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ABSTRACT With the continuous shrinkage of transistor sizes in very large scale integrated circuits,
power consumption forms a serious concern to be tackled. With their ability to allow for zero energy
dissipation, reversible circuits have been considered as promising solution to meetup with low power
design requirements. Moreover, advances in their synthesis methodologies can be easily applied to quantum
circuits due to the inherited reversibility of the latter. Although numerous algorithms have been proposed
in the literature to synthesize reversible circuits and map them into their corresponding quantum circuits,
the scalability and computational effort of such algorithms form a serious concern when synthesizing
large size input functions. Binary Decision Diagram-based synthesis for reversible circuits has shown great
evidence in realizing reversible circuits with low quantum cost through exploiting proper reduction rules
for smaller graph size. However, the order of the variables in the decision diagram impacts its overall
size, and thus, the cost of its corresponding reversible circuit. While several reordering algorithms have
been proposed in this manner, their direct impact on the quantum cost has not been considered. In this
article, a Binary Decision Diagram-based algorithm for reversible circuit synthesis is proposed to synthesize
reversible circuits for a given Boolean function with low quantum cost through exploiting a linearized
relationship between the decision diagram size and the corresponding quantum cost. Thereafter, different
decision diagram reordering algorithms have been integrated with the proposed algorithm and compared
in terms of their impact on the quantum cost. Experimental results show that Genetic Algorithm-based
reordering for decision diagram, supportedwith, cycle crossover, inversemutation, and tournament selection,
results in the least quantum cost of the output circuit if compared with other algorithms due to its property in
preserving the nodes of the decision diagram in their near-optimal locations during the optimiation recipe.

INDEX TERMS Reversible logic, binary decision diagram, quantum cost, crossover, mutation, selection.

I. INTRODUCTION
While advanced technology nodes continue scaling down in
terms of transistor sizes, power dissipation represents a major
obstacle in the development process of high performance
Integrated Circuits (ICs). In accordance with Laundauer’s
principle, each bit loss results in energy dissipation in the
form of heat. However, as reversible circuits preserve every
bit value from being lost, zero energy dissipation is allowed.
Therefore, reversible logic introduces a promising solution to
overcome the challenges in the design of high performance
computing devices [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya .

In reversible logic, the number of input bits should equal
the number of output bits with a bijective mapping between
each input-output vector. Consequently, from an output vec-
tor, the input can be obtained and vice-versa. Such a mapping
is required inwide range of applications including: cryptogra-
phy, Digital Signal Processing (DSP), DNA applications, and
others [3], [4]. Furthermore, the advances in reversible logic
field can be well exploited in quantum computations since
quantum circuits are inherently reversible. As a result, quan-
tum computation eventually profits from the development of
effective reversible circuit synthesis algorithms [5].

On the contrary of irreversible logic, fan-out and feed-
back paths are not allowed in reversible logic. To impose
such constraints, the synthesis process of reversible circuits
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significantly differs from the synthesis process of their corre-
sponding irreversible circuits. With being cascaded together,
reversible gates form a reversible circuit that realizes a
required Boolean function. If the function to be realized is
irreversible, it is embedded in a reversible circuit with adding
some additional input bits (known as constant inputs) and
additional output bits (known as garbage outputs) to pre-
serve the required bijective mapping [6]. Fig. 1 illustrates a
reversible circuit realizing the AND Boolean function using
Toffoli gate. Notice that a constant input and two garbage out-
puts (P andQ) have been added to make the circuit reversible.

FIGURE 1. Realizing AND Boolean function using a reversible Toffoli gate
with one constant input (with value of 0) and two garbage outputs (P
and Q).

The cost of a reversible circuit is characterized by several
metrics including: the number of reversible gates cascaded
together, the number of control lines, and the number of
elementary quantum gates required to transform that circuit
into a quantum circuit, known as the Quantum Cost (QC).
While the choice of the appropriate cost metric is mainly
driven by the type of the quantum circuit, the QC has been
considered as a key metric to be tackled by optimization
during the synthesis process [7].

A lot of effort is evident in the literature in developing
effective algorithms for reversible circuit synthesis. From the
specifications of the input Boolean function to be realized,
exact and heuristic based synthesis algorithms have been
employed to realize the input function with low cost such as:
Transformation Based Synthesis (TBS), And-Inverter Graphs
(AIGs), and Lookup Table (LUT) based synthesis [8]–[10].
However, the limited scalability of such algorithms is a major
barrier when synthesizing an input function with a large
number of variables. On the other hand, some algorithms have
been proposed to reduce the number of constant inputs and
garbage outputs through detecting and eliminating redundant
lines during the synthesis process [11], [12]. However, such
algorithms might increase the quantum cost as well as the
number of reversible gates needed to realize the required
functions. Although Exact algorithms outperform others in
terms of the cost of the synthesized circuits, they slowly
converge for large-scale input functions. Furthermore, their
memory demands rise abruptly with the size of the input
function [11], [13].

Binary Decision Diagram (BDDs) have been well
exploited in the field of reversible circuits synthesis, due
to their efficient data structure representation of large size
Boolean functions which, in turn, overcomes the large mem-
ory demands problem induced by using traditional truth table

representations. BDDs have been widely used in combina-
tional applications as well [14], [15]. In BDD-based synthe-
sis for reversible circuits, a one-to-one mapping is applied
between each BDD node and a cascade of Toffoli gates. This
mapping is guided by a predefined lookup table constructed
in a pre-processing stage, as proposed in [16]. This utilization
of BDD in reversible circuit synthesis is beneficial in twofold:
(1) The size of the resultant circuit is bounded by the size
of its corresponding BDD. (2) BDD reduction rules and
BDD reordering algorithms can be effectively exploited in
this area, so that smaller BDD is obtained, which is more
likely, to result in less cost reversible circuit. Thus, reordering
BDD variables with preserving its correctness in representing
a Boolean function is critical stage during the synthesis
process, as proper reordering accompanied with reduction
rules is expected to reduce the size of the BDD, and thus,
the cost of its corresponding reversible circuit [17]. Recently,
one-pass design for reversible circuits has been introduced
with exploiting BDDs as well [18].

Many algorithms have been proposed in the literature to
find the order of the BDD nodes that results in low BDD
size once reduction rules are applied [19]. However, for
such an NP-Complete problem [20], meta-heuristic based
algorithms (including both swarm and evolutionary based
algorithms) have demonstrated great evidence in finding
near-optimal solutions if compared with other determinis-
tic algorithms [21]–[23]. Other proposed algorithms, such
as sifting [24], and dynamic programming-based [25], are
faster to converge, at the cost of resulting larger BDD sizes.
However, the direct impact of the various BDD reordering
algorithms on the quantum cost of the synthesized reversible
circuits has not been considered in the literature. In addition,
there is a need to integrate efficient evolutionary operators in
this optimization process to achieve less quantum cost in the
obtained reversible circuits.

In this article, a BDD-based reversible circuit synthesis
algorithm is proposed whose objective is to synthesize a
reversible circuit for a given Boolean function with low
quantum cost and within a reasonable synthesis time. This
algorithm is driven by a linearized relationship between the
BDD size and the QC of its resultant reversible circuit. BDD
reordering forms a crucial part of the proposed synthesis
algorithm. Therefore, a comprehensive study for different
BDD reordering algorithms in terms of their direct impact on
the QC of the final synthesized reversible circuits is proposed.
The compared reordering algorithms are: sifting, exact, win-
dow permutation, Simulated Annealing (SA) based, and
Genetic Algorithm (GA) based reordering algorithms. There-
after, as GA based BDD reordering algorithm outperforms
others in terms of the quantum cost of the synthesized cir-
cuits, supplementary crossover and mutation operators have
been integrated with this algorithm to achieve additional
reduction on the BDD size, and thus, the quantum cost of
the output reversible circuits. Three kinds of crossovers are
compared in this context. These crossovers are: Partially
Mapped Crossover (PMX), Ordered Crossover (OX), and
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Cycle Crossover (CX). Then, the algorithm is supported with
inverse mutation for further reduction of the cost. Finally,
the impact of the selection operator in the proposedGA-based
BDD reordering algorithm is verified through comparing the
tournament selection with roulette wheel selection operators
in terms of the QC of the output synthesized circuits.

The contributions of this work can be summarized as
follows:
• A fast BDD-based reversible circuit synthesis algorithm
is proposed through exploiting a linearized relationship
between the BDD size and the QC of its corresponding
reversible circuit.

• A comprehensive comparative study between differ-
ent BDD reordering algorithms when integrated with
the proposed synthesis algorithm, is conduced. This
comparison includes: gate count, line number, and
most importantly, the quantum cost of the synthesized
reversible circuit.

• AGAbasedBDD reordering algorithmwith supplemen-
tary crossover operators is proposed and evaluated in
terms of the quantum cost and runtime.

• Supplementary simple inverse mutation is integrated
with the algorithm for further enhancement.

• Tournament and roulette wheel selection operators have
been integrated with the proposed algorithm and their
impact on the quantum cost has been validated.

It is important to mention that in addition to the applica-
tion of reversible circuit’s synthesis with low quantum cost,
the proposed BDD reordering algorithms whose objective is
to reduce the BDD size can be applied for other applications,
wherein, the BDD size is directly related to the time and space
complexity of the digital system represented by the BDD
outputted from the algorithm mentioned in this work. For
example, in fault simulation, the fault combinations are repre-
sented using BDDs, and thus, reducing their sizes is expected
to reduce the space and time complexity of this simulation.
Similarly, the verification of sequential circuits exploits BDD
representations for state sets. Moreover, one-pass design for
reversible circuits has been introduced using BDDs. In all
those applications, exploiting the proposed BDD reordering
algorithm is expected to reduce the overall space and time
complexities, and thus, improve the overall performance of
the system [18], [26].

The rest of the paper is organized as follows: In Section II,
previous work is presented. Section III describes prelimi-
naries, reversible logic terminology, and cost metrics. The
general reversible circuit synthesis algorithm is presented in
Section IV with brief description for each BDD reordering
algorithm with the supplementary crossover, mutation, and
selection operators used in this article. Section V shows
experimental results and the work conclusion is presented in
Section VI.

II. PREVIOUS WORK
Optimizing reversible circuits synthesis was and still a
major topic for quantum computations related researchers.

Several works and algorithms related to this topic have been
proposed and conducted in literature.

Transformation Based Synthesis (TBS) is one of the most
recognized algorithms for reversible circuit synthesis. In this
algorithm, each line of a given truth table is traversed and
reversible gates are added subsequently such that the out-
put values match the input values, without altering already
considered lines. However, this algorithm cannot find solu-
tions for large input functions. Added to that,the increased
number of input variables leads to abrupt increase in memory
demands [10].

Exact combination and synthesis of reversible circuits has
been introduced too in [13] with the cost of slow execution of
the algorithm to find one of the correct solutions. Alternative
algorithms have been proposed as well. One of these is based
on Boolean Satisfiability Solver (SAT) discussed in [19]. The
main aim of this algorithm is to reduce the gate count of a
given Toffoli gates network by examining the satisfiability
of all feasible solutions. However, with large scale and com-
plex circuits, such algorithms slowly converge. Near-optimal
synthesis of reversible circuits have been tested and exploited
by heuristic algorithms that are designed to find the best
available solution for such problems. Genetic algorithm and
particle swarm optimization are examples of such algorithms
that have been discussed in [27], [28] and used to synthesis
reversible functions. However, studies found that these algo-
rithms might slowly converge on small-scale circuits and an
integration with local search algorithms is needed to produce
low cost reversible circuits.

Authors of the work conducted in [29] and [30] presented
a method that synthesizes a network with Toffoli and Fredkin
gates in two steps. First, their synthesis algorithm finds a
cascade of Toffoli and Fredkin gates with no backtracking and
minimal look-ahead. Next, the authors apply transformations
that reduce the number of gates in the network. Transfor-
mations are accomplished via template matching with basis
represented with m gates that realizes the identity function.
The transformation that reduces the gate count can be applied
depending on the result of template comparison with the
sequence of gates to be reduced. However, this algorithm
has been applied to small input functions since the entire
truth table has to be stored, which abruptly increases space
complexity.

The work of [31] presents a synthesis algorithm, Covering
Set Partitions (CSP) without generating garbage bits. The
algorithm utilizes the inherent mathematical specifications
of binary numbers to construct input sequences which are
ensured to lead to valid outputs. The proposed algorithm is
able to generate functions of huge number of variables (up to
30 bits) in a acceptable amount of time. The authors tested the
algorithm on a randomly selected subsets of all correct input
sequences of binary numbers.

The work presented in [32] covers the application of
Genetic algorithm to synthesize large reversible circuits by
CSP. The work is concerned in discovering the set of optimal
solutions taking into account minimizing circuit costs within
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a huge space of solutions. The work investigates three search-
ing algorithms: Genetic, Random and Tabu searches. The
criterion used to compare the three algorithms depending on
the quantum cost that is represented by the generated number
of logical gates by each algorithm.

One of the major works related to synthesis process opti-
mization is discussed in [5]. The mentioned work concen-
trates on generating correct permutations for a binary func-
tion symbolizing the reversible circuit to minimize the solu-
tions search space. NCT (NOT, CNOT, Toffoli) gate based
library has been counted for synthesis of reversible logic cir-
cuits. The proposed algorithm generates a cascade of Toffoli
gates for some reversible description of a circuit. However,
the impact on the quantum cost of the synthesized circuit has
not been considered.

Investigating the influence of different graph-based inter-
mediate representations including: And-Inverter Graph
(AIG), Binary Decision Diagram (BDD), and Majority
Inverter Graph (MIG), in terms of their contribution in pro-
ducing efficient circuit realizations, is the work published
in [33]. By this work, it has been found that it is preferable
to use BDD for small functions to realize reversible circuits
since it produces more compact circuits than the other two
mentioned representations. However, with integrating BDD
reduction rules, it is possible for BDD-based synthesis algo-
rithms to scale well for complex input functions.

Introducing BDD to the process of synthesizing reversible
circuits added a noticeable improvement that can be touched
in reducing synthesized circuit size through exploting BDD
reduction rules and proper variable reordering [1], [34].
According to this, the algorithm discussed in [17] intro-
duces an enhanced version of transformation based synthesis,
wherein, BDD structure is used in the reversible circuit syn-
thesis instead of the truth table. In the work presented in [16],
the authors propose a synthesis approach that deals with
huge circuits whose corresponding functions contain more
than a hundred of different variables. The authors present
in this work a methodology to extract reversible circuits for
functions based on their corresponding BDDs. The circuit is
obtained using an algorithm with linear worst case behav-
ior regarding run-time and space requirements. Furthermore,
the size of the resulting circuit is bounded by the BDD size.
This allows to transfer theoretical results known from BDDs
to reversible circuits. Experiments show better results (with
respect to the circuit cost) and a significantly better scalability
in comparison to previous synthesis approaches. Another
work that exploits BDD in reversible logic synthesis through
decomposing the BDD version of a Boolean function into
reversible logic components has been recently published in
In [35].

The size of BDD is influenced by the order of the variables
in its related binary function, and thus, this affects the cost
of the corresponding constructed reversible circuit. Several
greedy algorithms have been proposed to change the order of
the binary function variables such as Sifting and Windowing
algorithms. The change of variables order and rebuilding

of the corresponding BDD leads to change the positions of
nodes inside the BDD itself and thus, changes the size of
BDD when further reduction rules are applied [24]. Another
BDD reordering algorithm exploits dynamic programming
through dividing the BDD into levels, and then reorder-
ing the nodes for each of those levels [25]. This algorithm
is generally slower than sifting algorithm. Heuristic-based
reordering algorithms have shown great evidence in reorder-
ing BDD variables with small BDD sizes. For example,
Genetic Algorithm (GA) and Simulated Annealing (SA)
algorithms have been well exploited in BDD reordering
problem [21], [23]. Recent swarm optimizaiton algorithms
have been also exploited to solve BDD reordering prob-
lem as published in [22]. However, the direct impact of
BDD reordering algorithms on the cost of the synthesized
reversible circuits should be investigated.

In this work, a comparative study has been conducted
for BDD reordering algorithms including: sifting, window,
exact, genetic-based, and simulated annealing based reorder-
ing, in terms of the quantum cost of generated reversible
circuit. The conducted experimental results of this work show
that meta heuristic-based BDD reordering algorithms out-
perform other algorithms in terms of the overall synthesized
circuit cost with slightly additional run time if compared with
other greedy algorithms. Thereafter, further enhancement is
achieved through integrating proper selection, mutation, and
crossover operators with the genetic based reordering for
BDD. This includes comparing several kinds of crossover
operators including: Partially Mapped Crossover (PMX),
Ordered Crossover (OX) and Cycle Crossover (CX). When
integrated with inverse mutation, CX achieves additional
quantum cost reduction. This leads to further analysis for the
impact of selection operator through conducting a compar-
ison between tournament and roulette wheel selection. Inte-
grating all those operators have reduced the cost of the output
circuits if compared with other BDD reordering algorithms.

III. PRELIMINARIES
The following subsections provide a compact specification
for the basic terminology related to reversible circuit synthe-
sis as well as to the formulation for its related cost metrics.

A. REVERSIBLE LOGIC RELATED TERMINOLOGIES
A reversible function f : Bn→ Bn such that B ∈ {0, 1} can be
realized by n × n reversible gate, where a bijective mapping
is applied on f for every n-bit input into n-bit output vectors.
A reversible circuit G = (g0, g1, · · · , gm−1) is considered
a cascade of reversible gates that implement a reversible
function.

The development of reversible gates and circuits consid-
ered after Toffoli proposed reversible logic gates in the work
presented in [36]. In a reversible logic gate, a unique input
always is associated with a unique output and vice versa
(bijection). NOT, Feynman, Fredkin, Peres, andClifford gates
are all examples of reversible gates that have been proposed
over the latest decades [6], [37].
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FIGURE 2. Representations of Toffoli gate where the control lines are
represented by A and B while the target line is represented by C . The
symbol ⊕ means a bit wise XOR operation.

A sample Toffoli gate is composed of both a target line and
a some of control lines (as depicted in Fig. 2). The target line
will be signaled to be inverted if all control lines are signaled
to 1. Otherwise, it remains unchanged [1]. Table 1 shows the
truth table that illustrates the implementation of the Toffoli
gate shown in Fig. 2, where values of A, B and C represent
the input lines and P, Q, and R represent the output lines.

TABLE 1. Truth table for Toffoli gate shown in Fig. 2.

Toffoli gates are widely used reversible gates in the litera-
ture due to their simplicity in structure [38]. Most of related
works depend on Toffoli gate in their tries of optimizing the
reversible circuits synthesis. Therefore, in this work, Toffoli
gates are considered in both the proposal and the experiments.

FIGURE 3. A a 3× 3 Toffloli gate quantum circuit.

B. COST METRICS OF REVERSIBLE LOGIC
The reversible circuit Quantum Cost (QC) is defined as the
number of basic quantum operations required to synthesize
the corresponding reversible gate. A Toffoli gate g with C
positive control lines, its QC is formulated as in eq.(1) [38].
Fig. 3 depicts the quantum circuit realization for a 3 × 3
Toffloli gate with QC equals to 5.

QC(g) = 2C+1 − 3 (1)

The Quantum Cost (QC) for a reversible circuit is com-
puted by summing up the QC for each reversible gate

FIGURE 4. A reversible circuit that consists of 5 Toffoli gate with a total
QC of 10.

composing it, as formulated in eq.(2) [1]. For example,
the QC for the reversible circuit shown in Fig. 4 equals to
5 ∗ (21+1 − 3)+ 22+1 − 3 = 10

QC(G) =
∑
∀gi∈G

QC(g) (2)

The cost for the synthesized reversible circuit might be
driven by the type of the generated quantum circuit. For
example, Near-term devices (NISQ quantum circuits) are
evaluated in terms of the number of qubits. On the other hand,
fault-tolerant quantum computers are evaluated in terms of
the number and depth of T-gates. However, for generalization,
the cost of a reversible circuit is characterized by its corre-
sponding QC in this article, due to its impact on the effort
needed to convert it into a quantum circuit.

C. BINARY DECISION DIAGRAM TERMINOLOGY
A Binary Decision Diagram (BDD) is an easily manipu-
lated compact data structure to represent a Boolean function
with less memory requirements than that of a truth table.
Formally, it is a directed acyclic graph consisting of termi-
nal and non-terminal nodes. A terminal node has a value
of 0 or 1 while a non terminal node is augmented by one
of the input variables of the Boolean function. A BDD is
constructed through recursively applying Shannon decom-
position as given in eq.(3), where xi represents an input
variable, f represents the Boolean function to be represented,
fxi represents the value of the Boolean function f when xi = 1
(known as positive cofactor), and fx̄i represents the value of
the function f when the variable xi = 0 (known as negative
cofactor) [39].

f = x̄ifx̄i + xifxi (3)

As an example, consider the function f = x1.x2+x3, Fig. 5
illustrates the BDD for this function when Shanon decompo-
sition is recursively applied. Notice that each complete path
in the BDD represents a row in the truth table of the function.
For example, if the input x1x2x3 = 101, then following this
path in the BDD leads to terminal node 0, which is the output
of this Boolean function.

The size of a BDD is defined as the number of its
non-terminal nodes. As an example, the BDD shown in Fig. 5
has a size of 3. However, BDD reduction rules have been
proposed to reduce the size of the BDD while preserving its
correctness in representing a given Boolean function. Shared
nodes and complemented edges are examples of such reduc-
tion rules [40].
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FIGURE 5. BDD representation of the Boolean function f = x1x2 + x3.

The order in which the input variables of the Boolean
function appears in the BDD impacts the BDD size when
further reduction rules are applied. As an example, when the
BDDof the Boolean function f = x1·x2+x3·x4+· · ·+xn−1·xn
is represented in the order shown in Fig. 6-a, its size is given
in a complexity ofO(n). Whereas, if the order of variables has
been changed to be as in Fig. 6-b, the size of the BDD will be
in a complexity of O(2n) [41].

D. PROBLEM FORMULATION
Given an input Boolean function f to be realized with a
reversible circuit, the objective is to find a reversible circuitG
that implements the function f with low Quantum Cost (QC)
within a synthesis time that does not exceed a predefined
upper bound. This problem is formulated in eq.(4) where the
input Boolean function to be realized is denoted by f (X ) such
that X = x1, x2, · · · , xn and QC(G) represents the QC of the
circuit solution G whose synthesis time τ should not exceed
a predefined upper bound τU .

minimize
G

QC(G)

subject to G realizes f (X )

τ ≤ τU (4)

To synthesize a reversible circuit using BDD-based
approach, each node in the BDD is substituted by a cascade
of Toffoli gates following a pre-defined lookup table [16].

FIGURE 6. Two BDD representations of the function
f = x1 · x2 + x3 · x4 + · · · + xn−1.xn (a) Order 1 with a complexity of n.
(b) Order 2 with a complexity of O(2n) [41].

With such a one-to-one mapping, the QC of the synthesized
reversible circuit is expected to increase with the size of its
companion BDD.

To investigate the impact of the BDD size on the QC of the
synthesized reversible circuit, QC has been recorded versus
the BDD size for several benchmarks. Fig. 7 illustrates the
plot which shows that the QC can be linearly correlated with
the BDD size. The correlation coefficient has been found
to be around 0.985. Hence, BDD size forms a reasonable
evaluation criterion for this optimization problem.

FIGURE 7. BDD size versus QC. The plot shows a roughly linear relation
with a correlation coefficient of 0.955. All results were obtained using
Revkit simulator [3].

Therefore, the optimization problem given in eq.(4) can
be roughly formulated as follows: Given an input Boolean
function f (X ), the objective is to find the best order π (X ) of
the variables in the BDD representation that results in the least
BDD size upon applying reduction rules. This formulation
is given in eq.(5) where π represents the order of input
variables in the BDD representation and ψ(π ) represents
the size of the resultant BDD of that order when reduction
rules are applied. The BDD size should not exceed maximum
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value of α|X |, where α is a predefined constant. This upper
bound is important to avoid generating huge BDDs for the
algorithms driven by random permutations. For example,
the BDD shown in Fig. 6-a is a solution represented as
π (X ) = (x1, x2, x3, . . . , xn) and ψ(π ) = n. It is important
to mention that with this solution representation (variable
order/permutation) the solution space size for this optimiza-
tion problem equals to n!.

minimize
π (X )

ψ(π (X ))

subject to ψ(π (X )) ≤ α ∗ |X |

τ ≤ τU (5)

IV. FLOW OF REVERSIBLE CIRCUIT SYNTHESIS &
REORDERING ALGORITHMS OF BINARY DECISION
DIAGRAM
Once a function is represented by a BDD, each BDD node
is mapped to a cascape of Toffoli gates following its location
in the BDD and the location of its neighbors. This mapping
is conducted following a pre-defined lookup table. Fig. 8
illustrates some cases of such mapping [16].

FIGURE 8. Mapping BDD nodes into a cascade of Toffoli gates [16].

A. ALGORITHM OF REVERSIBLE LOGIC SYNTHESIS
Fig. 9 illustrates the general flowchart of the proposed syn-
thesis algorithm for reversible circuits. It consists of the
following phases:

1) Initialization phase: In this phase, the initial BDD of the
input Boolean function to be realized, is constructed.

2) Optimization phase: This phase is the core of this work.
It applies the following steps iteratively until the stop
conditions of the algorithm are satisfied:
• Apply a BDD reordering algorithm to effectively
reduce the number of nodes in the BDD. This part
will be explained in details subsequently.

• Apply reduction rules on the ordered BDD. Those
rules include shared nodes and complemented
edges reduction.

FIGURE 9. BDD-based reversible circuit synthesis algorithm.

• Output a BDD with a satisfactory size to the map-
ping phase.

3) Mapping phase: This phase applies the algorithm pub-
lished in [16] on the BDD resultant from the optimiza-
tion phase. Each BDD node is substituted by a cascade
of Toffoli gates following the mapping table published
in [16].

B. BINARY DECISION DIAGRAM REORDERING
ALGORITHMS
The following provides a breif description for themost widely
used BDD reordering algorithms:

1) SIFTING ALGORITHM
This greedy algorithm is based on finding the optimum
position for a variable, assuming all other variables to be
fixed. The variable is exchanged with its successor until it
becomes the next to the last variable in the Directed Acyclic
Graph (DAG). Then it is moved up to the top of the DAG.
The position for the best DAG size is remembered and the
variable is moved down to the optimum position. If there are
n variables in the DAG, then there are n potential positions
for a variable, including its current position. Among those n
positions, the sub-goal employed by the shifting algorithm is
to find the spot which minimizes the size of the DAG. The
shift algorithm has the advantage that a variable can move
a long distance in the ordering. However, the DAG size can
increase significantly after the first few variables swap, and
then eventually reduce below the starting point. The swaps
are based on the best position seen regardless of any increase
in the intermediate DAG size [24].

2) WINDOW PERMUTATION ALGORITHM
The idea behind this algorithm is to choose a level I in the
DAG and exhaustively searching all k! permutations for the k
adjacent variable starting at level I . This costs k!−1 pairwise
exchanges followed by up to k(k − 1)/2 pairwise exchanges
to restore the best permutation discovered. This mechanism
is repeated for all levels in the DAG until no improvement
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FIGURE 10. Window permutation algorithm with a window size of 3.

in the DAG size is acquired. Fig. 10 illustrates the variable
permutations that are explored when the size of the window
equals to 3 starting at variable x2. Size permutations are
exploredwith 5 adjacent variable swaps, and then 3 additional
variable swaps are used to restore the best permutation (this
is the worst case).

During the algorithm execution, the current optimal per-
mutation level is marked. This mark is reset when a new
more optimal permutation is found for any of the preceding
k − 1 levels. When no more level are marked, the window
permutation algorithm cannot improve the DAG size.

3) EXACT ALGORITHM BASED BINARY DECISION DIAGRAMS
REORDERING
This dynamic programming algorithm takes into account that
the cost of the variables on the initial levels of the BDD relies
only on their ordering, without any attention to the order of
the remaining variables. Because of this, the minimal cost
ordering (in terms of the BDD size) is computed for the
variables in the first k levels. Later on, a truth table with
folding is repeatedly applied to the remaining set of variables
to determine the best order of the variables that results a small
size BDD. The disadvantage of this approach is that it is
computationally severe from runtime point of view [25].

4) GENETIC ALGORITHM BASED BINARY DECISION
DIAGRAMS REORDERING
This algorithm can be categorised with the algorithms that
deals with the local search ones. Each solution is symbolized
by a sequence of variables with some order. The algorithm
initiates by producing random alternations (permutations) of
the included variables. Sifting algorithm -as a local minimiza-
tion mechanism- is applied on each solution in which a solu-
tions generation is kept. The number of produced solutions
in each iteration is relative to the number variables used as
input for a given function. The algorithm acts randomly in the
process of selection of two solutions such that the probability
of selecting a solution is relative to its related BDD size.

If a solution with relatively small size in an iteration, there
is a probability to be chosen several times. After selecting
two solutions, new ones are produced by mixing the parent
ones [23]. Enhancing this algorithm by combining suitable
selections, mutation process, and applying crossover oper-
ators suitable for BDD reordering issue, will be explained
thereafter.

5) SIMULATED ANNEALING BASED BINARY DECISION
DIAGRAMS REORDERING
Simulated annealing with an enhanced neighborhood deter-
mination is used to find the optimal ordered BDD. The
variable neighborhood ordering is realized as the set of all
variable orderings that can be generated with a single replace-
ment or jump operation. The cooling schedule (annealing)
is defined as: The initial transitions are always admitted
which resulting in a random start alternation (permutation).
Simultaneously, the size of the recognized ordered BDDs is
used to compute an initial temperature. During the annealing
process, a specific number of admitted switching are made at
each temperature. The temperature is then decreased using
a dynamic mechanism. The process ends when no more
improvements can be applied [21].

C. IMPROVED GENETIC ALGORITHM BASED BINARY
DECISION DIAGRAMS REORDERING
The solution space consists of all possible orders of variables
in the BDD. The objective of GA optimization phase is to find
the order of the variables that results in the least BDD size.
It is important to mention that on the contrary of Traveling
Salesman Problem (TSP), a solution π1 = (x1, x2, x3) has a
different cost of the solution rotated π2 = (x3, x2, x1) because
each solution results in a BDD whose size depends on the
proceeding reduction rules. Every permutation is a different
solution in BDD. Therefore, genetic crossover and mutation
operators that preserve the optimal locations of some vari-
ables are expected to result in outputting BDDs with smaller
sizes.

Algorithm 1 illustrates the GA for BDD reordering prob-
lem. First of all, the initial population is prepared as a random
set of permutations for the variables of the BDD. For each per-
mutation, the BDD is constructed and sifting algorithm [24] is
applied on it as a local search to accelerate the convergence of
the algorithm. As long as a predefined maximum number of
iterations has not been reached, two parents are selected using
selection operator. Those two parents are combined through
applying a major crossover operator. Thereafter, either a
another type of crossover or mutation operator is applied. The
decision whether to apply a secondary crossover or mutation
is made randomly, following a probabilistic mixing factor,
denoted by γ . BDD for each offspring is constructed followed
by applying reduction rules. Each solution is then evaluated
in terms of the BDD size. If a solution results in a BDD size
that is less than the largest BDD size that has been found so
far in the population, it will replace the permutation resulting
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Algorithm 1 GA-Based BDD Reordering Algorithm
1: procedure BDD-Reordering
2: initPop← generateRandomPopulation()
3: Imax ← c ∗ #var
4: iter ← 0
5: ∀p ∈ initPop
6: bdd ← constuctBDD(p)
7: bdd ← applySift(bdd)
8: while iter < Imax :
9: pmax ← chooseBddWithLargestSize(initPop)
10: pi, pj← applySelection(initPop)
11: r ← chooseRandomBetween(0.0, 1.0)
12: if r ≤ γ then
13: oi, oj← applyCrossOver(pi, pj)
14: else
15: oi, oj← applyOtherCrossOver(pi, pj)
16: end if
17: bddi, bddj← constuctBDD(oi, oj)
18: bddi, bddj← applyReductionRules(bddi, bddj)
19: bddi, bddj← applySift(bddi, bddj)
20: omin ← chooseOffSpringWithSmallerBDDSize

(bddi, bddj)
21: if cost(omin) < cost(pmax) then
22: pmax ← omin.
23: initPop← updatePop(initPop, pmax).
24: end if
25: end procedure

in the largest BDD size in the population. Once the algorithm
stops, a BDD with a small size is outputted.

The GA optimization might require several iterations to
find an acceptable solution for input Boolean function with
large number of variables. On the other hand, fewer iterations
might be required for input functions with limited number
of variables. Therefore, the stop condition for the algorithm
states that the maximum number of iterations is a multiple of
the number of input variables.

1) CROSSOVER OPERATORS
Crossover operator might result in a newborn chromosome
(permutation of BDD variables) which is better than the
parents during the evolution process. In this article, three
crossover operators have been chosen to be applied in
BDD reordering. This includes: Partially Mapped Crossover
(PMX), Ordered Crossover (OX), and Cycle Crossover (CX).
It is important to mention that PMX has been in the literature
for BDD-reordering problem. However, CX and OX have
been chosen because they are expected to be less destructive
for the solutions, and preserve the order of the variables
that has been found to be near-optimal in the evolution pro-
cess [42].

a: ORDERED CROSSOVER (OX)
Given two parent permutations for the order of variables in
the BDD, two random crossover cutting points are selected

in the two parents. Those points will partition each parent
permutation into left, middle, and right portions. Now each
child is constructed through preserving the middle portion of
its corresponding parent, while the left and right portions are
placed in the child in the order in which they appear in the
other parent [42]. Fig. 11 illustrates an example of OX.

FIGURE 11. Ordered crossover where πi , πj represent two parent
permutations and oi ,oj represent their corresponding offsprings. Notice
that the swash of consecutive variables between the cut points remains
the same for each offspring as its corresponding parent.

b: CYCLE CROSSOVER (CX)
This crossover identifies a cycle between the two parent
permutations. The formed cycle starting from the first parent
is used then to fill the portions of the first offspring while the
remaining parts are filled from the second parent following
their order in that permutation. Similarly, the cycle formed
starting from the second parent will be copied to the second
offspring while the first parent will be used to fill the missing
parts [43]. Fig. 12 illustrates an example of CX. Notice that
the cycle formed starting with the parent permutation πi is as
follows: 1 → 5 → 2 → 4 → 7 → 1. All the parts of this
cycle will be copied from permutation πi to offspring oi in
their original positions in πi.

FIGURE 12. Cycle crossover where πi , πj represent two parent
permutations and oi represents the offspring resultant from a cycle
starting with the first part of parent πi . Notice that the dashed arrows
represent how a cycle is constructed.

c: PARTIALLY-MAPPED CROSSOVER (PMX)
This crossover type defines two cut points in the two par-
ents. The portion of variable positions between the two cut
points will be exchanged between both parents to simultane-
ously generate portions of the two offsprings. The remaining
parts of the offsprings will be determined using the mapping
relation between both parents [43]. Fig. 13 illustrates PMX
example with the following mapping relations resultant from
the exchange process: 6↔ 3, 7↔ 4, 2↔ 5, 1↔ 6

2) MUTATION OPERATOR
The purpose of mutation is to increase the exploration of
the GA. This operator is applied to a single permutation to
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FIGURE 13. Partially mapped crossover where πi , πj represent two
parent permutations and oi ,oj represents the offsprings.

get a new permutation whose BDD can have a smaller size.
In this article, inversion mutation is exploited, due to its
simplicity during the optimization process. Inversion muta-
tion chooses two random cut points. The portions of the
permutation between those cut points are simply reversed.
Fig. 14 illustrates inversion mutation.

FIGURE 14. Inversion mutation where πi represents a permutation and
π ′i represents the new permutation after inversion.

3) SELECTION OPERATORS
Selection operator aims to choose the permutations in the
population that will survive for the next iteration in the evo-
lutionary process. To guarantee preserving BDDs with small
sizes for the next iterations alongside with preserving popula-
tion diversity for the upcoming crossover/mutation operators,
probabilistic selection operators are exploited in this article.
This includes: roulette wheel and enhanced tournament selec-
tions.

a: ROULETTE WHEEL SELECTION
This selection is fitness based. That is, the probability to
select a permutation for the next generation is proportional to
the size of its correspondingBDD.However, a BDDwith very
small size compared to the others might dominate the next
generation, which limits the diversity of the population, and
thus, lacks the ability of exploring permutations that result in
smaller BDD sizes.

b: ENHANCED TOURNAMENT SELECTION
This selection is ordered based. N-way tournament selection
groups the population randomly into clusters of N solutions
each. Clusters could overlap. The fittest solution among each
cluster is selected for the next generation.

In this work, an enhanced version of the tournament selec-
tion to preserve the elitism in the evolutionary process for
each population without loosing the diversity has been pro-
posed. This version is called N-way tournament-p, wherein,
the best p% of the population (in terms of their fitness) are
included in the selection process. By this way, the selection
pressure of the BDDs is controlled such that any BDD whose
size worsens after crossover/mutation operators is moved to
the (100-p)% of the population, and thus, excluded from the
tournament in that iteration.

D. IMPROVED GENETIC ALGORITHM COMPLEXITY
ANALYSIS
The problem of finding the minimum BDD size is
NP-complete, therefore, no known algorithm finds the global
minimum in polynomial time. The algorithm does not guar-
antee to find the global minimum. It tries to find a sub-optimal
solution within a reasonable time frame. The size of the
problem is defined by the number of variables. The number
of variables affects the execution time in several ways. The
first way is the effect on search space size. The algorithm is
all about searching for the variables’ permutation that yields
the smallest BDD size. As mentioned before, the algorithm
is divided into two parts: global algorithm using GA and
local search using sifting. Both parts search for the best
permutation. The search space increases by order of n! where
n represents the number of variables. Bigger search space
means harder to find the desired solution. Therefore, it is
natural to make more iterations when a harder problem is
expected. So the stopping criterion used was the exhausting
number of iterations that is c∗nwhere c denotes a pre-defined
constant. Inside the main loop, the process of building BDD
and applying reduction (pruning) rules are repeated. This
part is also affected by the number of variables but not as
direct as the search space. Besides the number of variables,
the number of product terms in the Boolean function also
has an important influence on the size of the resulting BDD.
For a small number of terms, the number of nodes is small
and for a big number of terms also the number of nodes is
small because there will be more chance to apply reduction
rules. At some point in the middle, number of nodes is the
biggest [26].

E. ALGORITHM LIMITATIONS
With the assumption of direct relationship between BDD size
and the Quantum Cost (QC) of the resultant circuit (that is,
the more nodes in a BDD, the more reversible gates in the
output circuit, and thus a larger QC), a limitation is noticed in
the proposed algorithm as there might be some cases wherein
the QC is not proportional with the corresponding BDD size.
To overcome such limitation, the BDD can be constructed
and its companion reversible circuit is synthesized in each
iteration. However, such an approach requires a complete
BDD construction followed by synthesis in each iteration,
which abruptly increases time and memory demands.
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TABLE 2. Comparison between deterministic BDD reordering algorithms.

V. EXPERIMENTAL TESTS & RESULTS
The previously described BDD reordering algorithms (sift-
ing, window permutation, exact, genetic, and simulated
annealing) have been evaluated in terms of the quantum cost
of the synthesized reversible circuits. Furthermore, different
variation and selection operators in the proposed genetic
algorithm have been compared as well.

All experiments were conducted using Intel Xeon machine
with 8 cores and a total RAM of 15.51 GB using Revkit sim-
ulator [3]. In this simulator, the published algorithm in [16]
is implemented to map BDD nodes into a network of Toffoli
gates. The CUDD1 library for decision diagram operations is
integrated in this simulator.

For evaluation, the compared algorithms have been applied
on a number of public benchmarks2 with different input
sizes. Each benchmark is provided to the simulator as a PLA
file (including target circuit truth table). Several common
logic circuits (such as adders, ALUs, mods, and others) are
included in those benchmarks.

It is important to mention that for stochastic algorithms
(genetic and simulated annealing based BDD reordering),
each experiment has been executed 100 times and the results
of those experiments have been averaged. The maximum
number of iterations has been set to 3 ∗ n where n repre-
sents the number of variables in the input Boolean function
that has to be realized using reversible circuitry. Moreover,
the mutation-crossover mixing factor γ (used in Algorithm 1)

1http://hackage.haskell.org/package/cudd
2http://www.revlib.org/functions.php

has been set to 0.5. For tournament selection, 3-way tourna-
ment selection has been implemented with p = 50% of the
worst individuals to be excluded from the tournament.

A. COMPARISON BETWEEN BINARY DECISION
DIAGRAMS REORDERING ALGORITHMS
Table 2 shows the line# (number of input/output variables
after synthesis), gate count (number of Toffoli gates in the
synthesis), QC, and the synthesis time for the following
deterministic algorithms: window-permutation (window size
has been set to 4), sifting, and exact algorithms.

As shown in Table 2, sifting algorithm outperforms win-
dow permutation algorithm in terms of QC by 44% in average
and other evaluation metrics with almost the same runtime.
This is reasonable because sifting algorithm considers the
entire BDD during its greedy approach when reordering the
nodes while windows permutation algorithm considers only
the permutations of the different orders within the predefined
window.

When applying exact algorithm, it slightly outperforms
sifting algorithm since this algorithm considers more pos-
sible permutations of BDD’s nodes ordering in a dynamic
programming manner. However, sifting algorithm is almost
93× faster than the exact algorithm since the latter one has to
test many solutions.

Table 3 shows a comparison between two stochastic
based reordering algorithms. This includes both genetic algo-
rithm (with roulette-wheel selection and PMX crossover)
and simulated annealing. Both algorithms outperform the
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TABLE 3. Comparison between genetic and simulated annealing based reordering algorithms.

deterministic algorithms in terms of QC and other evalu-
ation metrics due to their random behavior in finding the
near-optimal order of the BDD nodes. Simulated annealing
has reduced the QC by around 7% if compared with the
exact algorithm. In addition, it is 14× faster than the exact
algorithm.

Genetic algorithm outperforms the exact algorithm by 8%
in terms of the QC with being 5× faster. Genetic algorithm
generally outperforms all the other algorithms for several
reasons: (1) Sifting is exploited as a local search which
increases the exploitation in this algorithm. (2) PMX is
used as crossover operator which increases the exploration
for finding near-optimal order of the BDD nodes. How-
ever, with integrating such operators, the genetic algorithm
becomes slower if compared with simulated annealing and
other algorithms.

B. COMPARISON BETWEEN SINGLE VARIATION
OPERATORS
The genetic algorithm based reordering with integrating four
variation operators including: PMX, CX, and OX, and inver-
sion mutation have been implemented.

Table 4 shows the QC for the synthesized circuits when
applying only one type of operators in the BDD reordering.
As shown in the results, OX slightly outperforms PMX since
it preserves the locations of some nodes in their optimal loca-
tions. Inversion mutation increases exploration in the search
space which increases the opportunity of finding BDD with
smaller size, and thus, less QC. CX outperforms all the other

operators due to its property in preserving BDD nodes in
their optimal locations in the offspring. CX results in around
4% reduction in QC if compared with the genetic algorithm
published in [23].

The variations in runtime between different operators are
small. However, it is observed that for large scale benchmarks
(such as apex5-104 circuit), longer runtime is required for
reversible synthesis. In this circuit, both PMX and OX have
longer runtime. The larger QC (which indicates larger BDD),
the more runtime is expected, since it takes longer time to
map each node into a cascade of Toffoli gates.

C. COMPARISON BETWEEN MIXED OPERATORS
Table 5 shows the QC and the runtime for the synthesized
reversible circuits with mixing crossover and mutation opera-
tors for BDD reordering. In each iteration in the GA optimiza-
tion, either inversion mutation or other crossover (PMX, CX,
and OX) is applied. The probability to choose the mutation
is 50%.

Mixing operators has generally resulted in less QC.
As shown in the results, mixing CX with inversion mutation
outperforms all the other algorithms in terms of QC. This
result is reasonable since CX preserves some portions of the
permutations in their optimal locations during the optimiza-
tion process while the inversion increases the exploration of
finding better solutions in the search space. This creates a
good balance between exploitation and exploration. There-
fore, CX with inversion has outperformed the PMX (used in
CUDD library) by around 5% in terms of the QC. In addition,
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TABLE 4. Comparison between single operators.

generating smaller BDD sizes reduces the runtime as well
since less number of BDD nodes has to be mapped to Toffoli
gates. Thus, it can be seen that mixing CX with inversion
mutation results in shorter runtime if compared with other
algorithms.

TABLE 5. Comparison with mixed operators.

D. COMPARISON BETWEEN SELECTION OPERATORS
Selection operator plays an important role in the size of the
obtained BDD after reordering. Table 6 shows a comparison

between roulette wheel and 3-way tournament-50 selections
when both integrated with CX and inversion mutation in the
genetic algorithm for BDD reordering in the reversible circuit
synthesis.

Tournament selection slightly outperforms roulette wheel
selection in terms of QC. This clearly shows the impact of
elitism induced by both the tournament per se and eliminating
the worst 50% solutions from the tournament.

FIGURE 15. The average BDD size versus iteration # for mixing CX with
inversion mutation. This plot is for apex2-101 benchmark.

Fig. 15 illustrates the average BDD size (for 100 exper-
iments) versus the iteration # during the GA optimization
process for mixing CX with inversion mutation and 3-way
tournament-50 selection. Notice that with more iterations,
the BDD size decays which indicates that better solutions can
be achieved with more optimization iterations.

Fig. 16-a depicts the obtained BDD when GA algorithm is
applied on benchmark sym6-63 while the obtained reversible
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TABLE 6. Comparison with mixed operators.

FIGURE 16. (a) The resultant BDD when applying GA algorithm on
benchmark sym6-63 where the chromosome representation of the
solution is (4,6,3,1,5,2). (b) The resultant reversible circuit when applying
the mapping phase on the BDD shown in (a).

circuit after mapping the nodes of that BDD into cascades of
reversible gates is shown in Fig.16-b.

The synthesis of reversible circuits (like the one shown
in Fig.16-b) is then mapped into a cascade of quantum gates
to realize the required quantum circuit using any available
quantum technology. Detailed description of building quan-
tum gates from reversible gates schema can be find in [44].
As the proposed work has successfully obtained a reversible
circuit with low Quantum Cost (QC) for that circuit, the algo-
rithms published in [44] can be then applied to obtain a

reversible circuit with low cost in terms of the number of
elementary quantum elements. Furthermore it is important to
mention that this approach needs to be applied on problems
that cannot be solved effectively using classical computers.
Some NP-hard problems like prime numbers factorization,
sophisticated computational models like market behaviour
models, drug development, and many other applications,
require quantum computers to be solved in a reasonable time.
Therefore, the proposed work makes things ready to solve
such problems since the resultant reversible circuit can be
easily mapped into a quantum circuit with low cost, which
in turn, can be used to solve such problems in a reasonable
computation time, if compared with classical computers.

VI. CONCLUSION AND FUTURE WORKS
In this work, a comparative study between several BDD
reordering approaches and their effect on reversible circuit
synthesis is executed. An estimation for each circuit in terms
of gate count, line number, transistor and quantum costs is
conducted. The outcomes have emerged that exploiting meta
heuristic optimization algorithms (specifically genetics and
simulated annealing) in reordering of BDDs leads to smaller
BDD size which turns out to a lower overall cost. There-
after, the work proposed a Genetic Algorithm (GA)-based
BDD reordering algorithm with supplementary crossover,
mutation, and selection operators. The work analyzed the
impact of different operators on the generated BDD, and the
quantum cost of its corresponding reversible circuit. Experi-
mental results have shown that mixing Cycle Crossover (CX)
with inversion mutation and tournament selection outper-
forms other operators in terms of the quantum cost of the
synthesized reversible circuits. Such mixing preserves the
optimal locations of some variables in the BDD alongside
with exploration of new solutions with preserving the elite
ones due to the mutation and selection operators. The synthe-
sis time has been found to be generally correlated with the
BDD size, since the more nodes, the longer time required to
map those nodes into cascades of Toffoli gates.

Although the smaller BDD size often the less quantum
cost, this might not be always true. Because of this, one of
the future planned works is to comprise the synthesis algo-
rithm mapping phase into the GA optimization with fixing
minimizing the control lines number as the main objective
function.
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