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ABSTRACT The sharing economy has greatly promoted the rapid development and application of spatial
crowdsourcing. Although privacy-preserving spatial task matching as an indispensable part has been exten-
sively explored, existing schemes cannot be deployed into the practical environment due to drawbacks in the
one-side location protection, the matching efficiency, and the dynamic updates. In this study, we propose a
novel Secure and Efficient Spatial Task Matching framework (SESTM) with utilizing multi-user searchable
encryption and secure index technique, which enables to preserve the location privacy of requesters and
workers while achieving efficient task allocation and good user scalability. Specifically, requesters firstly
transform and encrypt their task locations before being outsourced, and we secondly design a secure and
dynamic tree-based index SD-Tree for SC-server to merge these uploaded encrypted data without knowing
their underlying content. Finally, SESTM provides efficient task matching services for multiple workers
based on encrypted queries. Furthermore, SD-Tree also provides fast delete and insert operations under
logarithmic time to reduce the dynamic update overhead for real SC services. Extensive theoretical analysis
and performance evaluation demonstrate the practicality of our method.

INDEX TERMS Spatial crowdsourcing, task matching, location privacy, matching efficiency, dynamic
update, user scalability.

I. INTRODUCTION
The widespread popularization of 4G networks and the rapid
deployment of 5G networks have actively promoted the diver-
sified application of spatial crowdsourcing (SC) [1], [2].
Generally, in SC service, the SC-server receives location-
based tasks published by requesters and matches appropri-
ate tasks according to workers’ work scopes. Then workers
travel to the required place to complete the assigned task for
monetary or other rewards. Nowadays, many enterprises have
established various SC platforms around the world to provide
convenient and shared services for people, such as Uber [3],
Amazon Mechanical MTurk [4] and Witmart [5].

Despite the various benefits of SC services, outsourcing
location information to SC-server has raised concerns about
privacy disclosure. To realize accurate and efficient task
matching, current solutions need to expose users’ specific
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locations to the SC-server, such as home address in food
delivery application, individual health status if requesters
locate in hospitals or clinics [6], [7], or daily trajectory. How-
ever, SC-server as a third party cannot be completely trust-
worthy, it possibly sells users’ private information to related
companies for profit [8], or be compromised by hackers [9].
Besides, Scheck [10] also found that adversaries can monitor
users by collecting their locations. Considering their safety,
users may be reluctant to use SC services. In addition, task
matching efficiency is also a non-neglectful problem since if
it is too low, SC-platforms have no ability to handle massive
task matching requests, and users may get a poor experience.
Therefore, there is an urgent need to design a secure and
efficient task matching scheme to address these problems.

Pournajaf et al. [11] and To et al. [12] proposed a pri-
vacy task allocation method with adopting differential pri-
vacy technique, whereby worker locations are processed
by a trusted third party (TTP) server called cellular ser-
vice provider (CSP) before being outsourced to SC-server.
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However, the TTP assumption is not compelling since
CSP may expose these vital data once it is compromised.
Besides, the one-side protection may cause SC-server to
easily obtain the exact locations of requesters and work-
ers according to the allocation result. On the contrary,
some searchable symmetric encryption (SSE) approaches
[13]–[15] based on TPP-free are more practical, which allow
a single user holding the key ks to perform secure query
over ciphertext domain. Unfortunately, these conventional
solutions cannot be applied to spatial crowdsourcing ser-
vice (multi-user setting) since there are multiple unassisted
requesters and workers in the platform, and any user revoca-
tion will cause keys redistribution and data re-encryption if
they share a same key [16]. On the other hand, the system is
also vulnerable to malicious adversaries whenever the secret
key is leaked [17], [18]. Therefore, Shu et al. [19] proposed
a secure task matching approach with utilizing multi-user
searchable encryption and proxy re-encryption technique,
which allows each requester and worker holding a unique key
to protect their location privacy and meanwhile realize effec-
tive user revocation. However, the authors failed to consider
the task matching efficiency, thus the query time is increasing
linearly with the number of tasks. Moreover in a previous
study, Liu et al. [20] adopted Paillier Cryptosystem and KD-
tree to build a secure index based on the dual-server set-
ting to address the privacy-preserving and efficiency issues.
Unfortunately, the huge update overhead makes this scheme
unsuitable for the practical SC services sinceworker locations
are dynamically changing rather than being static [21].

The drawbacks of the above research motivate us to design
a novel solution that not only protects the location privacy
of requesters and workers but also allows SC-server to effi-
ciently execute the task matching services and the dynamic
update operations. Inevitably, to achieve the above goals,
there are three significant challenges:

1) Multi-user searchable encryption technique is a general
and effective approach to achieve privacy taskmatching
over the multi-user setting, but it is difficult for SC-
server to build a secure index based on ciphertexts
encrypted by different keys.

2) In a practical environment, the number of spatial tasks
in the SC platform is dynamically changing, since the
SC-server requires to frequently delete accepted tasks
and insert newly published tasks. Thus, it is a challenge
for the secure index to support dynamic updates.

3) The SC platform should allow users to freely enter or
leave the systemwithout causing huge update overhead
to the system and affecting other users. Therefore,
achieving efficient user enrollment and revocation is
not a simple task.

To address the three challenges, we propose a Secure and
Efficient Spatial Task Matching scheme (SESTM). We firstly
adopt multi-user searchable encryption [17], [22] to preserve
the location privacy, whereby the differences from previous
works are that we improve query efficiency and achieve user

revocation. Then, we design a tree-based index based on seg-
ment tree [13], [19], [23] to realize high matching efficiency,
and the differences from previous schemes are that we reduce
the query time complexity fromO(n) toO(logn). Specifically,
to address challenge 1), we turn the index construction issue
into an index merging issue and design a novel secure and
dynamic tree-based index (SD-Tree). Requesters and workers
firstly utilize the segment tree to transform their respective
task coordinates and queries, then encrypt them with their
secret keys. Finally, the SC-server merges all transformed
tasks into the SD-Tree and provides task matching services
for transformed queries. In this way, we not only achieve the
protection of location privacy but also improve task allocation
efficiency. Moreover, the difference from previous works
[13], [19], [23] is that they only utilized the segment tree to
change the location information of requesters and workers
into a set of labels for range query while failing to con-
sider reducing the matching time. Regarding challenge 2),
SD-Tree is essentially a binary tree with fixed tree height,
whereby each tree branch represents a specific value. The
update operation is to insert or delete tree branches from the
SD-Tree, which is similar to the binary tree search process.
Therefore, it is easy to demonstrate the time complexity of
the update operations is under logarithmic time. For challenge
3), to realize the user enrollment and revocation, we adopt
the proxy re-encryption technique based on Dong et al. [24],
whereby each location needs to be encrypted by user and SC-
server, respectively.

We summarize the contributions of our study in the
following.

1) We propose a Secure and Efficient Spatial Task
Matching scheme (SESTM) to address the loca-
tion privacy-preserving issue for requesters and
workers over one SC server. Simultaneously, our
approach also achieves effective user enrollment and
revocation.

2) We design a novel Secure and Dynamic Tree-based
index SD-Tree to realize high task matching efficiency,
which also executes the update operations under loga-
rithmic time.

3) We implement the proposed solution on a real-world
dataset. The results show our approach achieves good
user scalability and dynamic updates while preserv-
ing location privacy. Furthermore, we also compare
SESTM with one of the most relevant schemes [19],
the results illustrate that our scheme has an appar-
ent advantage over it in the aspect of task matching
efficiency.

The rest of this paper is organized as follows. Section II
reviews the related works and Section III introduces the prob-
lem. The preliminary is formulated in Section IV. Section V
details the working mechanism of SESTM. Subsequently,
Section VI present the performance analysis. Section VII
evaluates our scheme SESTM. Finally, we conclude the paper
in section VIII.
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II. RELATED WORKS
In this section, we review the related works from two cate-
gories: privacy task matching and secure index.

A. PRIVACY TASK MATCHING
There have been extensive research on task matching in
recent years, such as low-cost task allocation [25], [26],
skills [27], [28] and interests [29] based assignments. These
works treated the task matching problem as an optimization
problem but ignored the location privacy problem. Consid-
ering the concern of privacy disclosure, some approaches
were proposed to investigate the privacy task matching issue.
To et al. [12] and Wang et al. [30] utilized a trusted third
party (TTP) to obfuscate the worker locations with the adop-
tion of differential privacy (DP) technique. In order to balance
the privacy and raw data utility, Gong et al. [31] designed
a framework with a trusted proxy to optimize the trade-
offs. In addition, k-anonymity [32], [33] is also a general
method, which utilizes a cloaking area containing at least
k users to replace a specific user’s location. However, there
are two inevitable shortcomings in the above researches.
Firstly, a potential hazard is that TTP may expose these vital
data if it is compromised by malicious attackers. Secondly,
one-side protection is vulnerable since SC-server enables to
infer the location information of both requesters and workers
according to the matching result. Although some solutions
[19], [34]–[36] were proposed to solve the above problems,
these studies failed to consider the task matching efficiency.

B. SECURE INDEX
The secure index as a promising technique has received
widespread attention. Karras et al. [37] and Xu et al. [38]
built a secure AVL tree by utilizing linear algebra to reduce
the range query search time. Liu et al. [20] proposed a
newly devised SKD-tree based on Paillier Cryptosystem to
index worker locations, thereby improving task matching
efficiency. Unfortunately, the above schemes are not practical
for dynamic environments due to the huge update overhead.
Although some studies were proposed to address the index
dynamic update issue, those conventional approaches cannot
be directly applied in the multi-user setting since user revo-
cation will cause key redistribution and index reconstruction.
In addition, attribute-based encryption (ABE) and identity-
based encryption (IBE) [39]–[42] have also been extensively
studied to protect the privacy in the multi-user setting. How-
ever, the major drawback is that the own-forced search is
not suitable for SC [19]. Therefore, to address the above
drawbacks and challenges, we design a secure and dynamic
index SD-Tree, which enables SC-server to quickly process
data update operations.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
We consider that our scheme works on Worker Selected
Tasks (WST) mode, whereby four entities are involved in the

FIGURE 1. System model.

system, as illustrated in Fig. 1, they are requesters, workers,
SC-server, and key generation center (KGC).

1) Requesters publish their spatial tasks including con-
tents and specific geographic coordinates to the SC-
server.

2) Workers submit their range queries to the SC-server.
3) SC-server is a spatial crowdsourcing server for task

allocation services to requesters and workers.
4) KGC is a key generation center, which only performs

user enrollment and revocation operations. The differ-
ence from the two-server setting is that KGC will not
participate in the task matching process.

B. THREAT MODEL
KGC is responsible for the generation of the secret keys
and saves all users information. It is undeniable that SC
companies are reluctant to outsource these crucial data to
SC-server, thus we treat KGC as a certificate authority in
our threat model. We also consider requesters and workers
are reliable since they are the providers of the original data.
We assume that SC-server is ‘‘honest but curious’’, it follows
our designed protocol to provide SC services but intends
to snoop users’ location privacy. Besides, the encryption of
task content is however beyond our research scope. Thus,
we assume that users encrypt their task content under a
symmetric key Ks, and decrypt it under the same key after
receiving the return results. Besides, we also assume the ID of
users can be protected by faked identity or other techniques.

C. DESIGN GOALS
To realize the secure and efficient spatial task matching for
SC, our scheme aims to reach the following four purposes:

1) Location privacy: The SESTM should preserve the
location privacy of requesters and workers over one SC
server.

2) Task matching efficiency: The SESTM should build
a tree-based index based on encrypted spatial task
locations from multiple requesters to improve the task
matching efficiency.

3) Dynamic update: The SESTM should allow the index
to quickly insert and delete tasks without causing high
update overhead. Besides, the size of our index depends
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FIGURE 2. Segment tree structure, (a) the tr (8) segment tree, (b) the representation of integer 2, and (c) the representation of
range [2, 4].

upon the number of tasks, which means there is no
additional storage overhead.

4) User scalability: SESTM should realize favorable user
scalability as the number of tasks increases. Moreover,
user enrollment and revocation should not affect other
users and the data in SC-server.

IV. PRELIMINARIES
In this section, we briefly introduce the background of seg-
ment tree and bilinear pairing, which will be used in our
method.

A. SEGMENT TREE
Segment tree is essentially a binary tree over integers from
0 to N − 1, denoted as tr(N ). The tree structure recursively
divides each non-leaf node into two segments until each
leaf node only contains one integer. Fig. 2(a) shows a tr(8)
segment tree structure, whereby each tree node v will be pre-
assigned a unique node label l(v) which is same as its interval.
In the following, we introduce how to utilize the segment tree
to express integer and range value.

Integer representation: An integer x is defined as a cover
path CP(x), which contains a set of nodes from tree root to
leaf node. For example, CP(2) is {a0, b0, c1, d2} in Fig. 2(b).
If aCP(x) intersects a tree node v, we say node v covers this

integer x, defined as a label cover LC(v), which represents all
leaf nodes below it. For example, in Fig. 2(c), LC(c1) is {2, 3}.
Range representation: We define a one-dimensional

range value qx =
[
qxl , qxr

]
as minimum cover set MCS (qx)

in a segment tree, which is a set of LC(v) that cover
all integers in q. For example, in Fig. 2(c), MCS (2, 4) is
{LC (c1) ,LC (d4)}, whereby LC (c1) is {2, 3} and LC (d4)
is {4}.

And according to Shen et al. [43] work we have the fol-
lowing proposition.
Proposition 1: If x ∈ qx , CP (x) andMCS (qx) intersect at

only one node.
For example in Fig. 2(b) and Fig. 2(c), CP (2) ∩

MCS (2, 4) = c1, thus 2 ∈ [2, 4]. However, building a com-
plete segment tree will cause huge time and space overhead,
users only need to know the tree size N and then calculate the
CP (x) or MCS (qx) by themselves.

In addition, we can get the maximum value of |MCS (qx)|
using the Theorem1 proved by Lu et al. [23].

Theorem 1: ∀qx ∈ [0,N − 1], the largest |MCS (qx)| is
2× (logN − 1) if N ≥ 4.

B. BILINEAR MAP
G andG1 are two cyclic groups with a prime order p, whereby
G denotes an additive group of a generator g and G1 denotes
a multiplicative group of a generator g1. A bilinear map
e : G× G→ G1 satisfies three properties:
Bilinearity: ∀x, y ∈ Z∗p, e (g

x , gy) = e (g, g)xy .
Degeneracy: e (g, g) 6= 1
Efficient computability: e will not cause high time over-

head.

V. SECURE AND EFFICIENT SPATIAL TASK
MATCHING (SESTM)
To meet the secure and efficient requirements of spatial task
matching over the multi-user setting, we propose a novel
task matching mechanism: SESTM. In the following section,
we first introduce the overview of SESTM, then detail our
scheme in four aspects. Finally, we present how to dynami-
cally update the index and the secure analysis.

A. OVERVIEW
There are four function modules in SESTM: System Initial-
ization, Location Transformation, Multi-User Searchable
Encryption, Merge and Match. Table.1 summarizes the
main notations and Fig. 3 shows the overview of SESTM.
Definition 1: The SESTM is involved in ten algo-

rithms (Setup, Enroll, Revoke, Geo-Trans, Ran-Trans, Index-
Enc, Trap-Enc, Re-Enc, Index-Merge, Task-Match), defined
below.

TABLE 1. Notations of SESTM.
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FIGURE 3. Overview of SESTM.

System Initialization: We first initialize the system and
complete the user enrollment.

1) Setup
(
1λ

)
→ PK , MSK : KGC takes a security

parameter to produce a public key PK for all entities
and a master keyMSK which is only known to itself.

2) Enroll(MSK , ui) → (ski, rki): KGC generates dif-
ferent secret key pairs (ski, rki) based on MSK for
requesters and workers, whereby secret key ski is
assigned to user for location encryption, and re-
encryption key rki with user identity ui is kept by SC-
server for ciphertext re-encryption.

3) Revoke (ui): KGC revokes user by removing corre-
sponding identity ui and re-encryption key rki from SC-
server, which guarantees the revoked user cannot get
the correct ciphertext for task matching.

After System Initialization, KGC will no longer par-
ticipate in other phases, except for user enrollment and
revocation.

Location Transformation: To achieve efficient range
search over ciphertext in spatial task matching, we firstly
utilize the segment tree to represent requester’s geographic
coordinate geo and worker’s range query q.

1) Geo-Trans (geo)→ CP-Geo : Requester transforms
the task geographic coordinate geo to a cover path
geographic coordinate CP-Geo.

2) Range-Trans (q)→ MC-Query : Worker transforms
the range query q to a minimum cover query
MC-Query.

Multi-User Searchable Encryption: After transforma-
tion, requester and worker will encrypt their CP-Geo and
MC-Query respectively using their unique secret keys, then
submit them to SC-server for re-encryption.

1) Index-Enc (CP-Geo, skR)→ Enc-Index : Requester uR
encrypts the CP-Geo with own secret key skR, and
outputs an encrypted index Enc-Index.

2) Trap-Gen (MC-Query, skW )→ Trap : Worker uW
encrypts the MC-Query with own secret key skW , and
outputs a trapdoor Trap.

3) Re-Enc (Enc-Index, rkR)→ Re-index , (Trap, rkW )
→ Re-Trap : Once receiving data from requester
and worker, SC-server re-encrypts the Enc-Index to
Re-Index and Trap to Re-Trap using their respective
re-encryption keys rkR and rkW .

Merge and Match: After the encryption phase, SC-
server merges different Re-Index to construct the secure and
dynamic tree SD-Tree, and then provides the task matching
services for worker.

1) Index-Merge (Re-Index)→ SD-Tree : SC-server runs
the Index-Merge algorithm to merge different Re-Index
to build the SD-Tree.

2) Task-Match (SD-Tree,Re-Trap)→Results : SC-server
matches the re-encrypted trapdoor Re-Trap with the
SD-Tree and returns the results to corresponding
worker.

B. SYSTEM INITIALIZATION
This phase is the initialization part of the system, which is
performed by KGC and includes three vital sections, whereby
Setup is responsible for generating the necessary parameters,
Enroll and Revoke are executed when user enrollment and
revocation occur, respectively.

Setup
(
1λ

)
→ (PK : G,G1, p, g, g1, e,H ,MSK ) : KGC

first generates an additive group G and a multiplicative
group G1 of prime order p with generators g and g1, respec-
tively. Then KGC produces a bilinear map e : G× G→ G1
and a public hash function H . Finally, KGC outputs
G,G1, p, g, g1, e,H as public key PK for all entities and a
master keyMSK kept by itself.

Enroll(MSK , ui)→
(
ski = gki , rki = MSK

ki

)
: Given a user

ui, KGC first chooses a ki ∈ Z+p and computes rki = MSK
ki

.
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FIGURE 4. Location transformation. a) The geographic coordinate representation, and b) the range value representation.

Then KGC sends gki to ui as secret key ski and MSK
ki

to
SC-server as re-encrypted key rki of ui.
Revoke(ui): User identities and re-encrypted keys are

saved as {ui : rki} in SC-server and KGC enables to revoke
any user by deleting the corresponding ui and rki from
SC-server.

C. LOCATION TRANSFORM
Privacy task matching is essentially a range query search, but
the challenge is how to check whether a geographic coordi-
nate is within a specific range over ciphertext. To address this
issue, previous works [13], [19], [23] utilized the segment
tree to transform the location data and perform the range
search. However, the time complexity is linear time O(n)
which is not efficient for the practical. Therefore, we propose
a novel privacy range query search based on their works [13],
[19], [23] and the difference is that we reduce the time com-
plexity to logarithmic time O(logn). Firstly, we introduce the
fundamental of their method, then we explain our innovation
in detail.

Now we give an example to introduce the location trans-
form operation. Given a map Nx × Ny, where Nx ,Ny are
the maximum value in each dimension, we divide the map
into Nx × Ny zones and each one will be assigned a unique
identity l (i, j), where 0 ≤ i < Nx , 0 ≤ j < Ny. Then we
build two segment trees to index each coordinate point, as an
example in Fig. 4(a) (the figure is modified from Fig.4 of
study [19]), whereby a location (4, 2) is expressed by CP(4)
and CP(2) in each dimension, which is marked by circles.
Similarly,MCS ([3, 5]) andMCS ([2, 3]) represent the range
value [3, 5]× [2, 3] in Fig. 4(b), which is marked by squares.
Theorem 2: A coordinate point (x, y) is within a

range
[
qxl , qxr

]
×

[
qyl , qyr

]
iff CP(x) and CP(y) intersect

MCS
([
qxl , qxr

])
and MCS

([
qyl , qyr

])
, respectively.

And for clarity, we utilize CP(x, y) to donate CP(x)
and CP(y), MCS(q) to donate MCS

([
qxl , qxr

])
and

MCS
([
qyl , qyr

])
in the following.

Therefore, the SC-server can perform the range search by
checking the intersection of query q and task geographic coor-
dinate (x, y) over the ciphertext domain. However, the draw-
back is that aMCS(q) must traverse allCP(x, y) to get results.
Clearly, the time complexity is O(2n) for n tasks. There-
fore, to improve the task matching efficiency, we propose an
innovative transformation to replace it. We first introduce it
from two aspects:Range-Trans andGeo-Trans, thenwewill
detail the operating mechanism in the following section.

Range-Trans (q)→ MC-Query : we utilize a new defini-
tion called minimum cover query MC-Query (q) to replace
MCS (q). The difference between them is thatMC-Query (q)
not only finds the minimum cover set MCS (q) for each
query, but also indexes them by segment tree, which means
nodes in MCS (q) are leaf nodes of MC-Query (q). As an
example, a range query q = [3, 5] × [2, 3] is expressed by
MC-Query ([3, 5]) and MC-Query ([2, 3]), which is marked
by blue arrow line in in Fig. 4(b).

Geo-Tran (loc)→ CP-Index : Similarly, we use cover
path index CP-Index (x, y) to replace CP(x, y), which only
changes the CP(x, y) data structure into a linked-list.

We have the Theorem 3 by this means to express location
data:
Theorem 3: A geographic coordinate (x, y) is within a

range q =
[
qxl , qxr

]
×

[
qyl , qyr

]
iff the CP-Index (x) and

CP-Index (y) intersect the leaf nodes ofMC-Query
([
qxl ,qxr

])
and MC-Query

([
qyl , qyr

])
, respectively.

D. MULTI-USER SEARCHABLE ENCRYPTION
After the Location Transformation, a task geographic coor-
dinate (x, y) is replaced by CP-Index(x, y) and range query
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FIGURE 5. Merge process.

q is replaced by MC-Query(q). However, node labels in
CP-Index(x, y) andMC-Query(q) all are plaintext, malicious
adversaries may infer some useful information. In order
to prevent privacy leakage, we propose a novel multi-user
searchable encryption to protect the data. Meanwhile, this
encryption scheme also allows the SC-server to perform some
efficient mathematical operations on ciphertexts even if they
are encrypted by different keys.

Index-Enc (CP-Index, skR)→ Enc-Index : CP-Index can
be presented as

{
lR,1, lR,2 . . . lR,d

}
, whereby R is the requester

identity and d is the d th node. Requester uR uses own skR =
gkR and randomly chooses a rR,d ∈ Z+p to encrypt each node
label as: (

gkR·H (lR,d )·rR,d , grR,d
)
. (1)

Finally, the requester outputs two encrypted indexes
Enc-Index(x) and Enc-Index(y) for CP-Index(x) and
CP-Index(y), respectively.

Trap-Gen (MC-Query, skW )→ Trap : Similarly, worker
uW uses own skW = gkW and randomly chooses a
rW ,d ∈ Z+p to encrypt each node label in MC-Query(qx)
and MC-Query(qy), then outputs trapdoors Trap(qx) and
Trap(qy). (

gkW ·H (lW ,d )·rW ,d , grW ,d
)
. (2)

Re-enc (Enc-Index, rkR)→ Re-index , (Trap, rkW ) →
Re-Trap: Once receiving ciphertexts from requester uR, SC-
server re-encrypts Enc-Index by its rkR = MSK

kR(
(gkR·H (lR,d )·rR,d )rkR , grR,d

)
=

(
gMSK ·H (lR,d )·rR,d , grR,d

)
(3)

For clarity, we let PR,d = gMSK ·H (lR,d )·rR,d , TR,d = grR,d ,
ER denotes the encrption scheme for requester uR.

ER
(
lR,d

)
=

(
PR,d ,TR,d

)
(4)

Therefore, the Re-Index is denoted as
{
ER

(
lR,1

)
,ER

(
lR,2

)
. . .ER

(
lR,d

)
}. Similarly, SC-server uses the same method for

worker and outputs the re-encrypted trapdoor Re-Trap(x) and
Re-Trap(y).

E. MERGE AND MATCH
To achieve efficient task matching, SC-server first uses
Index-Merge to merge all Re-Index of different requesters
and constructs two tree-based index SD-Tree for two dimen-
sion x and dimension y, then performs the Task-Match for
all permissible workers’ queries.

Index-Merge (Re-Index)→ SD-Tree : The depth of
Re-Index is fixed for all requesters because they derive from
the same segment tree, thereby the SC-server enables to
merge all Re-Index from top to leaf node. There is an example
to show how to check whether two node labels are equivalent.
Given two re-encrypted node labels in SC-server:

Ei
(
li,d

)
=

(
gMSK ·H (li,d )·ri,d , gri,d

)
=

(
Pi,d ,Ti,d

)
(5)

Ej
(
lj,d

)
=

(
gMSK ·H (lj,d )·rj,d , grj,d

)
=

(
Pj,d ,Tj,d

)
(6)

SC-server first computes as follows:

e
(
Pi,d ,Tj,d

)
= e

(
gMSK ·H (li,d )·ri,d , grj,d

)
= e (g, g)MSK ·H (li,d )·ri,d ·rj,d (7)

e
(
Pj,d ,Ti,d

)
= e

(
gMSK ·H (lj,d )·rj,d , gri,d

)
= e (g, g)MSK ·H (lj,d )·rj,d ·ri,d (8)

It can easily get e
(
Pi,d ,Tj,d

)
= e

(
Pj,d ,Ti,d

)
if and only if

li,d = lj,d . For clarity, we define a new operator #, it has the
following property:

Ei
(
li,d

)
#Ej

(
lj,d

)
=
e
(
Pi,d ,Tj,d

)
e
(
Pj,d ,Ti,d

) (9)

If Ei
(
li,d

)
#Ej

(
lj,d

)
= 1, it means the two nodes are

equivalent. Otherwise, it is different.
Now, we give an example to show the merging process.

We assume the map size is 8 and three are three task locations
geo1, geo2 and geo3, their geographic coordinates are (1, 1),
(4, 4) and (5, 5) respectively. In order to express all points,
we use two segment trees tr(8) to index each dimension. For
clarity, we only show the dimension x in Fig 5, whereby
the tree height is h = log8 + 1. After Enroll, Geo-trans,
Index-Enc, andRe-Enc, SC-server gets three Re-Index(x) as
Fig 5 shows. Then SC-server merges them from root to leaf
node.
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FIGURE 6. Match process.

At level 0:

E1 (a0) #E2 (a0) = 1, E2 (a0) #E3 (a0) = 1 (10)

Later on, SC-server merges them into one node kept as
follows, whereby E (a0) can be E1 (a0), E2 (a0) or E3 (a0).

node0 =< E (a0) , child0, child1 > (11)

At level 1:

E1 (b0) #E2 (b1) 6= 1, E2 (b1) #E3 (b1) = 1 (12)

SC-server splits the node0 into two branches, whereby one
branch is occupied by loc0, then loc1 and loc2 merge the level
1 node and continue the merge process until they cannot find
an equivalent node. Similarly, SC-server performs the same
operation for another dimension, finally outputs SD-Tree(x)
and SD-Tree(y).
Task-Match (SD-Tree,Re-Trap)→ results : We also give

an example to show the task matching operation for one
dimension. Given a worker uW with a range query qx =[
qxl , qxr

]
as shown in Fig. 6. AfterEnroll,Geo-trans, Index-

Enc and Re-Enc, SC-server gets the Re-Trap(x).
According to Theorem 3, SC-server should find whether

the leaf node of Re-Trap(x) intersects with the SD-Tree(x).
Therefore, we adopt Depth First Search (DFS) algorithm to
match the Re-Trap(x) with the merged index. For example,
in Fig. 6 SC-server first travels the left branch of Re-Trap(x),
it is easy to know:

EW (a0) #E (a0) = 1

EW (b0) #E (b0) = 1

EW (c1) #E (c0) 6= 1 (13)

Clearly, EW (c1) and E (c0) are not equivalent at level 2,
which means the leaf node EW (d2) of this branch will not
intersect any node in SD-Tree(x). Thus, SC-server contin-
uously travels the right branch of the Re-Trap(x), luckily
finding the leaf node EW (c2) #E (c2) = 1, which means
loc2, loc3 ∈ qx and get the resultsx . Similarly, SC-server
performs the Task-Match to another dimension and find
the intersection set resultsy. Finally, SC-server returns the
results = resultsx ∩ resultsy to worker.

F. DYNAMIC UPDATE
In a real spatial crowdsourcing environment, the number of
tasks is not fixed since SC-Server needs to continuously insert
new tasks and delete accepted tasks. However, the update
operations are very time consuming for the static index, such
as KD-tree. Therefore, we introduce the dynamic properties
of our SD-Tree in the following.
Deletion: Tree branches in SD-Tree represent requesters’

geographic coordinates, thus the deletion is removing the
specific branch from the index. However, SC-server cannot
directly delete it from root to leaf node because any tree node
may be shared bymultiple leaf nodes. Thus, SC-server should
firstly find the leaf node, then remove this branch from leaf
node to root. For example, if SC- server plans to delete geo2
in Fig 6, it firstly finds the leaf node in SD-Tree(x), then
removes tree node E (d4) and stop deletion because E (c2)
is shared by other.
However, the worst time complexity of deletion for

SD-Tree(x) is O(2logN ), it cannot reach the best logarithmic
time O(logN ). Therefore, to improve the efficiency of dele-
tion, we add a counting item into each tree node, which is
kept as:

node =< E (a0) , child0, child1, count > (14)

The role of the counting item is to record how many
branches share this tree node, which also means how many
leaf nodes it contains. Therefore, SC-server only needs to
know the count value of tree node before deleting it. For
example, if SC-server intends to delete geo3 in Fig. 6, it only
performs count − 1 for tree nodes E (a0), E (b1) and E (c2)
because they are shared nodes, then removes E (d5) because
its count = 1. Therefore, the time complexity of deletion
reduces to O(logN ) on one dimension, which also means it is
O(2logN ) for SD-Tree(x, y).

Insertion: The insert operation is same as the merging,
thus the time complexity is O(2logN ) for one data.

G. SECURITY ANALYSIS
In this section, we give the security analysis of our scheme.
Theorem 4: Our scheme achieves security against chosen-

plaintext attack under the DBDH assumption in selective
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TABLE 2. Notations.

TABLE 3. Computation cost.

TABLE 4. Communication cost.

security model and plaintext secrecy under discrete loga-
rithm (DL) assumption in random oracle model.

Proof: Since our encryption scheme is based on
PRMSM [17] and TBMSM [22], thus the security analysis of
SESTM is similar as PRMSM and TBMSM, which ensures
that no additional information except the ciphertexts will be
leaked to adversaries. This proof process can be referred to
the Theorem 1 and Theorem 2 in TBMSM.

VI. PERFORMANCE ANALYSIS
In this section, we take the time-consuming operations to
evaluate our performance and compare with SC-MSDE [19]
in the aspects of computation overhead and communication
overhead.

A. SD-TREE CONSTRUCTION OVERHEAD
We evaluate the SD-Tree construction overhead from Index
construction and Index update, and Table 2 shows the nec-
essary notations.

Index construction: There are two major operations for
the SC-server to construct the index: 1) re-encrypting the
Enc-Index to Re-Index by Re-enc algorithm, and 2) merging
Re-Index into the SD-Tree by Index-Merge algorithm. For
each Enc-Index, hx + hy node labels are contained, thereby
SC-server takes E

(
hx + hy

)
to re-encrypt it. Similarly,

it costs 2P
(
hx + hy

)
tomerge one into the SD-Tree. Aswhole,

it takes at most n (2P+ E)
(
hx + hy

)
to build the SD-Tree for

n spatial tasks.
Index update: The insertion and deletion are similar to

the merge process, thereby the update operations are also
(2P+ E)

(
hx + hy

)
.

B. COMPUTATION OVERHEAD
The computation overhead of SESTM is tested through the
items of Task publication, Task search and Taskmatching.

Table 3 displays and compares the cost of time-consuming
operations in each phase.

Task publication: Each transformed task location
CP-Geo(x, y) includes hx + hy node labels, thereby requester
takes (2E + H)

(
hx + hy

)
to encrypt it.

Trapdoor Generation: The trapdoor generation process
of SESTM is similar to the one in SC-MSDE. It firstly
finds the MCS (q) for a range query q and then transforms
it into MC-Query (q) which contains up to mxhx + myhy
node labels. Thus, the maximum computation overhead is
(2E + H)

(
mxhx + myhy

)
.

Task matching: In SESTM, we adopt the DFS algo-
rithm to match the query and SD-Tree, SC-server only needs
to travel the Re-Trap (q) rather than SD-Tree. Therefore,
the computation overhead is 2P

(
mxhx + myhy

)
at most,

which has no relation with task number n.

C. COMMUNICATION OVERHEAD
The communication overhead mainly depends on the trans-
mission cost between Worker to SC-Server and Requester
to SC-Server. Table. 4 present the analysis of SC-MSDE and
SESTM.

VII. EXPERIMENTAL EVALUATION
In this section, we evaluate our schemewith simulation exper-
iments. Specifically, we first test the SD-Tree construction
overhead of SESTM, and then compare the Computation
overhead and Communication overhead of SC-MSDE and
SESTM.

A. SETUP AND DATASET
We implement both schemes on a python3 platform, with
the encryption based on the PBC library [44] and Charm
framework [45]. The configuration is on a ubuntu 18.04 sys-
tem with a i3-3240 CPU at 3.4GHz and 4 GB RAM. Due
to the absence of a spatial crowdsourcing dataset, we adopt
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FIGURE 7. Time cost of index construction. a) The re-encrypte time of
three hx + hy , and b) the index merge time of three hx + hy .

FIGURE 8. Time cost of index construction. a) The re-encrypted time of
two elliptic curves, and b) the index merge time of two elliptic curves.

a real-world location share dataset Gowalla [46] to simulate
our experiments, whereby we consider each Gowalla user as
a requester and the check-in geographic coordinate as the
spatial task location. Besides, we apply the Universal Trans-
verse Mercator (UTM) projection to transform all geographic
coordinates into integer points and control the accuracy to
1m, then map them into a fixed map N × N .
In the following experiments, we set the default map size to

16km×16km, which means it needs two tr(214) segment trees
to index each coordinate. Thus the corresponding

(
hx + hy

)
is 30 since the tree height equals log214 + 1. And we also set
the default query range is 1km× 1km. For the task number n,
the default value is 20000.

B. SD-TREE CONSTRUCTION EVALUATION
We evaluate the SD-Treewith the aspects of Index construc-
tion and Index update in the following.
Index construction: As described in Section VI. A,

the SD-Tree construction overhead is mainly decided
by the tasks number n and the sum of

(
hx + hy

)
.

Fig. 7(a) and (b) respectively show the re-encrypt time and
index merge time. Clearly, both results are increasing with
the number of tasks and also proportional to the sum of(
hx + hy

)
, which show our SD-Tree has a good scalability.

Besides, we also consider the influence of elliptic curves size.
As shown in Fig. 8(a) and (b), it is shown that the runtime of
SS1024 is much higher than that of SS512, which justifies the
balance between index construction efficiency and privacy.

Index update: We evaluate the update overhead of our
scheme by deleting and inserting one data from the SD-Tree.
Fig. 9(a) illustrates the average runtime of 200 operations.
Taking the insertion as an example, the figure has little

FIGURE 9. Average runtime and index size: a) the average delete and
insert time, and b) the index size.

FIGURE 10. Runtime of task publication and trapdoor generation, a) the
publication time with varying hx + hy , and b) trapdoor generation time
with different query range size.

changes when the number of tasks increases from 2000 to
20000, which justifies our theoretical analysis in Section VI.
A and demonstrates that our SD-Tree achieves dynamic and
fast updates.

On the other hand, we also measure the storage of our
SD-Tree. As shown in Fig. 9(b), the number of tasks increases
tenfold, but the index size only rises from 0.2 MB to 0.4 MB.
The reason behind this is that more and more tree nodes are
shared as the number of tasks increases, which greatly saves
the storage overhead.

C. COMPUTATION OVERHEAD EVALUATION
In this section, we evaluate the computation overhead of SC-
MSDE and SESTM with the items of Task publication,
Trapdoor generation and Task matching. The analysis is
in VI. B and shown in Table 3.

Task publication: We record the time cost of location
encryption to evaluate the computation overhead in the task
publication phase. As presented in Fig. 10(a), the results of
both schemes are almost linear with the sum of hx + hy. And
we also observe that SC-MSDE is more time-consuming than
SESTM.

Trapdoor Generation: Fig. 10(b) illustrates the runtime
of trapdoor generation operation, due to the Theorem 1,
we observe that the figure of both schemes rises slightly and
then stabilizes, as the query range size increases. Although
SESTM relatively consumes more time than SC-MSDE, it is
however acceptable since the maximum value is below 0.35s.

Task matching: In order to evaluate the task matching
efficiency, we record the average searching time of 100 ran-
dom queries for both schemes. Firstly, we vary the task
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FIGURE 11. Average task matching time, a) with varying task number, and
b) with varying query size.

FIGURE 12. Transmission cost, a) with different query range size, and
b) with different sum of hx + hy .

number from 2000 to 20000 with a default query range size
1km × 1km. Fig. 11(a) reports that the time cost is linear
with the number of tasks in SC-MSDE, while the figure of
SESTM remains around 0.3s. It accords with our theoret-
ical analysis in VI. B. We also observe the influence of
different range query size in Fig. 11(b). From the results
in this chart, we observe that the trend is increasing first
then decreasing. The reason behind it is that the sum of
mxhx + myhy is increasing as the query range increases,
which corresponds to the rising part of the graph. How-
ever, in order to improve query efficiency, both methods
utilize high-level nodes to replace its child nodes, for exam-
ple, MCS(0),MCS(1),MCS(2),MCS(3) can be replaced by
MCS([0, 3]). Therefore, the sum ofmxhx+myhy is decreasing
as the area continues to decrease, which corresponds to the
falling part of the graph. Actually, SESTM also follows this
trend, however, it remains stable since the ratio of the y-axis
of the graph is too large.

Clearly, our scheme has an apparent advantage over the
SC-MSDE in the task matching phase. The reason is that
SC-MSDE needs to match all ciphertexts to get the results,
while SESTM built a tree-based index to improve the search-
ing efficiency.

D. COMMUNICATION OVERHEAD EVALUATION
In this section, we perform the communication evalua-
tion on SC-MSDE and SESTM. We record the transmis-
sion cost between Worker to SC-Server and Requester to
SC-Server.

Worker to SC-server: The transmission cost between
worker and SC-server mainly depends on the data size of
ciphertexts. Fig. 12(a) shows the communication overhead
with different query range sizes, the result of SESTM is

slightly more than that of SC-MSDE. The reason is the trans-
formed worker location is a tree-based structure in SESTM,
not a set of labels in SC-MSDE.

Requester to SC-server: Similarly, we test the transmis-
sion cost of trapdoor from requester to SC-server. As shown
in Fig. 12(b), the results of both schemes are proportional to
the sum of hx + hy, and SESTM costs less communication
overhead compared to SC-MSDE.

VIII. CONCLUSION
In this paper, we propose a secure and efficient task matching
scheme for spatial crowdsourcing over the single server
setting. Firstly, we adopt the multi-user searchable encryption
protocol to protect all users’ location privacy and also achieve
effective user revocation by utilizing the proxy-encryption
technique. We secondly design a secure and dynamic tree-
based index SD-Tree to address the task matching efficiency
issue. Moreover, our SD-Tree has favorable user scalabil-
ity and enables to dynamic update compared with static
index structure. Finally, we evaluate the SD-Tree construc-
tion overhead of our scheme and also compare SESTM
with SC-MSDE in the aspects of computation overhead and
communication overhead. Results show our scheme realizes
the proposed goals and has an apparent advantage over
SC-MSDE in the task matching phase.

In future work, we will evaluate the influence of task
encryption schemes and task distributions on post-processing
time.
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