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ABSTRACT Assist-as-needed (AAN) robotic-rehabilitation therapy is an active area of research which aims
to promote neuroplasticity and motor coordination through active participation in functional task. A key
component of this strategy is to provide robotic assistance to patients only when needed. To achieve this,
accurate estimation of patients’ movement/functional ability (FA) is required to evaluate patients’ need for
robotic assistance and to provide the required amount of assistance, which is still a significant challenge to
AAN robotic-rehabilitation therapy. This study proposes an AAN technique based on a new Functional
Activity Spline Function (FASF) to estimate patients’ FA and to adapt robotic assistance. The FASF is
formulated using z-spline curve to estimate patients’ movement ability based on the quality-of-movement
and the time score of the patient in each functional task. A Linear Quadratic Gaussian Integral (LQGi)
torque controller is applied with a FASF-to-torque mapping algorithm to physically provide low-level torque
assistance on the elbow/shoulder joints. Fifteen patients were involved in the experimental study which
consists of two tasks: (Task1) a pick-and-place task and (Task2) a table-to-mouth reaching task. The results
showed that the proposed ANN control strategy has successfully estimated the patients’ FA consistently
with high repeatability, and able to provide the robotic assistance according to the patients’ needs in the task.
For different levels of impairment, the average percent-torque assistance across trials relative to the highest
possible assistive torque are within the range of 5.43%-24.85% (for themildly impaired) and 75.14%-97.14%
(for the severely impaired) patents in both reaching task consistent with their FA estimation.

INDEX TERMS Assist-as-needed (AAN), rehabilitation therapy, functional capability, stroke, impairment,
z-spline function, a linear quadratic Gaussian (LQG), torque assistance and hybrid finite state automata.

I. INTRODUCTION
Stroke is a leading cause of disability world-wide [1], [2].
It significantly reduce patients’ functional ability and per-
formance of activities of daily living (ADL) [3]. Statistics
show that about 80% of people with acute stroke manifest
upper limb motor impairment accompanied with reduced
arm function [4]. Even 4 years early after stroke, about
50% would still have functional impairments [4]. Regaining
patients’ functional ability after stroke is the primary focus
of physical and occupational therapy [5]. Early therapy after
stroke usually include passive exercise training to prevent
muscle atrophy and to relieve joint contractures [6]. However,
as the training progresses, active participation is encouraged

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Huei Cheng .

to provoke neuroplasticity of affected regions of the nervous
system and to improve patient functional ability [7], [8].

Clinical studies have suggested that, for patients who have
regained parts of their motor functions [9], a rehabilitation
treatment integrated with voluntary efforts of patients facil-
itates recovery of lost motor ability [10]. Thus, assisting
every movement of the patients is not found to be beneficial
compared to when they are actively involved in the exer-
cise [11]. Active training requires cognitive processing which
stimulates neuroplasticity and thus achieve greater gains in
performance than movement training that did not encourage
cognitive processing [12], [13].

Assist-as-needed robotic therapy is currently a driv-
ing trend in robot-aided rehabilitation therapy [14] that
emphasizes patient active participation [15]. Under the
assistive scheme, the patient performs the prescribed task
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independently whereas the robot should provide assistance to
aid the patient only when it is deemed necessary otherwise it
withholds the assistance [16]. Some AAN scheme introduces
a baseline minimal robotic assistance that is first provided
to the patients to assist on the exercise and thereafter the
robot decreases the assistance according to the patients’ need
or movement ability thus adapting assistance to the patient’s
functional capability [17].

Several studies have attempted to implement AAN strate-
gies in robotic therapy however, a major challenge is how
to effectively determine patients’ movement ability or per-
formance in order to adjust robotic assistance and also
to determine the amount of assistance required [18], [19].
Considering the method of extracting information from the
patient (patient specific movement information), two major
classifications are possible: (kinematic or biomechanics)
sensor based methods and model-based approaches [8], [20].
Krebs et al. [21] first implemented a performance-based
progressive robotic therapy with MIT-Manus that uses kine-
matic and biomechanics information from sensors, namely
speed, time, and EMG thresholds, to initiate robot assistance.
The patient’s performance was determine using the patient’s
active muscle power and motion accuracy [21], [22]. EMG
activity in 14 muscles of the shoulder and elbow was used
to calculate patients’ muscle power and consequently the
stiffness of the robot controller was adjusted based on the
patient’s performance in the last reaching movement [21].
Papaleo et al. [23] proposed a patient-tailored adaptive ther-
apy for an upper limb rehabilitation robot that includes a
module for evaluation of patients’ performance based on
biomechanical data. The patients’ biomechanical data were
recorded from sensory system (i.e. from encoders embed-
ded in the robot, magneto-inertial sensor, and accelerome-
ter placed on the patient arm). By this means, the module
produces a discrete response for updating control parameters
(i.e. stiffness and task duration), which allow modulation
of robotic assistance and task complexity. Another sensor
based approach was proposed by Vergaro et al. [24] using
a force field generator, a performance evaluation module,
and an adaptive controller. The force field generator uses
an impedance control scheme which rely on kinematic sen-
sor information from the robot (e.g. angles and angular
velocities). Performance evaluation is achieved by stipu-
lating some performance criteria to obtain a patient score
at the end of each session. Consequently, the controller
progressively decreases the gain of the force field, within
a session, and propagates the minimum gain achieved in a
session to the next session. Other sensor-based adaptive tech-
niques include the adaptive impedance method proposed by
Pérez-Ibarra et al. [25] which estimate patients’ contribution
from torque and kinematic information during the motion and
adapt the robotic assistance based on patient’s performance
in a video game. Another is the reinforcement learning-based
impedance controller that actively reshapes the stiffness of
the force-field to the subject’s performance, while providing
assistance only when needed. The proposed controller is built

upon action dependent heuristic dynamic programming using
the actor-critic structure, which does not require prior knowl-
edge of the system model but the kinematic error between
reference trajectory and the actual trajectory of the system.

In contrast with these scheme, Wolbrecht et al. [26] pro-
posed a model-based approach using a standard model-based,
adaptive control technique to learn the subject’s abilities and
to assist in completing movements while remaining compli-
ant. The assist-as-needed scheme is consequently achieved
by adding a novel force reducing term to the adaptive con-
trol law, which decays the force output from the robot
when errors in task execution by subjects are small [26].
Pehlivan et al. [8] also proposed a model-based approach
under a minimal assist-as-needed mAAN strategy. The
authors applied a Kalman-based sensor-less force estima-
tion technique which determines a disturbance term cor-
responding to subjects’ functional input in reaching task.
The estimated functional input is then applied to update
the derivative feedback gain which consequently modify the
bounds of allowable error on the desired trajectory, allowing
subject-tailored participation. Other model-based adaptive
control techniques emphasize learning controller or model
parameters to adapt the robotic assistance. An example is
the strategy proposed by Bower et al. [27] that learns a
state-dependent model of participant utilizing an unstructured
inertial model that depends on the position and direction of
the desired motion in the robot’s platform. The approach
learns a patient impairment model that accounts for move-
ment specific disability in neuromuscular output and com-
bined with assist-as-needed force decay to promote more
engagement and participation from the patients. Other exam-
ples include the RL framework used in [28] which learns
the sensitivity factor of the system model in order to reduce
physical human robot interactions, and the AAN controller
framework proposed by Obayashi et al. [29] that uses a
RL algorithm to adjust the stiffness of an IC in order to
help subjects learn a dart-throwing task. Another noteworthy
AAN adaptive control (hierarchical compliance) strategy by
Liu et al. [30], proposed for the soft ARBOT, and it suggests
a method to estimate the subject’s active ankle torque and
movement performance by monitoring the subject’s active
participation online adapted to the individual’s behavior and
ability.

Some of the merits of model-based approach is that they
could minimize cost of equipment and enhance compliance
but their heavy reliance on the accuracy of the robot model
constitute a potential limitation in terms of remodeling for
different robotic systems, and inaccurate estimation of sub-
jects’ abilities due to model excitation errors. This would
lead to inconsistencies in estimation for a wide subject
population [27].

So far, finding an appropriate estimation strategy for
patients functional/movement ability under an AAN scheme
that is consistent and repeatable for a wider patient’s pop-
ulation, and is consistent with clinical procedures is still
an unresolved aspect of AAN research [5]. In this article,
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we propose an assist-as-needed robotic rehabilitation tech-
nique based on a new functional activity spline function
(FASF) which sufficiently and consistently estimate patients’
movement activities in functional task to adapt robotic assis-
tance. Our strategy is sensor-based, however, unlike previ-
ous sensor-based strategies proposed by Krebs et al. [21],
Papaleo et al. [23], and Vergaro [24] the FASF algorithm
proposed in this study applies a z-spline curve to estimate
patient’s movement ability based on patient’s quality of
movement and the time score in each functional task, much
similar to the conventional clinical procedures of estimation
of functional activity (e.g. the Action Research Arm Test
(ARAT), WMFT, etc.). Thus, the main contribution of this
work is to bridge the gap between the clinical procedure
and robotic approach of estimation of patient functional/
movement ability, allowing consistencies or wider patients’
population and allowing clinical procedure to be automated in
robotic therapy. For this particular implementation, the base-
line controller is a Linear Quadratic Gaussian (LQG) torque
controller with integral action for robustness. Output of a
FASF-to-torque mapping algorithm is coupled to the LQG
controller to physically provide low-level torque assistance
on the elbow and shoulder joint during reaching tasks.

The main contributions of this paper are:
1) A new novel patient’s functional ability estimation

function, known as the Functional Activity Spline Function
(FASF) that is directly related to actual clinical assessment
methods for estimating functional capability.

2) A newAssist-as-Needed control strategy that is based on
the FASF algorithm, which is capable to regulate the amount
of robotic assistance.

The rest of this paper is organized as follows: the hard-
ware description and system modeling are specified firstly
in section II, followed by the control architecture given as
section III, experiment provided in section IV, results and
discussions in section V and finally the conclusion is given
in section VI.

II. HARDWARE DESCRIPTION AND SYSTEM MODELING
A. MECHANICAL SYSTEM
The prototype of the robotic device is shown in Fig.1.
The device is five degrees of freedom (5-DOF) upper-
limb rehabilitation system with 1-DoF at the shoulder,
1-DoF at the elbow, 1-DoF at the forearm, and 2-DoF
at the wrist joints allowing the possibility of performing
several upper-extremity reaching tasks. The device allows
abduction/adduction (AA) movement of the shoulder joint,
flexion/extension (FE) movement of the elbow, pronation/
supination (PS) movement of the forearm, and flexion/
extension (FE) and abduction/adduction (AA) movement of
the wrist joints.

For actuation, two back-drivable brushless DC motors
(Maxon RE50, 370955, 200W, 36 V) with a gear ratio
of 1:113 are used for actuation of the shoulder and elbow
joints. Brushless DC motors are specially chosen to offer

FIGURE 1. The upper limb rehabilitation exoskeleton.

low noise, low friction, low backlash, and compact size.
The rest of the joints are passive to allow the possibility of
performing several reaching tasks. Torque sensors with strain
gauge mechanism are coupled on each joint to measure the
total joint torque. To determine the joint position and range of
motion, rotary type potentiometers are also attached at each
joint.

B. FRICTION MODEL
Joint stiffness and frictional torques are estimated and applied
in a feed-forward loop to the LQG torque controller to com-
pensate the model uncertainties due to the joint friction (see
Fig. 3.). The stiffness and frictional torque model is given by
the method proposed in [31]:

τf (q, q̇) =


b0 q = 0, q̇ = 0
b1sgn (q̇)+ b2(q̇) q̇ = 0
τs(q) q 6= 0, q̇ = 0

(1)

where τf is torque friction, b0 is the static friction torque;
q is the 5 × 1 vector of joint angle position, q̇ is the 5 ×
1 vector of joint angular velocity, b1sgn (q̇) is the coulomb
or kinetic friction torque: a signed function of the joint angle
velocity; and b2(q̇) is the damping friction torque: a function
the upper limb rehabilitation exoskeleton of the joint velocity.
τs(q) is the stiffness torque which is a function of joint angle
position. Table 1 presents the estimation of the friction and
stiffness torque parameters for the shoulder and elbow joints
respectively.

C. SYSTEM IDENTIFICATION
In control application, system identification represents a
quick approach to obtaining a dynamic model or transfer
function of joints of a multi-body robotic system [32]. It is
particularly useful in some occasion where representation
of the system dynamically is not available. In this study,
to obtain the transfer function of joints of the device, the sine-
by-sine method is applied with a periodic band limited input
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TABLE 1. Parameters and models of joint friction and stiffness torque.

excitation signal given by

i (t) = i0 sin
(
wf t

)
(2)

where i is themotor current, i0 is the signal amplitude selected
in the range [−0.5A 0.5A] of rated motor current, wf is
the fundamental frequency selected in the range [4π 8π ]
rad/s based on the overall model sampling time and t is the
sampling time. Fig.2a and Fig. 2b. show the simulated and
measured responses for the different sine-wave input applied
to the shoulder joint and elbow joint respectively. The red
bold line (Fig 2a) and the blue bold line (Fig. 2b) indicate
the best fit model for both joints respectively. Other lines are
given according to their percentage of fitting in Table 2 and
Table 3.

FIGURE 2. Simulated and measured responses for the different sine-wave
input applied to the (a) shoulder joint and (b) elbow joint. Red line curve
indicates best fit in (a) and blue line curve indicates best fit in (b).

TABLE 2. Estimated models for shoulder joint.

TABLE 3. Estimated models for elbow joint.

III. AAN CONTROLLER ARCHITECTURE
The overall AAN control system architecture is depicted in
Fig.3. The objective of the control is to adjust robotic assis-
tance to patient’s functional movement capability in reaching
tasks (table-to-mouth and pick and place tasks). Such that
assistance is provided only when the patient’s functional
ability (FA) is low and decreased until completely withdrawn
when patient’s FA improves. The AAN controller integrates
three controller algorithms in a hierarchical structure: the
FA algorithm for estimation of patients’ functional ability,
the hybrid finite state automaton to provide high-level coor-
dination of the various reaching tasks, and the low-level
LQG integral torque control algorithm to physically provide
torque assistance. The following subsection provides more
discussion.
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FIGURE 3. Control Architecture of the proposed AAN control strategy based on FA estimation algorithm.

A. FA ALGORITHM
The proposed FA algorithm is a new functional activity spline
function (FASF) to accurately estimate patients’ movement
ability during functional activities. The motivation for the
current approach is to find an appropriate robotic method
of scoring patients FA that allows real time automation in
robotic therapy, which is quite uncommon and challenging.
Patients with severe case of neurological impairment perform
very poorly on the time scale, whereas those with much better
motor control ability have tendencies to complete reaching
task much more quickly (typically less than 10secs). The
variability in patients’ functional ability based on their time
score thus approximates a z-spline distribution curve with
almost flat response at each limit of the curve. Fig.3 shows a
typical curve of patients’ functional activities based on time
score adapted from the work of [33]–[36] and a z-spline
interpolated curve.

In this study, we define the functional movement ability of
the patients’ based on the z-spline. Following clinical proce-
dure, the indices for evaluation are the time score and quality
of patients’ movement. These indices serve as the input to
the z-spline function to estimate patient’s functional ability in
real time making it suitable for application in robotic therapy.
For assessment, we apply two clinical scales: Action research
arm test (ARAT) for time score and wolf motor function
test (WMFT) for quality of movement, which have proven
consistency and inter-rater reliability. The ARAT scale rank
patients’ functional movement ability level in the range 0 – 3
based on time score and WMFT give the FA score based on
quality of movement in reaching task, see Table 4. In our
previous work [37], we have used the statistical normalization
function for patient’s functional ability. This approach had
limitation because it assumes the distributions of patient’s
functional ability to be linear and also does not allow real time
implementation in robotic therapy. The z-spline polynomial
function adopted in the current study circumvent this limita-
tion. With the polynomial splines function, the interval [a, b]
of each continuous function can be approximated arbitrarily.

Given the z-spline function shown in Fig. 4, we define the
FASF, i.e. FA(q, t) as

FA(q,t) =
N
2
(∅t + ∅p) (3)

∅t and ∅p are the time score and quality of movement (QoM)
respectively,

TABLE 4. ARAT-adapted functional ability scale (FAS).

FIGURE 4. Time scores based on ARAT, The broken lines represent
z-spline approximation.

where ∅t is given as:

∅t = N.zmf (t,(th, t limit)) (4)

and:

∅p = N.zmf (qrms, (qhrms, qlimit rms)) (5)

t is the time taken to complete a task, th is the corresponding
time an healthy participant would take to complete the same
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task, t limit is the maximum time given to complete the task,
qrms is the quality of movement measured as root mean
square, qhrms is the quality of movement measured as a root
mean square deviation from the trajectory profile of healthy
participant, qlimit rms is the maximum root mean square that
can deviate from the reference trajectory, zmf is z-spline
function, and N is the highest functional ability level (i.e.
N = 4 for the ARAT). The z-spline function, zmf (x,a, b)
is defined as

zmf (x, a, b)

=



1, x ≤ a

1− 2
(
x − a
b− a

)2

, a ≤ x ≤
(
a+ b
2

)
2
(
x − b
b− a

)2

,
( a+b

2

)
≤ x ≤ b

0, x ≥ b

(6)

where x = t or qrms is the continuous variable. [a, b] represent
any interval on the continuous function, which stands for the
interval between the two regions of flat response behavior in
this case (Fig. 4).

B. FA - TORQUE MAPPING ALGORITHM
As seen in Table 4, the FA score is given from 0 to 3 which
corresponds to the levels of functional ability. To gener-
ate smooth reference torque based on the functional ability
level, an FA-to-torque mapping algorithm is proposed in this
section. The algorithm is defined to assign minimal torque
assistance sufficient to complete a task and to map to a lower
torque assistance should the patient show more functional
capability. For patients or healthy subjects with significant
functional capabilities, the algorithm ensures that a reference
resistance torque is derived to resist the movement of the
patient. Thus, the algorithm ensures that minimum assistance
is given to a patient with significant functional disabilities
and decreased to the point of resisting patients with more
functional capabilities.

Given the FA score from the preceding section, the refer-
ence torque assistance is proposed as

τAAN = τ0

(
1− F(qrms, t)

k
N

)
+ τf (q, q̇) (7)

where τAAN is the reference input to the torque controller, τ0
is the starting torque assistance given to the severe disability
level, τf (q, q̇) is the frictional torque, and the constant k is
given as:

k =

{
1, if resistance is not included
2, resistance provided

(8)

C. LQG TORQUE CONTROLLER WITH INTEGRAL ACTION
1) CONTROLLER DESIGN
Typical system dynamics for LQG control are given by
the stochastic state space equation of the open-loop plant.

The state space equations are described by the complete
system and output equations and can be written as follows:

τ̇ = Aτ + Bτu + w (9)

y = Cτ + v (10)

where τ = [I , İ ]T is a 2 × 1 vector of states of the motor-
joint-link system. I and İ are the motor current and the deriva-
tive of the current respectively. The A, ≥ B, and C are the
states matrices. τu is the control input to the motor and y is the
output current of the motor. w and v are disturbance input and
measurement noises, respectively, which are assumed white
Gaussian noises with zero mean and covariance matrices W
and V i. e

Q = E (wwT ) , R = E(vvT ) (11)

It is assumed w, v are not correlated with each other, hence
E(wvT ) = N .
Given the above plant, the LQG torque controller with

output-states feedback and integral action is therefore
designed as

˙̂τ = Aτ + Bτu + L(y− C τ̂ ) (12)

where L is the Kalman gain calculated to stabilize the output
observation error (y− C τ̂ ), and control input is

τu = −k
[
τ̂ , τi

]T
= −kτ τ̂ − kiτi (13)

where K = [kτ , ki] is the 1 × 2 optimal gain matrix, τ̂ is
the Kalman estimate of the system states, τi is the integrator
states given by

τ̇i = τAAN − y = τAAN − Cτ (14)

where τAAN is the reference input to the LQG torque con-
troller defined in Eqn. (7), Kalman gain L is determined by
solving an algebraic Riccati equation given by:

L = (PCT
+ N̄ )R

−1
(15)

where P is the state covariance matrix given by:

P = E[(τ − τ̂ )(τ − τ̂ )T ] (16)

R̄ = R+ HN + NTHT
+ (HQH )T (17)

N̄ = G((QH )T + N ) (18)

where Q is covariance matrix of the disturbances (Eqn. 11),
R is the covariance matrix of the measuring noise (Eqn. 11),
and H is the eigenvectors.

The optimal gain matrix K on the other hand is obtained
at the point where the feedback law minimizes the quadratic
cost function given by

J (u) =
∫
∞

0

{
xTQx + 2xTNu+ uTRu

}
dt (19)

where z = [τ̂ , τi]
T

Fig. 3 shows the overall proposed control strategy in this
research work with the LQG representing a baseline low level
controller.

157562 VOLUME 8, 2020



S. Y. A. Mounis et al.: AAN Robotic Rehabilitation Strategy Based on z-Spline Estimated FA

FIGURE 5. Finite state hybrid automaton transition.

D. HYBRID FINITE STATE AUTOMATA
To effectively automate and execute the FA estimation algo-
rithm, a six-state hybrid automaton (see Fig. 5) is proposed
and implemented here as a high-level supervisory controller.
The hybrid finite state automata is used to ensure effective
timing for each task and transition between tasks. Patients’
functional activity is computed immediately after each task
and is used to compute the assistive torque in the next task.
This process requires effective timing and accuracy; thus,
hybrid automata is implemented in this study. The automaton
describes a mix discrete and continuous dynamic system
formally defined as a tupleH = (Q,X ,R, ε, x0,Qm) where

• Q is the set of discrete mode/state representing the dif-
ferent phases of each task as shown in Fig.5 /Table 5

• X defines the continuous state space. This represent
• the FA algorithm (i.e. Eqn. 3) in this context.

• R defines the set of control symbols generated by the FA
algorithm. The output control symbols R varies accord-
ing to the functional activity time score ∅t and the quality
of motion ∅p. Thus, ∅t measures how long a patient is
able to complete a given task mode.

• ε represent the state transition function or jump or guard
conditions given in Table 5

• x0 is the initial condition, and
• Qm represent the default state Q0 or marked state Q6.

Table 5 and 6 presents the states and transition/event logic,
respectively, of the hybrid automaton shown in Fig. 5. The
default state Q0 marks the initial state of the hybrid automata
where the patient’s hand/arm is resting on the table. Tran-
sition from the default state to the other states Q1 to Q6 is
made possible by the jump conditions (or events) ε. Two
types of events/jumps are triggered in the automata: (1) the
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TABLE 5. Transition logic states.

event that causes transition from one state to another (i.e. ε1,
ε3, ε5, ε6, , ε8, ε9, ε10,, ε12, ε13, ε14) and (2) the event that
causes transition to the same state (i.e. ε2, ε4, ε7, ε11, ε13).
The former is triggered based on successful completion of
a task within the stipulated time slot (β = 60s) whereas
the latter event is triggered upon failure to complete the task
defined for the given state within the stipulated time.

It is triggered to assist the patient to complete the task
for a state. Note that β for the shoulder adduction partial
range is given a stipulated time slot of 30s. The variables q
represent the current angular position of the joints (i.e. elbow
or shoulder joint). qi denote the position of the joint just
before entry to the state, thus q − qQi > λ denote the
difference in the joint angle position upon exiting the state
Qi,. λ is themaximum allowable range ofmotion for the given
reaching task. t represent the total time taken for a task, where
F is the flag that signals the execution of a task. Overall, three
logics enable inter-state transition (q − qQi > λ, t > β,
and F = ε1) as shown in Table 5. In each state the patient’s
functional activity FA is computed which is made available
upon transiting the state (transition action).

Fig 5. The finite-state hybrid automaton architecture.
Rounded rectangles represent finite states while arrow lines
represent transitions. The initial state is marked Q0 with an
incoming arrow to the state. εi represent the state transition
function or jump as given in Table 5. Half-range shoulder
adduction is performed by transiting states: Q0, Q1 and Q2

TABLE 6. Event logic.

with transition logics ε0, ε1, ε2, ε3, ε4, while full-range
shoulder adduction is performed by transiting the states:
Q2,Q0 andQ3with the state transition logics: ε5, ε6, ε7, ε8.

Full-range shoulder abduction is represented by states: Q0
and Q2 with state transition logic, ε4; full elbow extension
is represented by states: Q0 and Q4 with the state transition:
ε0, ε10, ε11; and full range elbow flexion is represented by
states: Q5 and Q6 with the state transition: ε12, ε13, ε14.

IV. EXPERIMENT
A. SUBJECTS
This study was approved by the IIUM research Ethics com-
mittee (IREC). Fifteen hemiplegic patients were recruited
from the IIUM Physiotherapy & Rehabilitation Clinic,
Kuantan, Malaysia and Heritage Physiotherapy Rehab,
in May 2019, within the timeframe of study. The case file
of each patient was documented before the experimental ses-
sion. Details of the patients’ pathologies are given in Table 7.
Generally, inclusion criteria required patients to be right
hemiplegic manifesting limited range of movement on the
shoulder and elbow joint. All participants willingly gave their
consent to participate in the experiment and were shown how
to use the robotic device.

B. EXPERIMENT PROTOCOL
The clinical experiment is divided into two tasks: (Task 1)
pick-and-place reaching task and (Task 2) table-to-mouth
reaching task. Each task starts with an evaluation trial where
the exoskeleton robot is operated in passive mode. The evalu-
ation allows to preliminarily determine the patient functional
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TABLE 7. Post stroke patients’ details.

ability and to set a reference assistive torque (Eqn. 9) for the
subsequent trials.

1) TASK 1
The pick-and-place reaching task involves shoulder
abduction/adduction movement performed in accordance
with clinical procedure [38]. Under this task, each patient
is instructed to pick a bottle (weighing 340g) from one
table position to another position while wearing/supported by
the exoskeleton robot. The device provides some resistance
to patient’s movement in the passive evaluation mode and
assistance-as-needed in the active mode.

2) TASK 2
The Table-to-mouth reaching task involves elbow flexion
and extension movement where each patient is required to
hold/grasp a bottle of water weighing 340g from table posi-
tion and move the bottle to the mouth while wearing the
exoskeleton robot.

V. RESULTS AND DISCUSSIONS
A. ETIMATION OF SUBJECT FUNCTIONAL ABILITY (FA)
Experiment has been conducted to validate the FA estima-
tion algorithm (Eqn. 3) by comparing the estimated FA with
standard clinical measure ARAT (Table 4) in reaching task.

The robotic device is powered down to ensure only patients’
effort is provided to perform the task without assistance
from the device (while estimating the patients’ functional
movement ability). Fig 6 and Fig. 7 show the plot of the
quality of movement, QoM (∅p) and time score, TS (∅t)
for some patients performing pick-and-place (Task 1) and
table-to-mouth (Task 2) reaching tasks. It is clear that the FA
algorithms put these patients at different functional capability
a level which is closely related to their scores in the ARAT
measurement scale (Table 6). Average functional ability esti-
mates for patients labeled as (Patient 1) and other patients
donated as patient (patient 2) are with a mean score of
FAPatients1 = 2.96 and FAPatients2 = 0.78. Also, for patients
(patient 3 and patient 4) the average functional ability is
FAPatients3 = 3.20 and FAPatient4 = 0.34 which approximates
to their clinical rating (by therapist) of 3 and 1 using the
ARAT scale.

FIGURE 6. The plot of the quality of movement, QoM (∅p) and time score,
TS (∅t ) for two patients performing Pick-and-Place reaching task.

FIGURE 7. The plot of the quality of movement, QoM (∅p) and time score,
TS (∅t ) for two patients performing Table-to-Mouth reaching task.

The FA algorithm uses patients’ quality of movement, and
time score in a z-spline approximation function which is
much related to the clinical procedure. The current scheme
thus avoids the limitations of some of the previous studies
like the method proposed by [8] in which subjects’ move-
ment capabilities are dependent on noisy force estimation
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that could erroneously judge patient’s functional ability. The
current scheme thus offers the advantage to allow appropriate
progression of therapeutic assistance especially for therapies
like AANwhere assistance is tailored to subjects’ capabilities
in reaching task. The results proved that the formulated FA
using spline function is successful in estimating the patient’s
level of capability accurately as in the real clinical procedure
done by therapists.

B. VALIDATION OF AAN CONTROLLER
This section gives results of validation experiments for the
overall AAN controller. The controller consists of three main
algorithms: FA estimation algorithm, FA-to-Torque mapping
algorithms, and the LQGi torque controller. Since the valida-
tion of FA estimation has been demonstrated in Section V(A),
the results in this section highlights the verification of the
other algorithms and the overall AAN controller perfor-
mance. We consider the AAN controller performance (result)
for Task 1 and Task 2 in three different case studies: (1) torque
assistance performance across trials for all patients, (2) torque
assistance for severe disability, and (3) torque assistance for
mild disability. Each experiment and the results demonstrates
how patient’s FA is estimated and how it is applied to adjust
robotic assistance.

1) TORQUE ASSISTANCE ACROSS TRIALS
Fig. 8. and 9. show the plot of assistive torques across trials
for all the participants in both tasks. T1,T2....Tn represent the
number of trials performed for each task. A total of 9 trials are
performed by each participant where all trials are preceding
by an evaluation trial, T1, performed to set the reference
torque for the second trial. After the second trial, the FA is
estimated and used to set the robot assistance for the third
trial. The subsequent trials proceed in the same fashion. For
all the reaching tasks, variability in the torque assistance is
clearly seen across all trials in accordance with the estimated

FIGURE 8. The plot of assistive torques across all trials (Shoulder
activities) [mean FA = 1.37].

FIGURE 9. The plot of assistive torques across all trials [mean FA = 1.40].

patients’ FA (Eqn. 3). Error bars show standard error of
the mean of assistance torque for all the participants. Start-
ing at T2 (Fig. 8), the torque assistance (τAAN =1.07Nm)
provided to the patients to complete the task is set by the
estimated FA (FAT1−>T2 =0.95) in the previous evaluation
task, T1. Consequently, the estimated FA of the patient after
the trial (T2) is completed, i.e. FAT2−>T3 =2.05, is signif-
icantly improved due to the robotic assistance (influenced
by the assistance provided by the robotic device). This FA
is applied to set the assistance in the next trial T3 (i.e.
τAAN = 0.15Nm). This procedure is repeated throughout the
subsequent trials. An important point to mention here is that
rather than subtracting the previous/evaluation FA estimated
in a trial from the current FA to adjust the torque, we make
no modification in this respect in order to prevent slacking
behavior.

The FA estimation algorithm (Eqn. 3) guarantees an
inverse (torque) relationship to the patient’s FA, thus if the
estimate of patient’s FA, when robotic assistance is provided,
is high (potentially because of the assistance), the torque
assistance provided for the next task would be low to encour-
age/promote patients’ involvement. This trend is equally
noticeable for all the patients in the table-to-mouth reaching
task (Fig. 9). Notice that, the robotic assistance provided to
the patients are also supported by therapist’s instructions to
motivate or encourage or promote patient participation and
compliance with the therapy objective. In AAN encourage
means to promote patient’s participation when the assistance
is decreased [14]–[16], [18], [19], [39]. Without instructions
from the therapists, patients also tend to reduce their effort to
participate.

2) TORQUE ASSISTANCE FOR SEVERE DISABILITY: CASE 1
PICK AND PLACE
The performance of the AAN torque assistance strategy
for two cases of severely disabled patients performing pick
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FIGURE 10. Plot of shoulder position and torque assistance vs time for
pick and place activities. The severe patients in this case have limited
range of motion.

FIGURE 11. Plot of shoulder position and torque assistance vs time for
pick and place activities. The severe patients in this case have some range
of motion.

and place (PAP) reaching task is shown in Fig.10, and
11, Blue bold line represents shoulder position and broken
line denote torque assistance. The reaching task is divided
into two phases: (1) PAP involving shoulder abduction, and
(2) PAP involving shoulder adduction movements (Fig.10.).
The severe participants in this case have limited range of
motion and thus unable to fully perform the reaching tasks
in both phases. In phase (1), one of the patients (Patient 5)
show only slight movement of the limb despite effort to
move the arm; he is thus assisted τAAN = 3.0Nm) by the
FA-AAN strategy after 30s of unsuccessful attempt to com-
plete the task (see region marked ‘x1’ in Fig.10.). The 30s
is stipulated here since a half ROM is covered from ini-
tial position to full shoulder adduction. The second patient
(Patient 6) could only abduct the limb to certain degree (see
point marked ‘x2’ in Fig.11) with obvious difficulty in com-
pleting the full ROM. Consequently, the controller provide
assistance (τAAN = 2.8Nm) to the patient after a total of 30s
(half adduction ROM) time lapse. Performance of the both
patients in phase (2) is similar to their respective performance

in phase 1. Assistance is provided to the patients by the
FA-AAN after 60s of unsuccessful attempt to complete the
task. Shoulder adduction assistance torque is denoted posi-
tive under the assistance scheme, while abduction is denoted
negative. Table 8 show summary of the torque assistance
profile. As expected, the assistance torque provided to the
first patient (who show no functional capability) is higher
than the one provided to the second patient (who exhibited
some functional capability), which show that the FA-AAN
controller responded appropriately to the patient’s function
ability.

TABLE 8. Summary of the torque assistance profile.

3) TABLE-TO-MOUTH REACHING TASK
Fig.12 and 13. show the assistance modality of the
FA-AAN in table-to-mouth reaching task for two neuro-
logically impaired participants with limited capability for
elbow flexion movement. Similarly, torque assistance is
provided to the patients after 60s of unsuccessful attempt
to complete the table-to-mouth activity. Whereas one of
the patients (Patient 7) could not physically move his arm,
the second patient (Patient 8) is able to attain a maximum
ROM marked x1, beyond which was physically difficult to
move. The green shade show region where torque assistance
is provided to assist the patient to complete the task. A max-
imum torque assistance of (2.89Nm) is provided to the first
patient (Patient 7) to complete the task which correlates with
the calculated FA score (FA = 0) of patient’s performance.
The second patient (Patient 8) show some degree of func-
tional capability in the task, although he/she is unable to com-
plete the task at a certain range of elbow flexion/extension
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FIGURE 12. Plot of elbow position and torque assistance vs time for
Table-to-Mouth activities. The severe patients in this case have limited
range of motion.

FIGURE 13. Plot of elbow position and torque assistance vs time for
Table-to-Mouth activities. The severe patients in this case have some
range of motion.

denoted ‘x2’ and ‘y2’ respectively. Consequently, the con-
troller provided assistance to the patient to complete the task
after 60s count out with approximately (τAAN =2.63Nm)
torque assistance which correlates with the patient FA score
(FA =1).

Notice that 60s has been used as the maximum limit allow-
able for a trial and evaluation based on popular clinical scale
ARAT for severely disabled patients [40], [41]. According to
ARAT scale implemented in clinical practice, the time before
assistance is set to be 60s for severely disabled patients, Under
the AAN scheme, the idea is that patients are encouraged or
promoted to make effort to prevent slacking behavior (i.e.
to prevent relying completely on robotic assistance as in the
case of passive training) within an allowable time threshold.

4) TORQUE ASSISTANCE FOR MILD DISABILITY: CASE 2
PICK AND PLACE REACHING TASK
Fig.14. and 15. show the plots of assistive torque vs. shoulder
position for two mild disabled patients with FA scores of

FIGURE 14. Assistive torque vs. shoulder position for mild disabled
patients.

FIGURE 15. Assistive torque vs. shoulder position for mild disabled
patients.

2.1 and 1.8. The exercise trial proceeds first with an evalu-
ation phase then followed with the assistance phase. Patients’
movement ability is monitored and computed in the evalu-
ation phase to stipulate a reference working torque for the
subsequent phase. This procedure is also adopted for the case
of severely disabled discussed above. The patient is able to
complete the reaching task but overall, torque assistance pro-
vided to the two patients (Patient 9 and Patient 10) are lower
compared to the case of severely disabled patients in Case 1.
Average assistive torque for Mild 1 patient (with FA=2.1)
is 0.58Nm which is 16.57% of maximum assistive torque in
the current scheme (Table 8). Notice that the maximum assist
torque in our current scheme is 3.5Nm which is the torque
provided to assist the severely disabled patients (FA=0). On
the other hand, the average assist torque of Mild 2 patient
(with FA=1.8) is 0.87 Nm which is 24.85% of the maximum
assist torque. Thus, we see that average assist torque provided
to Mild 2 (which has slightly lower functional ability) is
about 8.28 % higher than that provided to Mild 1, under
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the current scheme, given the difference in their FAs. Higher
torque enables faster task completion.

Fig 14 and Fig 15 also compares the results of Mild 1 and
Mild 2 with ranked method. Black dotted lines show the
results of the ranked method. Under ranked method, Mild
1 and Mild 2 will be given the same rank as FA=2, and
provided the same torque of 0.70Nm. In comparison to ranked
method the assist performance for FA=1.8 improves by 22%
and for FA = 2.1, the assist performance improves by 17%.

Overall, the rankedmethod is useful and can be an approxi-
mation for our proposed method, it is however not capable to
adapt to slight difference in patients’ disability level which
is an important principle in Assist-as-needed rehabilitation
scheme that has been proposed in our current method.

5) TABLE TO MOUTH REACHING TASK
Fig.16. and 17. show the plots of assistive torque vs elbow
position for two patients (FA=2.2 and FA = 2.5) with mild
disability for elbow flexion/extension motion. Torque assis-
tance provided to the patients are lower compared to the
assistance provided for case of severely disable patients in
Case 1, see Table 8. Both patients could complete the reach-
ing task but at different times (Table 8). Average assistive
torque provided to the first patient (Patient 11, with FA=2.2)
for elbow flexion and extension motion is approximately
−0.33Nm and+0.40Nm respectively. For the second patient
(Patient 12, FA=2.5), torque assistance for elbow flexion and
extension is −0.19Nm and +0.2Nm respectively. Overall,
patients’ scores in any phase is carried over to the subsequent
phase to stipulate a baseline assistive torque. The evaluation
phase is always unassisted.

FIGURE 16. Assistive torque vs elbow position for mild patients.

In the case of mild patients, they can move their shoulder/
elbow within less than 60s, where the robot assists the
patients immediately according to ARAT assessment test
implemented in an actual clinical practice. This can be seen
in Figs 14-17. It would be observed in Fig 15 that after
time t=20s, i.e. after the evaluation period, robotic assis-
tance is provided immediately for each trial for mild patients

FIGURE 17. Assistive torque vs elbow position for mild patients.

TABLE 9. Nomenclature lists (symbols and definitions).

(task involve shoulder abd/add) and this goes on continu-
ously. Evaluation time for each mild participant only last
until the patient can complete the task which is only for
few seconds.

VI. CONCLUSION
In this article an Assist-as-Needed (AAN) control strategy
based on a new functional activity spline function (FASF)
is proposed for patients with various degrees of shoulder
and elbow disability. The FASF algorithm has been validated
and found consistent with clinical procedure, such as the
ARAT measurement scale adopted in this study. Overall,
the controller is found to automate robotic assistance based
on patients’ FASF estimation.

Performance of the controller has also been validated in
three different scenarios on patients with severe and mild
movement disability on the shoulder and elbow regions.
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The FA-AAN strategy accurately and consistently provided
robotic assistance, in varying amount to each case of disabil-
ity. The results show the feasibility of the proposed FA-AAN
for actual rehabilitation therapy.

Future work will include a virtual reality gaming console
to provide external instruction for motivating the patients
to participate in the therapy, similar to the role of a human
therapist.
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