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ABSTRACT In recent years, Convolutional Neural Networks (CNN) have been widely used for real-world
applications in the field of computer vision. Their class-leading performance, however, depends heavily
on the architecture used for a given problem. In most cases, the architectures are manually optimized by
the researchers, a time-consuming process hard to achieve without prior knowledge of CNN. In this paper,
we propose a new genetic algorithm for the optimization of the CNN architecture for a given image classifica-
tion problem. This algorithm extends and refines existing research in the field, by allowing depth exploration,
introducing a novel sequential crossover operator, using an incremental selective pressure schedule over
evolution (favoring higher diversity in early generations) and by evaluating individual performances over the
validation set with early stopping. The technique is validated in three image classification dataset, namely,
CIFAR10, MNIST and Caltech256 datasets, which are widely used benchmarks for image classification
algorithms. We evaluate the performance and total execution time over these datasets, and compare our
results with those achieved by the best genetic methods published so far. In all cases, we achieve better
results in terms of test accuracy, consistently over different datasets, while remaining in the same orders of
magnitude of execution time of the fastest approaches.

INDEX TERMS Artificial neural network, genetic algorithm, image classification.

I. INTRODUCTION
Machine learning and, in particular, deep learning have pro-
vided state of the art results in varied fields. Image classi-
fication is one of the current problems of computer vision
where deep learning is widely used. This task, where an algo-
rithm must classify an image into one or several categories
without human intervention, is important to several other
problems such as object detection or image segmentation and
several developments in automation, e.g. automated driving.
To tackle this problem, the most widely used architectures
are deep CNN [12], [24], which have shown higher perfor-
mances than traditional models. Since their inception, CNN
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have improved significantly the state of the art in computer
vision in general [26], [33], even attaining human-level per-
formances in some problems [18].

These network’s accuracies, however, are strongly related
to their structure and design. In fact, some researchers have
reported significant performance improvement by finding
good choices of these hyperparameters [23]. In the simplest
of cases, the list of hyperparameters to optimize includes the
number of layers, filter sizes and filter numbers for each layer.
Even with only these attributes to tune, the problem is very
complex, and there is still no gold standard for finding the
best architecture for a given task. In most of the cases, it is
done by each researcher by brute force, or based on structures
validated in previous work [37].
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Literature has proved the usefulness of metaheuristics in
solving complex combinatorial problems [8], [13], [31], that
would be either exceedingly time-consuming to resolve by
traditional optimization methods or are simply impossible to
solve directly. Population-based algorithms, such as genetic
algorithms [2], perform particularly well on optimization
problems with large search spaces and pathological objec-
tive functions [4]. There is current research on the use of
metaheuristics to optimize CNN’s hyperparameters where
a metaheuristic is used to tune different properties of the
networks, such as kernel size or sequence of convolutional
blocks in a particular problem. Sun et al. [39] use genetic
algorithm to optimize the sequence of skip blocks and Max-
Pool layers, including depth, however, the kernel size of
the convolutions is fixed. Other researches have used more
simple CNN architectures [3], [30] and genetic algorithms to
optimize not only the structure of the network, but the learn-
ing parameters as well, which entails comparisons between
trained and untrained networks during the process. Most
current developments [3], [29], [30] use traditional crossover
based on genetic algorithms operators, destroying the struc-
ture of the parent networks as offspring population is created,
ignoring the nature of the underlyingMachine Learning (ML)
problem.

In this paper, we propose a method to use metaheuris-
tics that aims to address the concerns described above,
in particular the optimization of training hyperparame-
ters and the inheritance of the network structure during
crossover.We extend existing research in the subject, by using
genetic algorithms to find kernel sizes and filter number for
each layer of our network, as well as the optimal number
of layers for a given problem. The performance of each
network is drastically influenced by these hyperparameters,
which define the architecture of the convolutional section
of the network and its trainable parameter number. We also
introduce a crossover operator that takes into account the
structure of each individual, by preserving the filter number
and filter sizes of the parents in a sequential manner, allowing
parents to inherit better traits to the following generations.

The following sections are organized as follows. We first
introduce the structure of the optimization problem in
section II as a consequence of the constraints of ML. Then,
in section III a short introduction to the architecture of CNN
is presented, discussing how this translates into additional
constraints to the problem. In section IV, we discuss key
concepts of metaheuristics and the particularities of genetic
algorithms. Then, in section V, we present an overview of
similar works and developments of this type of problem,
followed by section VI, where we describe the method we
propose for solving the problem. In section VII, we present
our experiments and results. Finally, section VIII presents our
conclusions and future work.

II. PROBLEM STATEMENT AND BACKGROUND
ML has recently produced many successful tools for mod-
elling and prediction in several fields [9], [27]. Unlike other

approaches, ML avoids following strict and preformulated
models and rather uses data-driven algorithms that are effi-
cient at choosingwhichmodel best represents the relationship
between the response and its predictors.

Several learning paradigms have been researched, includ-
ing, supervised learning, where the algorithm learns from
labeled data [22]; unsupervised learning, where we have
access to data without labels and the algorithm has to deduce
structures inherent to the data [10]; or reinforcement learning
where an algorithm is trained to perform a task without prior
knowledge of the utility of different possible actions [40].

In this paper, we deal with a task of supervised learning,
that can be stated formally as follows. Let X be the feature
space, that is, the space from where the inputs are drawn
(generaly a subset of Rn), and Y the output space, meaning
the space from where our target variable is drawn. If we
denote by S the space of all possible sets of pairs (x, y) ∈
X × Y drawn from an unknown joint distribution P(x, y);
and by H the hypothesis space, i.e. the space of all allowed
functional solutions f : X −→ Y; then a learning algorithm
A is represented by the following mapping:

A : S −→ H
SM 7−→ f ,

where SM denotes a data sample and f is called a hypothesis.
The aim of the learning algorithm is to find A(SM ) = f such
that an error functional is minimized:

A(SM ) = argmin
f ∈H

∑
(x,y)∈St

`(f (x), y). (1)

Here, ` : Y × Y −→ R+0 is called the loss function,
a positive function that measures the differences between the
predicted and ground-truth targets.

As the example data is finite, a large or complex enough
model can eventually ‘‘memorize’’ every data pair avail-
able. This is known as overfitting and is a common prob-
lem encountered by many ML algorithms. In this case,
the selected hypothesis f has near-zero error over the data,
but its performance over future data is considerably lower
[16]. We say the model is unable to generalize. It is there-
fore essential to estimate the generalization capacity of the
hypothesis chosen by our algorithm. In ML this is often
achieved by splitting the original dataset into two smaller
sets, one called training set, used by the algorithm to select
the hypothesis, and one called validation set, over which the
chosen hypothesis is evaluated a posteriori. We denote them
by St and Sv respectively.

One way overfitting can be controlled is by searching over
smaller hypothesis spaces, but this will in turn reduce the abil-
ity of the algorithm to find increasingly complex relationships
in the data, a trade off difficult to balance without further
assumptions over P. More formally, we define the risk R of a
given hypothesis f ∈ H as the expected value of it’s loss over
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every possible pair x, y drawn following P, that is:

R(f ) = E[`(f (x), y)] =
∫
X×Y

`(f (x), y)dP(x, y).

We denote by f ∗ the hypothesis that minimizes R, also called
the Bayes Classifier in the context of classification problems.
Evidently, to find f ∗ is impossible, since P is unknown, and
we would need infinite data to find the best fitting hypothesis
over all possibleX −→ Y functions. Moreover, our hypothe-
sis space is only a subset of the space of all possible functions
fromX toY , and therefore it is possible that f ∗ /∈ H. Wemay
then search for the best hypothesis in our class, let:

fH = argmin
f ∈H

R(f ).

However, in practice it is impossible to find fH as well,
considering we only have access to a finite amount of exam-
ples drawn from P and cannot therefore compute the real
risk. We therefore must find instead an ‘‘Empirical Risk Min-
imizer’’, denoted by f̂St , that is the hypothesis that minimizes
the following empirical risk estimator:

R̂(f ) =
1
|St |

∑
(x,y)∈St

`(f (x), y)),

which acts as a proxy or estimator of the real risk.
This means that while the original purpose of the ML algo-

rithm A should be to minimize the risk functional R, it can
only minimize the empirical risk, and therefore it is unlikely
that the chosen hypothesis will be truly optimal regardless
of the algorithm and the data, since the found hypothesis f
will often have a higher risk than f ∗. This difference, R̂(f )−
R(f ∗), is usually named empirical excess risk. Even more, for
some hypothesis spaces (such as the case of Artificial Neural
Networks for instance), theminimization of the empirical risk
can only be done in an iterative stochastic process, so in most
cases we are not even able to find f̂St , and instead, we are only
able to find a function f̃St that approximates f̂St . Therefore
our empirical excess risk will be R(f̃St )− R(f

∗), denoted ER.
We can decompose the excess risk as follows:

ER = R̂(f̃St )− R(f
∗)

= R̂(f̃St )− R̂(f̂St )+ R̂(f̂St )− R(f
∗)

= R̂(f̃St )− R̂(f̂St )

+ R̂(f̂St )− R(fH)+ R(fH)− R(f ∗). (2)

Here we name:
• R̂(f̃St ) − R̂(f̂St ) the optimization error, that is the differ-
ence between the best possible solution given the data
and the solution found by the optimizer,

• R̂(f̂St )−R(fH), the estimation error, that is the difference
between the best possible solution given the data and
the best theoretical solution in the hypothesis space, and
finally

• R(fH)−R(f ∗) the approximation error, that is the excess
risk that arises from restricting the functional space from
where our hypothesis is drawn.

Notice that as the capacity of the hypothesis space H
increases, the approximation error is expected to decrease
(simply consider the extreme case where H = {f | f :
X −→ Y}), but this greater freedom also tends to increase
the estimation error, since given a larger space from where
to minimize the empirical risk, the optimizer tends to choose
a hypothesis that memorizes every single point in the finite
data rather than inferring the underling relationship.

Usually, learning algorithms depend on hyperparameters
that change the behaviour and performance of the algorithm,
by altering the optimization process or modifying the hypoth-
esis space. The latter corresponds to our case, where changes
to the explored hyperparameters represent changes to the
hypothesis space where our algorithm draws its hypothesis.

Let 3 be the space of all possible hyperparameters for
a given problem, and, for λ ∈ 3, let Aλ be the learning
algorithm and Hλ the hypothesis space associated to the
hyperparameters λ. If we denote by St our training set, then,
given λ ∈ 3, the learning algorithmAλ selects the hypothesis
f λSt that minimizes the following:

f λSt := Aλ(St ) = argmin
f ∈Hλ

∑
(x,y)∈St

`(f (x), y). (3)

Now, using the same notation, we can formulate the hyper-
parameter optimization problem for a given algorithm and
dataset as follows:

min
λ∈3

∑
(x,y)∈Sv

`
(
f λSt (x), y

)
, (4)

where:
• f λSt is the hypothesis chosen from the train set and the
hyperparameters, that is f λSt := Aλ(St ), as stated in (3),

• Sv is the validation set.
Here, the total loss over the validation set acts as a proxy

for the risk. Considering that in our case, the hyperparame-
ters considered only affect the hypothesis space rather than
the optimization algorithm, we can consider that our task
is to find a value of the hyperparameters that yields the
best trade off between the estimation and the approximation
error, considering the optimization error an additional noise
of stochastic nature for our setup.

Considering this optimization problem, we must overcome
two main drawbacks. The first one is the lack of a known
relationship between the hyperparameters λ and the objective
function, meaning there is no a priori way of knowing in
which direction a small change of λ will affect the objective
function. The second problem is the fact that most (if not
all) [28] the currently used training algorithms for neural
networks have a strong stochastic component. This means
that not only we know no relationship between λ and our
objective function, but also that observed local relationships
can be the result of the random elements involved in the
training process.

From this section we can see that the hyperparameter
optimization problem defined by Eq. 4 in the context of
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supervised learning poses a non trivial trade off, as implied
by the risk decomposition presented in Eq. 2. To tackle this
problem while considering the two drawbacks presented in
the last paragraphs, we opted to use metaheuristics, in partic-
ular genetic algorithms (GA) which handle well this type of
difficulties.

The following section presents a more detailed discussion
of the hyperparameters involved in CNN. These hyperparam-
eters modify the behavior of the learning algorithm and the
hypothesis spaces involved, which makes a good choice of
them paramount to finding an algorithm with good general-
ization capacity. Moreover, our proposal is tailored specifi-
cally for this family of learning algorithms and therefore the
relationship between the hyperparameters and the structure of
the underlying CNN is essential to our proposal.

III. CONVOLUTIONAL NEURAL NETWORKS
In ML, Artificial Neural Networks (ANNs) refer to a family
of learning algorithms and their corresponding hypothesis
space. Initially inspired in the structure of natural neural
networks found in the cerebral cortex of animals, today there
is a large variety of different algorithms and approaches to
develop and train ANNs architectures specialized in different
tasks [1].

Particularly, in the field of image recognition, CNN show
promising results [26], in some cases attaining or even sur-
passing human-level performance [18]. CNN achieve these
results in part thanks to the particular connectivity pattern
between its neurons, inspired originally in the organization
of the animal visual cortex [19], where different patterns (e.g.
vertical lines, horizontal lines) activate different neural path-
ways. CNN replicate this behavior by using convolutional
filters, or kernels. A kernel can be understood as a moving
frame, that sweeps the image, weighting each pixel according
to theweights of the kernel. By using fixedweights, the kernel
extract the same output when a pattern is repeated in the
image.

In the discrete case, the convolution between two real val-
ued functions f and g, defined over the integers Z, is denoted
by f ∗ g and is defined as follows:

(f ∗ g) : Z −→ R

n 7−→
∞∑

m=−∞

f (m)g(n− m). (5)

Definition (5) is naturally extended to the 2-dimensional case,
where each f and g map Z2 to R by:

(f ∗ g) : Z2
−→ R

(i, j) 7−→
∑

(p,q)∈Z2

f (p, q)g(i− p, j− q). (6)

While this definition involves an infinite sum, in practice this
is not the case. Suppose we define g to be our convolutional
kernel, then g has a finite support, that is the subset ofZ2 over
which g is non-zero is finite, and therefore the convolution
will be determined only by the terms of the sum where g is

non-zero. The same applies for the image, where its support
is given by the dimensions, and therefore it is finite. If we
represent our image by f , we can compute the output of a
single filter defined by the kernel g by:

y(i, j) = σ [(f ∗ g)(i, j)+ b0] , (7)

where σ is called the activation function (a real, usually non-
linear, function) and b0 is called the bias, a trainable constant.
The output filter y is also 2-dimensional, and generally the
input image f is padded, that is extended by 0, in such a
way as to preserve the original dimensions as the image is
filtered. In the case the input image f has multiple channels,
for instance k ∈ N channels denoted by f1, . . . , fk , k kernels
g1, . . . , gk are defined and their corresponding outputs added
as follows:

y(i, j) = σ

(
k∑
l=1

(fl ∗ gl)(i, j)

)
(8)

After processing the whole image, we have a new image,
called a feature map. Now each pixel is the combined output
of the original image’s pixels trough the kernel operation. The
weights of the kernel operation or convolution, are learned
by the network during the training process. This approach
allows CNN filters to identify repeated patterns indepen-
dently of their position inside the image, while also reducing
the number of parameters when compared to fully connected
architecture, helping to avoid overfiting.

FIGURE 1. Example of the computation of a convolutional filter over an
image. Since there is no padding, the filtered image on the top looses
dimentionality. The labels ‘‘Position (i, j )’’ denote the position of the
corresponding value in the filtered image. The filter in position (i, j )
outputs the value of the operation y (i, j ) defined in Eq. 8. This value then
corresponds to the pixel of coordinates i, j in the filtered image.

To then construct a layer of a CNN, several convolutional
filters operate over the image, and the resulting filters are
stacked. The kernels are initialized with random weights,
and the network adjusts them during training, learning to
extract different patterns relevant to the problem at hand. The
diversity of kernels allows, in theory, the network to learn
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different patterns over the image simultaneously. To construct
a full CNN, several layers are then concatenated, applying
the kernels of one layer over the output of the preceding
layer, training all of them at once. By applying successive
layers of kernels, the network can learn to extract higher-level
feature maps by refining patterns sequentially. For instance,
one could imagine a network that identifies rectangles to use
the first layer to detect the presence of edges, the second one
to identify where edges met and the last one to identify the
presence of 4 joined edges.

However, for the task of object recognition or image clas-
sification, feature extraction and pattern recognition is often
insufficient. There are 2 main types of layers commonly used
to complement convolutional layers. Usually, one or more
fully connected layers are added at the end of the network
[23]. These allow combining the features extracted from the
images in a way that correctly predicts the target. However,
dense layers have many parameters when their inputs have a
high dimension. Given that the smaller images used in image
recognition are usually 32 × 32 RGB pixels [7] (totaling
3072 values), it is important to reduce their dimensionality
before connecting the dense layers. This is why Max Pooling
layers are commonly added to the networks [35], extracting
the relevant information of its input layer, while at the same
time reducing its dimensionality.

For a fixed CNN structure, our hypothesis space H is
defined by all the possible combinations of real values for
each parameter of the model. That is, weights and biases for
each kernel in every convolutional layer, as well as biases
and weights for the dense layers. Our learning algorithm
has then to find, ideally, the best combination of all those
values, for a given problem, with a finite number of examples.
The number of parameters to set in some large networks
can reach hundreds of millions [36], so finding even a good
combination of values is a complex task.

The usual training process starts by initializing the weights
of the whole network randomly [14]. Then, iterative methods
based on stochastic gradient descent are used to adjust the
parameters, aiming to minimize the total error of the network
over the train set. Given the loss function, the gradient for
a given train set and parameters can be computed and used
to update the weights, following one of several optimization
algorithms proposed in the literature [5], [21], [42]. At each
iteration, the weights are updated, and, with these values, the
error over the validation set can be computed and evaluated.

The convolutional layers, the max pooling, and dense lay-
ers are the basic building blocks for CNN. We focus on
optimizing the structure of these series of blocks, particularly
the following hyperparameters.
• Depth: The depth of the network is defined as the num-
ber of layers of the network. This has serious repercus-
sions in the ability of the algorithm to correctly learn the
task, since a too shallow network is unable to learn the
complex patterns that represent the categories of images
and a too deep network has too many parameters and
overfits easily.

• Number of filters: It is also necessary to decide for each
convolutional layer, the number of filters or neurons.
This hyperparameter is crucial to allow the transmis-
sion of information to the deeper layers, as a too-small
number of filters can lead to significant information
loss in that particular layer. Again we must account for
overfitting when augmenting this value.

• Kernel size: Also for each convolutional layer, we must
decide the size of the convolution or kernel. For consis-
tency reasons, all the kernels in a layer are the same size,
however, the optimal size is dependent on the problem
and the structure of the rest of the network. This param-
eter is crucial to allow the network to learn the patterns
in their corresponding scales.

We intentionally left out several other possible hyperparame-
ters, such as the number of dense layers, number of neurons in
each dense layer or number of max-pooling layers. We con-
sider that these hyperparameters can be left to a default value
and the convolutional section of the network will allow it
to learn the inherent features. Also, these hyperparameters
relate strongly to the dimensionality of the ensuing hypothe-
sis spaces, and therefore need to be treated delicately in order
to avoid overfitting.

Even ignoring the aforementioned hyperparameters, our
optimization problem is complex, considering not only a
large search space but also the fact that for different values
of the depth hyperparameter, the number of hyperparameters
to optimize varies. As described in section II, the choice of
hyperparameters influences both the behaviour of the learn-
ing algorithm and the hypothesis space it explores, altering
the generalization capacity of the algorithm in non trivial
ways. We must also take into account that CNN are complex
stochastic learning algorithms that take considerable time to
train, making an exhaustive search in practice impossible,
and introducing an important stochastic nature to the per-
formances achieved by each network. These characteristics
of the problem make metaheuristics appealing to search for
CNN structures which maximize the generalization capacity
induced by the choice of hyperparameters. We describe these
techniques in the following section.

IV. METAHEURISTICS
Metaheuristics constitute an active field of research [11]
that also interacts successfully with many other fields of
research. In particular, several approaches where metaheuris-
tics are used to optimize the different components of neural
networks have been proposed [32]. In particular, genetic algo-
rithms have been used in cooperation with neural networks in
several works. For instance, the authors in [6] use a genetic
algorithm to improve the convergence speed and error rate
of a three layer artificial neural network, while in [41] the
authors present a method that utilizes a genetic algorithm to
extract a sub-network from a CNN with negligible loss of
accuracy. In the following we will introduce a few concepts
related to metaheuristics in general and the combinatorial
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optimization problem, to follow with a brief description of
general genetic algorithms.

In combinatorial optimization, solving algorithms must
be able to move efficiently through the solution space of a
given problem. If the algorithms are able to find the best
possible solution, that is, to explore the entire search space,
a global optimum is obtained. However, in most cases this
is not possible, and instead, good solutions are found by
exploring only a part of the search space, and a local optimum
is obtained, which in some casesmay be good enough to solve
the problem [25].

In more detail, a combinatorial optimization problem is a
problem where the search space, that is, the set of all feasible
solutions to the problem, is discrete in every case. In more
formal terms, a combinatorial optimization problem can be
defined by a tuple (I , h,m, g), where:

• I denotes the set of all possible instances of the problem,
usually defined by the features of the particular problem.

• h denotes a map h : I −→ P(C) from the set of all
possible instances to the power set (that is the set of all
subsets) of the set of feasible solutions C. In other words,
given x ∈ I , h(x) denotes the set of all possible solutions
to the instance x of the problem, meaning all solutions
that verify the restrictions imposed by the instance x and
the general definition of the problem.

• m on the other hand, denotes a map m : I × C −→ R+.
The value m(x, y), where x ∈ I and y ∈ h(x), denotes
the quality of the feasible solution y for the instance x of
the problem.

• Finally, g denotes an objective, that is g ∈ {min,max}

With the previous definition, an instance x of the com-
binatorial optimization problem (I , h,m, g) where x ∈ I is
resolved if we found an optimal solution, that is a feasible
solution y ∈ h(x) that verifies:

m(x, y) = g({m(x, y′)|y′ ∈ h(x)}).

This formal, general definition, hides several complica-
tions that deeply affect the design of methods and algorithms
for the resolution of combinatorial optimization problems.
We can for instance, consider that for some problems, the fea-
sibility function h is not explicitly defined, but rather implic-
itly defined by a set of restrictions that can be difficult to
asses on their own. Moreover, the measure of the quality
of a solution m, usually called objective function, may be
computationally expensive to calculate for a feasible solution,
which again limits the ability to explore the search space.
This is the case for our problem, where in order to evaluate
m for a proposed solution, a CNN has to be trained over
dozens of thousands of examples, and its value is the result
of another optimization problem whose instance comes from
the feasible solution of the original problem.

The aforementioned challenges have promoted the use
and design of heuristics to solve these problems. Heuristics
are procedures that show empirically good results on some
families of problems or in instances of them. In order to be

successful, a heuristic has to balance two different strategies:
exploration, meaning the ability to evaluate feasible solutions
on diverse parts of the search space, and exploitation, that is to
find better solutions in the neighborhood of an already known
solution. These strategies are hard to balance in general, and
in some simple heuristics, a balance can be found suitable
for an instance of the problem while for another instance the
approach may prove to be widely imbalanced. These imbal-
ances will either restrict the heuristic to a small region of the
search space, forcing it to converge to poor local optima, or in
the other cases, force the heuristic to randomly search large
sections of the search space without significantly improving
the results.

Metaheuristics are high-level procedures used to determine
or design an heuristic able to achieve a sufficiently good
solution to an optimization problem. Metaheuristics are effi-
cient in complex problems that require large amounts of data
and large amounts of processing. Metaheuristics achieve this
because they do not guarantee a global optimum, but are able
to find a good enough solution to solve the problem while
consuming less time and using fewer processing resources.

Metaheuristics are particularly useful when there is no
exact method of resolution or toomany resources are required
for an exact method, and also when the optimal solution is not
needed and a good one is sufficient. In particular, bio-inspired
metaheuristics draw their strategies from naturally occurring
phenomena, such as genetic algorithms, ant colony optimiza-
tion, algorithms based on artificial bee colonies, fireflies,
particles swarm optimization, among others [11].

In particular, genetic algorithms (GA) are adaptive meth-
ods based on the evolution of biological species [15]. Genetic
algorithms begin with a set of random solutions, called indi-
viduals. An encoding representation is defined, which will
code each individual into a ‘‘chromosome’’. The represen-
tation is important, as it establishes how a chromosome
represents a solution to the problem, and will modify the
behaviour of the algorithm, which deals with the chromo-
somes rather than the actual solutions. Once the set of ini-
tial solutions is complete, an objective function (evaluation
function) associated to the problem is applied to each indi-
vidual. In this way, the best solutions can be obtained and
the individuals of the population can then be reproduced.
In this process, different operators are applied for crossover
and mutation. The crossover operator implements mecha-
nisms to mix the parent’s chromosomes to obtain children
chromosomes. Mutation mechanisms are also implemented,
which introduce random changes in the chromosomes of the
children. Finally, the best solutions according to the objective
function are obtained.

V. RELATED WORK
A few recent works have explored the use of metaheuristics
to learn the CNN structures for different image recognition
problems with good results. In [39] the authors use genetic
algorithms to optimize the depth, sequence and the number
of kernels of each layer of the networks for the CIFAR10 and
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CIFAR100 datasets. They use a rather recent development:
the use of skip connections and residual blocks [17], which
we did not include on our design. This allows them to achieve
very high accuracy with the optimized architectures, by tak-
ing advantage of the deeper architectures allowed by the
use of residual blocks. Moreover, they use a fixed kernel
size, a hyperparameter that could be a factor to optimize.
The authors achieve impressive results in both datasets, sur-
passing 95% test accuracy over the CIFAR10. In another
direction, both [34] for CIFAR10 and [3] for the MNIST
datasets, use genetic algorithms to optimize almost all pos-
sible hyperparameters of a CNN. Not only they optimize the
structure of the network, but they also optimize simultane-
ously the training parameters of the networks. This includes
the optimizer algorithm, the learning rate and even the total
epochs of training (the number of iterations of the optimizer
algorithm), among others. This could entail the comparison
of individuals on the basis of their training rather than on
the quality of their architecture. In contrast, we opted to only
optimize hyperparameters associated to the CNN structure
and train all our networks equally. We use the same algorithm
and a convergence criteria to stop training, rather than a fixed
number of epochs.

In [29], the authors work with the more demanding
Caltech-256 dataset. For that task, they optimize the kernel
size and kernel number maintaining a fixed depth report-
ing positive results. We allowed the exploration of depth,
so that the method finds the best value for a given problem.
The authors used the usual binary crossover operator of the
original genetic algorithm. This implies that the values of
the hyperparameters survive to the next generation, but not
necessarily successful sequences of consecutive values. This
is also the case for [3], where the authors apply the same
binary crossover method. In this paper we propose novel type
of crossover, combining some binary and some sequential
crossover, acknowledging that the success or failure of the
different architectures considered could be related to the
sequence of consecutive hyperparameters rather than only to
their values.

The success of recent research in this problem shows that
using metaheuristics is an interesting approach to optimize
the structures of CNN for a given problem. In the next section
we describe our particular approach to this problem and the
reasoning behind our choices.

VI. PROPOSED APPROACH
In this section, we present the genetic algorithm we propose
to optimize the structure of a CNN. In the next subsections,
we describe how we construct the individuals, including their
fixed and optimized parts. We later discuss our encoding for
chromosomes and their relevant values, and introduce the
operators of our genetic algorithm.We also present our fitness
functions and selection methods, and finally give an overview
of the genetic algorithm hyperparameters and the CNN train-
ing process. An overview of the proposed algorithm can be
found in the Algorithm 1, where max_gen correspond to

Algorithm 1 Proposed Genetic Algorithm
Input: (max_gen, cross_prob, mutation_prob,

max_pop, conv_parameters)
Output: elite

1: generation← 0
2: population ← Generate initial population from Input

parameters.
3: while generation < max_gen do
4: for individual in population do
5: individual.accuracy ← obtain validation accuracy

value from training network defined by individual’s
cromosome and conv_parameters

6: end for
7: Calculate each individual fitness from population
8: elite← Get individual with best fitness from popula-

tion
9: children_list← Empty list

10: next_pop← Empty list
11: for individuals in population do
12: if Random([0,1]) ≤cross_prob then
13: Choose parent1 and parent2 from population

using proportional roulette wheel selection.
14: if generation/max_gen < Random([0,1]) then
15: child1, child2 ← Cross parent1 and par-

ent2 sequentially
16: else
17: child1, child2 ← Cross parent1 and par-

ent2 with binary list
18: end if
19: Add child1 and child2 to children_list
20: end if
21: if generation < max_gen/2 then
22: next_pop← apply mutation to children_list with

probability mutation_prob
23: else
24: survivors← Select a fraction of survivors from

population, according to fitness
25: Add survivors, children_list and elite to next_pop

26: next_pop ← apply mutation to next_pop with
probability mutation_prob

27: end if
28: Fill next_pop with random individuals or delete

random individuals until max_pop total individuals

29: if elite not in next_pop then
30: Replace random individual from next_pop with

elite
31: end if
32: population← next_population
33: generation← generation +1
34: end for
35: end while
36: Train population and return the elite
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FIGURE 2. Example of a CNN structure. In our case, the red layers hyperparameters are optimized while gray layers have fixed
hyperparameters.

the maximum number of generations; cross_prob and muta-
tion_prob corresponds to the base probabilities for crossover
and mutation respectively. Finally conv_parameters encom-
passes the definition of the CNN template and training
procedure.

A. NETWORK TEMPLATE
Now we describe the network template for building the indi-
viduals. Each network has a convolutional section, composed
of a sequence of convolutional, max pooling and batch nor-
malization [20] layers. The convolutional layers are arranged
in pairs, each pair followed by max pooling, dropout [38]
(of only 10%) and a batch normalization layer. After the
convolutional section, a fully connected section, composed of
two dense layers followed each by a dropout layer (in this case
of 50%), complete the network, as shown in Fig. 2. As the
authors show in [38], adding dropout in both the convolu-
tional and fully connected layers of a network can improve
its performance by controlling the overfitting phenomenon.
We choose the mentioned 10% and 50% after a small tuning
process with a generic CNN that yielded good results for
these values.

The convolutional layers allow the network to learn pat-
terns from data, while the batch normalization layers helps
the training process as shown in literature. The max pooling
layers allow the network to reduce the dimensionality of
the representation. After the convolutional section, the fully
connected layers are able to learn the relationship between the
extracted features and the category of each image. Dropout
layers help to prevent overfitting during the training process.

It is worth mentioning that we use padding for the con-
volutional layers. That means we add zeros to the input to
preserve the dimensions of the input and output of each layer.
We choose this method to help to define easily the minimum
and maximum number of layers (avoiding dimensional prob-
lems), as well as to allow deeper constructions in low resolu-
tion datasets (without padding images loose resolution after
the convolution, as in Fig. 1). Therefore, in the convolutional
section, the dimensions of the images can only be modified
by the max-pooling layers. In our case, if the input image of
the max pool layer has d × d pixels, the output image will be
of resolution d ′ × d ′ where d ′ =

⌊ d
2

⌋
.

We optimize the hyperparameters of the convolutional
section, in particular the number convolutional layers and its
hyperparameters. The fully connected section and the batch

normalization and maxpooling layers are fixed (in the sense
we do not optimize the hyperparameters of these layers),
as shown in Fig. 2. All the fixed hyperparamters and network
template information are defined in the conv_parameters
input to Algorithm 1.

B. CHROMOSOME REPRESENTATION
We now present the encoding used to represent the individ-
uals, the relevant intervals of definition and their importance
to the machine learning problem.

For the chromosome encoding, we must include the infor-
mation of depth, the number of filters of each convolutional
layer and the kernel size used in that layer. For simplicity,
to represent an individual with n convolutional layers, we use
a list of length 2n + 1, with the first value being n. The next
2n values are pairs of number of filters in a layer and the
kernel size used in the same layer. Then, if we denote by Li
the number of filters of the i-th convolutional layer and ki its
kernel size, for i ∈ 1 . . . n, the corresponding chromosome is
the following:

[n,L1, k1,L2, k2, . . . ,Ln, kn].

To define the possible values each allele can take, we must
first define the possible depths. This value depends strongly
on the dataset. For datasets with lower resolutions (such as
CIFAR10 with 32 × 32 pixels each image), we considered
depths from 2 to 7 for most of our tests. It was not possible to
consider deeper architectures with this configuration because
of the dimensionality constraints. For datasets with larger
resolutions (such as Caltech256 which we cropped to 128 ×
128 pixels), it was possible to consider deeper architectures,
up to 12 convolutional layers, with a minimum of 6. We had
to impose a higher minimum for bigger images, to allow a
sufficient dimensionality reduction before the dense section
of the network. For the number of filters in each layer, we used
4 as a minimumwith the maximum at 128, whereas for kernel
sizes we allowed values between 2 and 9. These values were
chosen considering the usual choices made in state of the art
architectures for similar problems.

It is important to emphasize the influence of these hyperpa-
rameters over the hypothesis space. While the choice of these
values doesn’t directly affect the optimization process of the
learning algorithm, it does delineates the hypothesis space
over which the learner (in this case the chosen optimizer) can
search for a solution to the classification problem. Different
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values of depth, number of convolutional units or kernel sizes
change the dimensions of the hypothesis space and therefore
the complexity of the resulting hypothesis.

C. GENETIC ALGORITHM OPERATORS
We now introduce the main components of our genetic
algorithm. During the design and testing of our algorithm,
we implemented a few strategies that aimed at encourag-
ing exploration during the first generations and exploitation
towards the end, to help the algorithm converge.

Our mutation operator receives a list of individuals and
gives each one a flat chance to be mutated, corresponding to
the mutation rate. An individual chosen for mutation can then
be mutated in two different ways, as shown in Figure 3, with
a 50% chance each. The first option is modifying one of the
alleles of the chromosome, other than the depth. If this is the
case, one allele other than the first one is randomly chosen.
Its value is then replaced by a random value inside the set of
possible values for that allele in particular (it can represent
the number of filters or the kernel size). The second option
is a change in the number n of convolutional layers of the
individual, in which case a new n is chosen randomly from
the set of possible values. If this new value happens to be
smaller than the older, the chromosome is simply trimmed
endwise to fit the new depth. On the other hand, if the value
is greater than the previous one, the chromosome is extended
by random values in the relevant intervals.

FIGURE 3. Examples of the three kinds of mutation: (a) random point,
(b) layer convolutional layer number, and (c) smaller convolutional layer
number. Red color respresents a new random value, blue the original
value and gray squares correspond to the original number of
convolutional layers (depth).

The mutation operator described above is applied to differ-
ent populations depending on the current generation: during
the first half of the evolution process, as seen in line 22 of
Algorithm 1, the operator is applied only over the children
list, to then complete the desired population with random
individuals allowing for greater diversity in the early stages.
During the second half of the evolution process, this operator
is applied over the children, the elite and the individuals

FIGURE 4. Examples of binary crossover method. In white the binary list,
red and blue represent the genes of parents. The depth allele is
represented in gray.

who are permitted to survive to the next population. This is
shown in line 26 the Algorithm 1, and aims to preserve more
information from the previous generation overall, in order to
achieve an intensification of the search. The mutation rate
corresponds to mutation_prob, an input of the Algorithm 1.
For the crossover operator, we also defined two differ-

ent approaches, one based on the original binary crossover
method and a sequential method. While we find the binary
one is unsuited for the sequential nature of the structure to
optimize, we use it as a way to augment diversity in the early
generations. During evolution, each method has a probability
to be used, that depends on the progress of the algorithm, fad-
ing out the binary approach in favor of the sequential one to
intensify the search towards the final generations. The exact
probability of using sequential crossover in generation g from
a total ofG generations will be g

G , and the probability of using
the binary crossover 1− g

G . Our overarching strategy involves
iterating over every individual, giving it a chance to mate
proportional to their fitness value. If an individual is chosen
for crossover, a partner is chosen randomly using the same
criteria. Once both parents are determined, the crossover
method is chosen. We now describe both methods in detail.

The binary crossover method first generates a random
binary list with a length of twice the largest of the par-
ents depths. Offspring’s chromosomes are initialized with
the depth value corresponding to one of the parents (each
parent is represented in one offspring). Then, the rest of each
chromosome is filled following the binary list, i.e. choosing
values from one or the other parent, as shown in Fig. 4. If the
length of a child exceeds that of one parent, the rest of the
chromosome is filled with the alleles of the other parent.
This operator, while maintaining values similar to the orig-
inal chromosomes, gives radically new structures, combin-
ing these values in new random sequences. This encourages
diversity and exploration in the early generations. The binary
crossover operator is used in line 17 of the Algorithm 1.

In the later generations, however, we aim to intensify the
search, by allowing sequential crossover to take precedence.
This crossover method allows the generation of children con-
taining sequences of successful structures, acknowledging
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the sequential nature of the optimized structure. Let Ca and
Cb be the parents chromosomes as follows:

Ca : [na,La1 , k
a
1 ,L

a
2 , k

a
2 , . . . ,L

a
na , k

a
na ]

Cb : [nb,Lb1 , k
b
1 ,L

b
2 , k

b
2 , . . . ,L

b
nb , k

b
nb ]

The method first chooses randomly a crossover point, a value
p between 1 and the smaller of the parent’s chromosomes, that
is p ∈ {1, 2, . . . ,min(na, nb)}. Then, the resulting children’s
chromosomes S1 and S2 yielded by the method are:

S1 : [na,Lb1 , k
b
1 , . . . ,L

b
p , k

b
p ,L

a
p+1, k

a
p+1, . . . ,L

a
na , k

a
na ]

S2 : [nb,La1 , k
a
1 , . . . ,L

a
p , k

a
p ,L

b
p+1, k

b
p+1, . . . ,L

b
nb , k

b
nb ]

Notice this procedure preserves the diversity of the popula-
tion in term of depths without loosing successful structures,
rather recombining sections of these structures. This method
is also visually depicted in Fig. 5, and corresponds to the
method used in the Algorithm 1, line 15.

FIGURE 5. Examples of sequential crossover method. The ‘‘Pivot’’ is the
randomly chosen value p.

D. FITNESS EVALUATION AND SELECTION
To calculate the fitness of an individual we must train it
completely to measure its validation accuracy, as shown in
line 7 of the Algorithm 1. We describe our training process in
the last paragraph of this section. During the first half of the
evolution process, we calculate the fitness of the individual
proportionally to its validation accuracy. If we denote by Ai
the validation accuracy of an individual i of the population P,
its fitness fi can be computed by:

fi =
Ai∑

j∈P
Aj
.

As we can see, the fitness of an individual represents the frac-
tion it contributes to the total accuracies accumulated in the
whole population. While this approach easily differentiates
individuals with poor performance from goodmodels in early
stages, after a few generations the differences between the
best and the worst individual become smaller. Eventually, all
individuals have a similar fitness value and the algorithms can

no longer differentiate their performances. This is why after
reaching the midpoint of evolution, we change the strategy
to a rank-based one. To compute this fitness value, we must
first rank all individuals according to their accuracies: the best
individual will have a rank of 1, the second-best a rank of 2
and so on. Now, if we denote by ri the rank of the individual i,
we can compute its fitness by:

fi =
n+ 1− ri∑

j∈P

(
n+ 1− rj

)
where n is the number of individuals. This is equivalent to
the previous fitness if we replace the validation accuracy by
n + 1 − ri, a value that represents how good is the network
compared to the rest of the population.

During the evolution process, we use an elitist approach,
as shown in line 30 of the Algorithm 1. Also, to maintain a
constant number of individuals through the evolution process,
we implement two different approaches. During the first half
of evolution, the next generation is initialized with the best
individual, the mutated individuals, and the children. Then,
the desired population size is obtained by generating new
random individuals. This means that the only individual that
survives unaltered does so through elitism. This is done so
to allow for a greater diversity during the first generations,
introducing random individuals to each new generation.

During the latter half of evolution, the elite and modi-
fied individuals (mutated and children) are also part of the
next generation. However, to achieve the desired population
size, individuals of the previous generation have a chance to
survive to the next one, proportional to their fitness value.
This allows some successful individuals from a generation
to survive to the next one unchanged, intensifying the search
process.

E. GENETIC ALGORITHM HYPEPARAMETERS AND
NETWORK TRAINING
For assessing our proposal, we conduct experiments over
a constant population of 12 individuals through 12 gener-
ations. We used a mutation rate of 0.3, which means that
the expected number of mutated individuals corresponds to
30% of the population, which is achieved by giving each
individual a 0.3 flat chance of mutation (regardless of their
fitness). We used 0.25 as the base probability of an individual
having children so that the expected number of children
corresponds to 0.5 times the population (since each individual
that mates spawn 2 children). These values correspond to the
following inputs of the Algorithm 1: max_gen for the total
number of generation, cross_prob for the base probability of
having children, mutation_prob for the mutation probability
and max_pop to the number of individuals.

To train a new individual we use the Adam optimizer
[21] over the train set with its default parameters. We train
all networks monitoring their validation accuracy, and stop
training after 3 consecutive iterations where the validation
accuracy does not improve. We store the best validation
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FIGURE 6. Evolution of the validation accuracy of the elites over the generations for the MNIST dataset. The results
corresponds to 10 different seeds.

FIGURE 7. Evolution of the validation accuracy of the elites over the generations for the CIFAR10 dataset. The
results corresponds to 10 different seeds.

accuracy and we use it to compute the fitness of individual
solutions. This training parameters are considered on the
input conv_parameters of the Algorithm 1. Also, when a
trained individual survives to the next generation, we do not
train it again, since we already have a measure of its quality
through the original validation accuracy. It is worth noting

that the splitting of the dataset into train, validation and test
sets is done before the evolution process. All training and
validation processes are done with the same sets of examples.

In the next section we describe the different test realized
with this approach, describing the particular considerations
for each dataset.
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FIGURE 8. Evolution of the validation accuracy of the elites over the generations for the Caltech256 dataset. The
results corresponds to 10 different seeds.

VII. RESULTS
We performed all our tests using GPU acceleration for train-
ing (Nvidia GTX 2080). We used our algorithm to find
optimal structures for the datasets MNIST, CIFAR10, and
CALTECH256, running each test 10 times with different
seeds for the genetic algorithm. Besides our proposal, we also
performed tests using the algorithms proposed by Loussaief
and Abdelkrim [29], Sun et al. [39], and Bhandare and Kaur
[3] for each dataset. For Loussaief et al. we were able to
execute 10 different runs, while for the rest only one run was
performed because of time constraints. The results in terms
of performance are summarized in Table 1, while Table 2
presents the running time of each experiment. In the following
paragraphs each dataset is described along with the relevant
adjustment to our algorithm. A brief discussion on the perfor-
mance of the implemented algorithms is presented for each
dataset.

The MNIST dataset is composed of 70,000 28 × 28
pixels black and white images of handwritten digits (0-9),
of which 45,000 are used for training, 15,000 for validation
and 10,000 for testing set. This dataset has the smallest res-
olution of all three datasets. For our algorithm, we explored
depths between 2 and 6, filters for each convolutional layer
between 4 and 64 and kernel sizes between 2 and 9. Con-
sidering the complexity of the dataset, we used 64 neurons
for the dense layers. From Table 1, we see our proposal
achieves a final accuracy over the test set of 99.56% ±
0.027%, averaging 5.35 ± 0.211 hours for each experiment,
as presented in Table 2. As a comparison, Loussaief et al.’s
method achieves 99.16±0.142%with an average experiment
duration of 1.59±0.126. Sun et al.’s algorithms yields 99.3%
accuracy after 135.42 total hours, while Bhandare’s algorithm

TABLE 1. Test accuracies in percentages of different algorithms. The
values presented for Sun and Bhandare correspond to a single run, while
for our proposal and Loussaief’s 10 runs were performed.

achieves 99.02% accuracy after 6.4 hours.We can observe the
evolution of the validation accuracies of the 10 elites of our
proposal through the generations in Fig 6.
The second dataset weworkedwith is the CIFAR10 dataset.

It is composed of 60,000 32 × 32 RGB images labeled
in 10 categories, such as dog, truck, or ship. We used
45,000 images for training, leaving 9,000 for validation and
6,000 for testing. For this dataset, we allowed our algorithm
to explore depths between 2 and 7, the number of filters
between 4 and 128 and kernel sizes ranging from 2 to 9, with
the dense layers of the networks composed of 128 neurons.
From Table 1, we can see our algorithm found networks that
achieved 84.85%± 0.336% accuracy over the test set, while
Table 2 shows the average experiment lasted 12.39 ± 1.981
hours. In the same dataset, Loussaief et al. achieves 77.55%±
0.615% accuracy in an average of 1.29 ± 0.072 hours,
while Sun et al. reaches 82.28% accuracy in 257.4 hours
and Bhandare et al.’s proposed algorithm reaches 74.43%
accuracy in 6.81 hours. The validation accuracies of the elites
trough evolution process of the 10 runs of our algorithm can
be observed in Fig. 7.

Finally, the more complex dataset is the CALTECH256.
Composed of 30,607 RGB images of different resolutions and
aspect ratio, the CALTECH256 has 256 distinct categories
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TABLE 2. Total time spent in each experiment. The average over 10 runs
is reported for our proposal and Loussaief et al.. For the rest of the
experiments only one run was performed. It must be pointed out that Sun
et al.’s proposal proved incompatible with the Caltech256 dataset. All
values are in hours.

plus a ‘‘clutter’’ category for images with no identifiable
object. We prepared the images by first filling the smaller
dimension with black pixels in order to get a square aspect
ratio. Then, all images were scaled to 128 × 128. We also
used 75%, 15% and 10% of the images for the training,
validation and test set respectively, preserving the proportion
of examples in each category. For this task, our algorithm
explores depths between 6 and 10, with 4 to 128 filters in
each convolutional layer and kernels of sizes 2 to 9. The
final dense layers have 128 units. As shown in Table 1,
an accuracy of 33.3±1.364% was achieved by our algorithm
in an average of 41.98±4.94 hours. Loussaief et al. achieved
22.15±2.519% in the same task, with an average experiment
of 7.96 ± 0.595 hours. Bhandare et al. achieves 17.64% in
50.03 hours, while the dimensionality of the problem caused
issues for Sun et al.’s proposal and we were unable to run a
successful test because of memory problems.

From the presented comparisons, we can see that in most
cases our algorithm outperforms state of the art proposals
without incurring into a significant increase in the computa-
tion times required to optimize the relevant parameters. In fact
the only proposal consistently faster than ours is Loussaief’s
but still the total computation times are in the same orders of
magnitude.

VIII. CONCLUSION
This paper aimed to present and validate a novel genetic
algorithm for the automatic optimization and design of CNN
architectures for image classification problems. To this end,
we first circumscribed the list of optimizable hyperparam-
eters, ensuring the individuals are compared based on the
performance of their underling architectures and not their
training hyperparameters. A fundamental piece of ourmethod
is a novel crossover operator that considers the nature of the
underlying structures, as well as a way to explore the different
possible depths in an automated manner. We implemented
different approaches for the crossover operation and the envi-
ronmental selection over the generations as well, to allow for
greater diversity in the earlier generations and intensify the
search towards the latter stages.

We were able to demonstrate the quality of our approach
by performing several experiments with consistently good
results, outperforming state of the art algorithms over differ-
ent datasets in terms of the accuracy of the final network’s
architectures. We conclude that the proposed algorithm is a

consistently successful tool for the optimization of hyperpa-
rameters of CNN for different image classification tasks.

We consider this subject still has many interesting lines of
future investigation. For instance the exploration of different
of network architectures, or the optimization of the convolu-
tional construction blocks of the networks in an automated
manner instead of using fixed blocks for all networks.
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