the reality is cluttered, but also it is multiple.
Besides many value caches of different types (arguments
and stack residuals, etc.), engineers often find multiple same
values of one coordinate, because 3D video games have
rendering pipelines.

B. FEATURES OF 3D VIDEO GAMES AND COMPILERS
Ray tracing, Global illuminate, Shader, and Normal Map-
ping may use coordinates of an object, especially the newest
DirectX 12 intensively uses real-time Ray tracing. The fol-
lowing table shows the parts of import table of RTSG.

Although sometimes rasterization in render pipeline can be
computed by GPU and stored in graphics Memory, the fact
is that many same coordinates exist in different addresses
of non-graphics Memory, which makes reverse search of
coordinates of game objects difficult. Moreover, computer
threads will have performance problems of producer / con-
sumer model, thus nowadays game studio prefer Coroutines
to decrease resource usages.

If the game is developed with C# or Java, then the pro-
gram will be interpreted and compiled by CLR (Common
Language Runtime) or JVM (Java Virtual Machine), which
means JIT (just in time) will be used. JIT will compile
‘‘hot spot code’’ into local machine-related code with escape

analysis. The basic behavior of escape analysis is to analyze
the dynamic scope of objects and optimize it with following
plans.

1) ALLOCATION ON THE STACK
If a game object will not escape beyond the method, JIT will
allocate the object’sMemory on the stack, so that theMemory
space occupied by the object can be destroyed as the stack
frame pops out.

2) SYNCHRONOUS ELIMINATION
If the escape analysis finds that the game object will not
escape beyond the thread, then the synchronization measures
of the object can be eliminated.

3) SCALAR REPLACEMENT
If a game object will not be accessed externally, and the
object can be disassembled, then JITmay not create the object
when the program is executed, and instead allocate member
variables of the object on the Memory stack.

The results of above plans is that more same cached values
are generated, making reverse search difficult. Furthermore,
today’s most games use object-oriented programming which
introduces inherited classes and override functions. The com-
pilers implement override functions in assembly codes by
virtual table function.

IV. RMDQN MECHANISM
In this section, RMDQN’s main components are described,
they are RMDQN action engine and GDQN. Before that,
a manual reverse procedure and RMDQN reverse procedure
are shown first.

A. MANUAL REVERSE PROCEDURE
The general manual reverse procedure in Windows operation
system is shown as follows:

1 Engineers use a debugger to read the debuggee exe file
and exports PE (Portable Executable) structure. Find out
Entry Point, Image Base, Code Section, and Data Section
of debuggee.

2 Engineers invoke operation system functions to attach the
debuggee process. According to the engineer experiences,
recursively find suitable places to set hardware break-
points or software breakpoints, for monitoring Memory
data access, or for stopping code running.
2.1 Target values are found, but there are many same

values in different virtual addresses, and they may be
stored as a pointers link. Therefore, engineers need to
filter out false addresses, and go backwards to find out
the base address of target value.

2.2 Target functions are found, but parameters (always
hexadecimal characters) of functions need engineers
to map to meaningful human-readable characters.
Engineers sometimes monitor stack traces to ana-
lyze virtual table functions, ebp addressing and esp
addressing.
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3 Engineers modify target values or target functions, and
sometimes engineers need set variables and generate
patches for repeating usages.

B. RMDQN REVERSE PROCEDURE
To illustrate the convenience our method brought, RMDQN
procedure is shown as follows:
1 RMDQN reads the debuggee exe file and exports PE struc-

ture. Find out Entry Point, Image Base, Code Section, and
Data Section of debuggee.

2 RMDQN invokes operation system functions to attach
the debuggee process. According to GDQN, it recursively
finds suitable places to set software breakpoints if the
debuggee is not protected by anti-debug function, or set
hardware breakpoints if the debuggee is protected.
2.1 Target values are found fast by reading CR3 register

to obtain page directory table, and scanning the game
module Memory. If many same values exist in dif-
ferent virtual addresses, or they may be stored as a
pointers link, RMDQN will use its Q-table and action
engine to interact with the game. Finally, RMDQN
filters out false addresses, and goes backwards to find
out the base address of target value.

2.2 Target functions are found, RMDQN will use its
Q-table and action engine to interact with the game.
Hexadecimal parameters of functions is no need to be
mapped to human-readable characters. RMDQN will
monitor stack traces to analyze virtual table functions,
ebp addressing and esp addressing.

3 RMDQN modifies target values or target functions, and
sometimes RMDQN set variables and generate patches for
repeating usages if needed.

C. RMDQN ACTION ENGINE
RMDQN action engine is developed to deal with above chal-
lenge 1 in this paper. The action engine automatically uses a
limited action space to control game objects and navigate in
the game.

State space of RMDQN can be divided to 2 types according
to specific moments: the moment after conducting a debug
related action, and the moment after conducting a game
control related action. The Action list of RMDQN is shown
below.

D. GAME DEEP Q-NETWORKS (GDQN)
Unlike other DQNs, our enhanced DQN can learn actively,
which is also called as GDQN. GDQN is created to deal with
above challenge 2 and 3 in this paper. GDQN intelligently
uses its Q-table and action engine to interact with game
objects and observe corresponding changes. This section
introduces our enhancements and an active query algorithm.

Markov decision process (MDP) is a standard reinforce-
ment learning method, which can be defined by a tuple
M = {S, A, R, T, γ }, where S are the states, A are the
actions, R is the reward function, T is the transition prob-
ability function, and γ =∈ [0, 1) is the discount factor.

TABLE 4. Action list.

Conforming to the Bellman Optimality Equation, DQNs also
learned an approximation of the optimal value function by a
neural network. Q(s, a) in MDP are changed to Q(s, a; θ ) in
DQNs, where the parameter are learned by minimizing the
Temporal Difference (TD) loss function:

L (θ) =
(
r+ γ×maxa′∈AQ

(
s′,a′;θ̄

)
− Q (s, a; θ)

)2 (1)

There are two deep networks in DQNs: a target deep
network and an evaluated deep network, which have the same
architecture, but the target deep network is kept frozen for a
period of time. θ are the parameters of evaluated deep net-
work. θ̄ are the parameters of target deep network, which are
copied from θ regularly to stabilize the target Q-values. The
evaluated deep network is trained in each step to minimize
TD loss function.

To improved overall performance, we used a selection of
existing modifications that each has addressed a limitation of
classic DQNs.

1) DOUBLE Q-LEARNING
To reduce the overestimation of the target value, dou-
ble Q-learning calculates the target value by replacing
maxa′∈AQ

(
s′,a′;θ̄

)
with Q

(
s′, argmaxa′∈AQ

(
s′,a′; θ

)
;θ̄
)
.

The TD loss is:

L (θ) =
(
r+ γ × Q

(
s′, argmaxa′∈AQ

(
s′,a′; θ

)
;θ̄
)

−Q (s, a; θ)

)2

(2)

2) PRIORITIZED EXPERIENCE REPLAY
Prioritized experience replay samples more frequently those
transitions that needs much to learn. Prioritized experience
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replay uses weighted sampling of replay buffer to replace
the uniform sampling of conventional DQN. The probability
of weighted sampling each transition is relative to the last
absolute TD error:

psampling ∝ |
r+ γ×maxa′∈AQ

(
s′,a′;θ̄

)
−Q (s, a; θ)

|

w

(3)

3) DUELING NETWORKS
The dueling network uses the value and advantage streams.
For a particular state, if the value of the action is greater than
the average value, then the advantage function is positive and
vice versa. V(s) concerns the value of a state, and A(s, a)
concerns the relative importance of the action in this state:

Q(s, a) = V(s)+ (A(s, a)−
1
|A|

′∑
a

A
(
s,a′

)
(4)

4) MULTI-STEP LEARNING
The learning speed of conventional DQN is relatively slow in
the early stage of training. We can solve this problem through
Multi-Step Learning, so that the target value can be estimated
more accurately. The immediate reward can be accurately
obtained through interaction with the environment, thus it
speeds up the training speed. The truncated n-step reward
from a given state St is defined as:

Rnt =
n−1∑
k=0

γ kt Rt+k+1 (5)

The loss is thereby updated:

L (θ) =
(
γ nt × Q

(
St+n, argmaxa′∈AQ

(
St+n, a′; θ

)
;θ̄
)

Rnt − Q (St , a; θ)

)2

(6)

5) DISTRIBUTION OF RETURNS
In DQN, the output of the network is the expected estimate of
the state-action value Q. This expectation actually ignores a
lot of information. For example, the expectation of the value
of two actions in the same state is the same. However, the
value of the first action is 10 in 90% of the cases, and 110 in
10% of the cases, the value of the second action is 15 in
50% of the cases and 25 in 50% of the cases. Although
the expectation is the same, if we want to reduce the risk,
we should choose the latter action. Therefore we used the
cross entropy loss function (Kullbeck-Leibler divergence) to
calculate the gap between the two distributions, where dnt is
a target distribution after L2-projection, and d1t is a 1-step
distribution:

KL(dnt ||d
1
t ) (7)

6) NOISY NETS
We added noise to replace epsilon-greedy policy to increase
the exploratory ability of the model. The noisy parameters
η, which are learnable parameters, are placed in the output

layer of a network. The agent will obtain a sample of η and
act according to the optimal policy.

Besides existing modifications mentioned above, we
designed an active query algorithm tomake RMDQNbecome
an active learning method. Active learning requires an agent
interacts with an expert by querying what action to take in a
state. After querying, the expert will take over the decisions
of actions for a few consecutive steps, then the agent takes
back the decisions of actions. The challenge of this process
is to decide when to query the expert so that efficiency and
benefit are both kept. This challenge in our scenarios can be
solved by the query algorithm below:

Query Algorithm
Static: Uque_Length, Limit_Count, Limit_Slope
Input: Unew, Uque, ref Count
Output: Trigger_Query

Add Unew to Uque
Trigger_Query = False
Count++
If Count == Limit_Count
Count = 0
Unorm = Norm (Uque)
Slope = OLS (Unorm)
If Slope > Limit_Slope
Trigger_Query = True

Return Trigger_Query

Unew indicates uncertainty of a state, Uque is a
queue that stores uncertainties of recent consecutive states,
Uque_Length is the queue length. Count is a reference num-
ber which is initiated outside the algorithm and modified
inside the algorithm. When Count reached Limit_Count,
uncertainty values will be normalized and a linear regres-
sion method (Ordinary Least Square, OLS) will be used to
compute a Slope. When Slope is larger than Limit_Slope,
meaning recent uncertainties increase largely, the agent will
query the expert. Unew can be defined by variance of a state:

Unew = Var
[
Q
(
s, argmaxa∈AQ (s, a; θ)

)]
(8)

V. EXPERIMENTS
This paper selects two typical games for experiments: FPSG
and RTSG. We run the 3D video games in Windows 7 oper-
ation system, 8GB RAM, 1.6GHz Intel i7 CPU. RMDQN
action engine is implemented with the help of a tool, Auto-
Hotkey, which is a script programming software. AutoHotkey
can simulate mouse move, click and keystrokes, etc. There-
fore, RMDQN action engine is able to control any operational
game object like a human player is playing.

We trained two tasks in each game (FPSG and RTSG)
in the experiments to: discover coordinate values of a game
object; discover and lock a health value of a game object.
In each step of both tasks, the agent receives -1 reward. In the
task of coordinate discover, the episode ends until 6000 steps
or the goal is reached. The average reward of task is -527

157824 VOLUME 8, 2020



L. Yu, Z. Huo: Reversely Discovering and Modifying Properties Based on Active Deep Q-Learning

TABLE 5. Methods comparisons.

TABLE 6. Hyper-parameters.

in 80 trials. In the task of health discover, the episode ends
until 3000 steps or the goal is reached. The average reward of
task is -273 in 80 trials.

For comparisons, a high quality method that mentioned
in related works, DQfD, was modified and supported by
RMDQN action engine to adapt to our environment. There-
after, we compare RMDQN, DQfD and other variants in the
experiments as the table below shows. DDQN is prioritized
Double DQN.

Our query algorithm needs three parameters: Uque_
Length, Limit_Count, and Limit_Slope. A normalization
function proportionally scales each uncertainty in Uque
and multiplies each normalized uncertainty with 100 to
match Uque_Length. We use the Adam optimizer and tune
hyper-parameters in this paper in a limited manual way. For
each hyper-parameter in existing technologies, we started
with the values set in the related papers, and tune the most
sensitive hyper-parameters by manual coordinate descent.

A. ACTIVE QUERY POLICIES
When do agents query the expert? A simple way is to set a
fixed threshold. Once the uncertainty of a state exceeds the
fixed threshold, the agent asks the expert for demo. Otherwise
the agent decides to take actions by itself. However, it is no
necessary to query if the uncertainties of succeed states unin-
tentionally decrease. In addition, it is difficult to find a proper
threshold for different tasks. To prove that, we designed
RMDQN-a and RMDQN-p. The number of Limit_Query
is used to set max times of querying the expert in both
RMDQN-a and RMDQN-p. The probability of querying the

expert is no larger than 0.8 in RMDQN-p. The Limit_Query
is 500 in the task of coordinate discover, and 200 in the
task of health discover. The comparison results are shown in
Fig. 1(a-d). The x-coordinate is the numbers of steps, and the
y-coordinate is the scores in Fig. 1 and Fig. 2.

Fig. 1 (a) shows that besides RMDQN, RMDQN-a
achieves better performance in the first 1000 steps. The
reason is that RMDQN-a always queries the expert for a
demo until running out of Limit_Query. However, thereafter
its performance decreases and is surpassed by RMDQN-p,
meaning the expert is a constantly good consultant. Fig. 1 (b)
shows a different picture, the performance of RMDQN-a
and RMDQN-p do not bias too much. The reason is that
initial queries about coordinates are more important in RTSG.
Once obtaining correct direction of searching, following steps
would be easier.

RTSG often has more game objects than FPSG, and the
construction order of these game objects is not fixed. Like-
wise, the destruction order of these game objects is also
not fixed. These uncertainties make the performance of
RMDQN-a decreases as Fig. 1 (d) shows, which are common
phenomenon.

In general, the code space and data space of Memory
of RTSG is larger than FPSG, therefore the complexity of
searching is higher and more steps will be taken in RTSG
as Fig. 1 (a-d) presented. Among the compared methods,
RMDQN is the most competitive one.

B. AI EXPERT ABILITIES
Why use AI experts instead of human experts? We need
automatic debug in the last. We set three levels of ability (low,
middle, and high) of AI experts according to performances of
solving tasks. To simulate human experts as far as possible:
Low ability AI expert cannot perfectly solves tasks; Middle
ability AI expert solves tasks with low performance; High
ability AI expert solves tasks before the termination condition
is reached. These AI experts are used to collect demonstration
data in DQfD and take over decisions of actions in RMDQN.

C. AI EXPERTS IN RMDQN AND DQFD
How do three kinds of AI experts affect the performance of
RMDQN and DQfD, especially with different Limit_Query?
The high ability AI expert can make optimal choices and
solve tasks efficiently, while weaker experts (including mid-
dle ability AI experts and low ability AI experts) may fail to
solve the task.Weaker experts are obtained by random actions
with a probability rather than following the perfect policy.
However, the random actions sometimes successfully reach
the end of episode.

In previous experiments, RMDQN is used with high abil-
ity AI expert, and the previous notation RMDQN equals
to RMDQN-h, likewise DQfD-h. In following experiments,
RMDQN-h and DQfD-h means that high ability AI experts
are used, RMDQN-w and DQfD-w means that weaker
experts are used. Fig. 2(a-d) shows the effect of expert’s
ability on RMDQN and DQfD in two kinds of tasks.
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FIGURE 1. (a) Coordinate discover in FPSG. (b) Coordinate discover in
RTSG. (c) Health discover in FPSG. (d) Health discover in RTSG.

The Fig.2 demonstrates both RMDQNandDQfD can solve
the tasks in few steps and learn efficiently with the high

TABLE 7. Statistics of different ai experts.

ability AI expert. In contrast, they learn slower and are misled
by weaker AI experts more or less. Nevertheless, DQfD
converges at a worse score with the weaker AI experts, and
RMDQNconverges at higher scores. Therefore, RMDQNcan
take full advantage of weaker AI experts, which are similar
to ordinary human experts, meanwhile RMDQN can make
better choices by itself.

In general, DQfD is passive and RMDQN is active. With
bigger Limit_Query, DQfD begins with more demonstration
data, which leads to better initial performance, but its perfor-
mance suffers by the imperfect demonstration data. RMDQN
is more robust to learn from weaker AI experts and surpasses
DQfD in most of cases, which proved advantages of active
learning.

D. UNCERTAINTY FLUCTUATIONS
How do the uncertainties of states change during the learning
processes of agents? Uncertainties of a state can be calculated
by variances of the state. Overall uncertainties in critical steps
are obtained during the learning processes. The settings of
this experiment are according to previous settings. Fig. 3(a-d)
shows the uncertainties fluctuation in two kinds of tasks.

The x-coordinate is the numbers of steps, and the
y-coordinate is the degrees of uncertainty in Fig. 3. The
degrees of uncertainty depend on the complexity of problem.
There are periods that the uncertainty is non-increasing in the
two kinds of tasks. In the beginning, the number of explo-
ration of the agent is larger than the number of exploitation.
Therefore, the uncertainties in the beginning increase in both
RMDQN and DQfD. It is observed that the uncertainties are
not decreasing all the time. During the learning processes, the
general trend of uncertainties decrease. In the end of learning
processes, the uncertainties gradually converge.

Generally speaking, Fig. 3(a-d) showed that the uncertain-
ties are churned to gradually converge. It is precisely because
of helps of AI experts, whether in a passive way or active
way. In addition, RMDQN demonstrates its adaption again,
shrinking the uncertainties fast.
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FIGURE 2. (a) Coordinate discover in FPSG. (b) Coordinate discover in
RTSG. (c) Health discover in FPSG. (d) Health discover in RTSG.

FIGURE 3. (a) Coordinate discover in FPSG. (b) Coordinate discover in
RTSG. (c) Health discover in FPSG. (d) Health discover in RTSG.
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E. GAME AI ANALYSIS
Why are game AIs not suitable for Memory search? We
concisely analyze AlphaGo, which used modified CNN and
MCTS (Monte Carlo Tree Search) to find a proper policy in
a short time. This idea may be used in reverse engineering.
However, we discovered that ‘‘temporal difference’’ is better
thanMCTS in our scenario after experiments, because rollout
policy may not reach a meaningful Memory address in the
end, which is not suitable for our scenario.

F. VIDEO DEMONSTRATIONS AND IMPROVEMENTS
A video demonstration of RMDQN is provided [39], which
shows the result of reversely modifying properties in two
games. Three typical modifications are shown in the video: a
light car is modified to be invincible; the war fog is removed
so that enemy unites in anywhere can be seen (which is called
map hack); enemies glow behind walls.

Some games use VAC (Valve Anti Cheat) system to detect
and ban cheating players, but it does not detect our program,
thus we successfully changedMemory values in steam online
games while contesting with other human players, as the
video demo shows.

In addition, we propose some anti-reverse engineering
means. Knowing how to debug the video games is the premise
of knowing how to anti-debug. Therefore I suggest that:
1. Using CRC (Cyclic Redundancy Check) or other integrity

check methods to protect target code integrity.
2. Forbidding system call OpenProcess, GetProAddress,

CreateRemoteThread, WriteProcessMemory and Virtu-
alAllocEx, etc. to access target process.

3. Regularly searching whether there are handles of other
processes in the system that contain handles of target
processes. Eprocess is the process structure of Ring 0,
and PEB (Process Environment Block) is the structure of
Ring 3.

VI. RESEARCH MOTIVATION
Software engineers use semi-automatic tools for debugging
software. Semi-automatic tools, including Ollydbg, Windbg,
and Cheat Engine, are also mature enough for reverse engi-
neering. However, it still needs huge manual operations to
manipulate the tools and needs large brainwork to analyze
computer Memory data, register statues, stack traces, and
assembly jumps, etc. It is such a double burden to analyze
assembly code with human eyes and brains, especially for big
software. Furthermore, Ollydbg seems to be frozen because
its main functions have not been updated since year 2014.

Therefore, we proposed a new automatic method for
discovering and modifying software properties to improve
debugging technology. For evaluations of our method,
we choose a specific software domain, 3D video games.
According to the features of video games, this paper selected
two typical games for demonstrations and evaluations of our
method. Our method has following advantages:
1. Because of RMDQN action engine, RMDQN does not

need simulation environments, i.e., it works in real

software environments. Traditional DQNs for games are
often used in simulation environments or Atari games
from the Arcade Learning Environment, so that an agent
can easily interact with virtual ambient objects, and obtain
reward immediately. However, traditional DQNs need
more supports in real software, because perceptions and
actions must be translated to specifications conforming to
real software settings.

2. Because of GDQN, RMDQN learns to find target memory
addresses intelligently and automatically. Generally, there
are many same values in different virtual addresses of a
video game in computer Memory, but only one virtual
address stores the real property value, and it may be
stored as a pointers link. Moreover, this virtual address
may change after each starting of the video game. Not
only virtual addresses may change each time, but also the
sequence of game functions may change, causingMemory
stack traces change. In addition, Object-oriented program-
ming introduces inherited classes and override functions.
RMDQN can handle above problems.

Ourmethod has following disadvantages. The fundamental
technology of our method is reinforcement learning. Any
reinforcement learning method needs to tackle two important
problems: exploration-exploitation problem and long-term
credit assignment problem. However, different reinforcement
learning tasks require different exploration policy and assign-
ment policy depends on types of tasks. Therefore, our method
may encounter performance problem in general tasks.

RMDQN tackled the two problems above. Furthermore,
if integrating with debugging software, it is possible to inter-
act with human experts to switch debugging control seam-
lessly, and allow human experts to inspect recent states of
Memory, registers and stack traces. It will be proved that
our method of active and deep learning can improve debug-
ging technology in wider scenarios, or general software. For
example, cloud services are connected by network protocols.
We can hook Send() function of DLL in the operation system
to do the reverse jobs.

VII. CONCLUSION
This paper did not use artificial intelligent to train game
NPCs (Non-Player Character) or like AlphaStar in game
StarCraft 2, but trained an improved AI to modify proper-
ties of video games. The purpose of this paper is to boost
automatic debugging in video games. In this paper, we pro-
posed RMDQN to reversely and automatically discover and
modify properties in video games. A video demonstration
is provided to show the effect of reversely modifying game
properties by out method. If integrating with debug software,
it is possible to interact with human experts to switch debug
control seamlessly, and allow human experts to inspect recent
states of Memory, registers and stack traces. It was proved
that our method can improve debugging technology in 3D
video games, and it will be applied in cloud services with few
modifications.
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