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ABSTRACT Over the past few years, dynamic spectrum access has been gaining an increasing attention
as a solution to the spectrum scarcity problem. In this paper, a primary user detection technique based
on Maximum A Posteriori estimation is proposed for dynamic spectrum access networks. In the proposed
technique, a set of secondary users acting as sensing nodes send their individual decisions about the existence
of the primary user to a central fusion center. The fusion center uses the received data to form a codeword
then, applies the maximum a posteriori estimation rule to make a final decision regarding the presence of the
primary user. The proposed technique takes into consideration the accuracy of the local decisions provided by
the secondary users when making a final decision. In this paper, we analyze the performance of the proposed
scheme and derive closed-form expressions for the upper bounds of the false alarm and misdetection
probabilities. The results show that the proposed technique outperforms other combining techniques in terms
of its ability to detect the primary user and, accordingly, minimizes the harmful interference to the licensed
network. Moreover, the proposed technique achieves better performance at a lower number of reporting
secondary users which compensates for the complexity of the maximum a posteriori estimation.

INDEX TERMS Cognitive radio, cooperative sensing, spectrum sensing, fusion center, maximum a
posteriori.

I. INTRODUCTION
The rapid development in wireless technologies created a
large demand on the frequency spectrum, which is not
satisfied using the current spectrummanagement policies [1].
However, studies show that the problem is mainly due to the
inefficient utilization of the available spectrum rather than the
scarcity of free spectrum bands. For example, in a study on
the spectrum utilization in the United States, results showed
that around 75% of the reserved spectrum bands are free and
not utilized by their incumbent users [2]. Dynamic Spectrum
Access (DSA) has been proposed as a solution for the
inefficient utilization of the frequency spectrum problem [3].
In DSA systems, unlicensed users (known as Secondary
Users (SUs)) are allowed to access and utilize the frequency
bands/time slots of the incumbent users (known as the
Primary Users (PUs)) for a certain period, and only at a given
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location such that they do not cause service degradation for
the PUs [4]. The realization of practical DSA systems is not
possible with SUs equipped with conventional transceivers
as additional functions have to be performed by the SUs
in DSA systems. Cognitive Radio (CR) is the enabling
technology behind DSA systems. An SU equipped with CR
technologies gains some intelligence as it becomes able to
perform additional tasks like spectrum sensing, modulation
technique recognition, and adaptive transmission [5]. As the
main goal of DSA is to utilize the unused spectrum without
causing a harmful interference to the PUs, the ability of SUs
to detect the PUs is a crucial function that must be performed
by the secondary system. Spectrum Sensing (SS) is the name
of the CR process responsible for detecting the presence of
the PU in DSA systems, and it is also considered the first
step of the cognitive radio cycle [6], [7].

To quantify and evaluate any detection mechanism, false
alarm (FA) and misdetection (MD) probabilities must be
calculated. The FA probability indicates how frequently the
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detector wrongly declares that the PU is active utilizing its
frequency band. This wrong decision causes the SU to miss
the opportunity to utilize the PU’s free frequency band. On the
other hand, the MD probability indicates how frequently the
detector decides that the PU is absent while it is not. This
wrong decision may cause transmission collision or harmful
interference if the SU transmitted its signal on the occupied
band [8].

The presence of the PU is checked by detecting its signal
over the targeted frequency band using different methods.
These methods are mainly categorized into two approaches.
The first one is a blind sensing technique, in which the SUs
don’t need any pre-known information about the transmitted
signal like in the Energy Detection (ED) technique. The ED
is widely used for SS function because of its implementation
simplicity, and the low design complexity [9], [10]. In the ED
technique, the SU needs to estimate only the noise power to
set the threshold value and does not require any information
about the PU transmission characteristics such as modulation
technique or data rate [11], [12].

The other approach is the signal-specific sensing tech-
nique, in which the SUs need some knowledge about the
characteristics of the PU’s signal such as symbol period,
modulation type, and carrier frequency, etc. [13]. The
most used methods for spectrum sensing in this approach
are matched filter detection, and cyclostationary feature
detection [14].

The other way to categorize the SS function is based
on the level of cooperation between the secondary network
members. In this classification, the SS function is carried out
either individually or cooperatively. In individual SS, each SU
performs the necessary task to detect the PU individually and
takes a decision based on its own capability and geographical
location without any help from other SUs and without sharing
its sensing information with others. On the other hand,
SUs may cooperate by sharing their sensing information to
achieve a more accurate PU detection result and hence it’s
named cooperative spectrum sensing. Cooperative spectrum
sensing is able to mitigate hidden-node problems [15], and to
increase the reliability of detecting PU’s activities at low PU
signal-to-noise ratios (SNRs) [16].

In cooperative sensing, the final decision about the
presence of the PU is taken either by individual SUs in a
distributed fashion or by a centralized entity. In distributed
sensing, each SU is responsible for taking an individual
decision after collecting sensing information from all other
neighboring SUs. In centralized sensing, the decision is
made at a central entity called the Fusion Center (FC)
after collecting individual SU’s sensing information. In both
categories, the shared sensing information can be in one
of three forms: raw-sensing data (samples of the received
signal), processed data, or individual decisions. Gener-
ally, the sensing results received by the FC or shared
with other SUs are combined to perform the cooperative
sensing and to obtain the final decision about the PU
presence [15].

The most popular combining techniques used in cen-
tralized cooperative sensing are Equal Gain Combining
(EGC) [17], Maximal Ratio Combining (MRC) [18], and
Selection Combining (SC) [19] as will be presented in
section II.

In this paper, we propose a centralized cooperative
spectrum sensing framework that is based on Maximum
A Posteriori (MAP) detection for DSA networks. In this
framework, the sensing process occurs in two successive
phases. In the first phase, the SUs use the energy detection
technique to make local (individual) decisions then, forward
the sensing information to the FC. In the second phase,
the FC uses the received data to form a codeword then,
applies the MAP detection technique to make the final
decision about the presence of the PU. The MAP detector
determines themost probable hypothesis given the data. Since
no other hypothesis is more likely, the decision provided is the
optimal one. Moreover, as will be presented in Section IV,
the MAP detection takes into consideration the reliability
of local sensing information received from the SUs. The
reliability of decisions is measured and incorporated into the
MAP detection rule using local false alarm and misdetection
probabilities (i.e., false alarm and misdetection done by SUs
individually). This can be considered as if the FC assigns
weights in an optimal manner to individual decisions in order
to make the final decision. Therefore, the proposed scheme is
expected to outperform other combining techniques used at
the FC.

Our contribution in this paper can be summarized as
follows:

• Proposing a MAP-based centralized cooperative spec-
trum sensing technique for DSA networks. The pro-
posed scheme is optimal in the sense of minimizing the
false alarm and misdetection probabilities at the FC.

• Analyzing the performance of the proposed scheme
by deriving a mathematical closed-form expression for
the upper bounds of the false alarm and misdetection
probabilities.

Additionally, we compare the performance of the proposed
detection mechanism with other techniques found in the
literature and with the theoretical upper bounds.

Organization of paper is as follows: The related work is
presented in Section II. The system model is described in
Section III. The MAP-based detection technique is described
in Section IV. Section V presents the derivation of the upper
bounds for the proposed system. Section VI presents the
performance evaluation of the proposed technique. Finally,
the conclusions are drawn in Section VII.

II. RELATED WORK
In this section, we discuss recent related work in cooperative
spectrum sensing for DSA systems. In cooperative sensing,
combining individual decisions from SUs can be performed
in two different ways according to the available bandwidth
for the control channel [4], [15]:
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• Soft combining: The SUs send the whole sensing
samples or the complete sensing results to the FC.
Existing receiver diversity techniques such as SC, EGC,
and MRC can be utilized for soft combining of local
observations or test statistics.

• Hard combining: The SUs transmit the one-bit decisions
to the FC. The commonly used fusion rules are AND,
OR, and majority voting rules. The OR rule works better
when the number of cooperating SUs is large. Similarly,
the AND rule works better when the number of reporting
SUs users is small [20].

The main benefit of soft combining is its higher accuracy
result compared to hard combining which consumes less
bandwidth in reporting the SUs detection results. In MRC
combining technique, the signals from each SU are co-phased
and weighted before being combined. The applied weights
have to be adjusted according to the estimated channels
between the SUs and the FC [17]. The EGC technique
is similar to MRC except for the weighting circuits [18].
A performance comparison between the MRC and EGC
as combining techniques for cooperative spectrum sensing
in cognitive radio networks is provided in [21]. In the SC
approach, the output performance of the combining process
is the same as the highest SNR among all received signals.
Using the soft combining technique for making a decision
using the one-bit individual decision from each SU is also
used. A quantized equal gain combining (QEGC) technique,
presented in [22], gives a good balance between the two
benefits. Moreover, in [23], authors show how the MRC
technique can be used to get a better performance than the
majority voting technique when used at the FC. Furthermore,
Hybrid techniques are usually used to achieve a trade-off
between the benefits of the good performance of the soft
combining and the low communication cost of the hard
combining. An example of such a hybrid system is presented
in [24] where a clustered distributed detection system using a
fuzzy logic system and a fuzzy c-means clustering algorithm
is developed.

The authors of [25] proposed a cooperative blind
Bayesian-based detection framework for spectrum sensing
in CR networks to overcome the noise variance uncertainty
problem which severely degrades the performance of the
ED. In [25], M SUs calculate the power of observed
signals and forward it to the FC. Then, the FC utilizes the
proposed algorithm to blindly make the final decision about
the existence of the primary user. The proposed algorithm
is designed mainly for low SNR scenario (e.g., −22dB)
and, accordingly, it requires a large window size for power
calculations (at least 1000 time instants). Although the
proposed framework provides a good performance in terms
of false alarm and misdetection probabilities, the authors
assume error-free links between the SUs and the FC.

MAP rule was used in SUs to enhance the ability of
detection by solving the uncertain noise energy problem that
appears when the energy detection technique is used. In this
technique, the spectrum sensing is performed in two steps.

First, the posterior probability of each state is estimated using
the structure of the Bayesian network, then the posterior
probability can be used as the prior probability for the MAP
approach [26].

The MAP estimator has been used at the FC by
Zhou et.al. [27]. Progressive MAP algorithm was used at the
FC as a binary energy detection technique to recover the
transmitted decisions stream received from the SUs, which
can be considered as passing a two-state Markov chain.
However, the final decision is made using hard combining
techniques (majority voting/OR techniques).

As a combining technique, authors of [28] developed a
MAP-based technique in the relay-based network to improve
the recovery of the originally transmitted signal. The detector
constructs a codeword from both the relayed and the directly
transmitted signals. It uses MAP to estimate the originally
transmitted data.

In our proposed system, the MAP algorithm is used alone
at the FC and independent of any other decision techniques.
This is different from the other mentioned systems that use
MAP at the SUs or the FC to enhance the detection of the
received bits and use other combining techniques to obtain
the final decision.

TABLE 1. The list of symbols.

III. SYSTEM MODEL
The system and network models are shown in Fig. 1, and
the symbols used in this paper are listed in Table 1. In the
secondary network, we have the FC and M SUs acting as
sensing nodes which cooperate to detect the PU status. The
detection of the PU signal is performed in two phases. In the
first one, each SU makes a local decision about the existence

156410 VOLUME 8, 2020



A. Tohamy et al.: Cooperative Spectrum Sensing Using MAP as a Detection Technique

FIGURE 1. System model for centralized cooperative CR network.

of the PU signal individually and forwards the sensing results
to the FC. The SU detects the existence of the PU using
ED technique where the energy of the received signal is
calculated and compared to a pre-defined threshold TH . The
SU transmits+1 symbol if the PU is detected (i.e., the energy
of the received signal is greater than or equal to TH ) and −1
if not.

In the second phase, the FC constructs a codeword from
the data received from all SUs and applies the MAP-based
detector to make a final decision about the presence of
the PU. In this paper, we assume that the PU and all
the SUs transmit their data using Binary Phase Shift
Keying (BPSK) modulation and that the channels between
network nodes experience Rayleigh flat fading with Additive
White GaussianNoise (AWGN). The signal received from the
PU at the n-th SU is given by

ySUn = hSUnxPU + wSUn, (1)

and the signal received from the n-th SU at the FC is given by

yFCn = hFCnxSUn + wFCn, (2)

where:
• xPU ∈ {−

√
Es, 0,+

√
Es} is the BPSK modulated

signal corresponding to the PU’s transmitted bit Cs ∈
{−1, 0,+1} with P (Cs) ∈ {0.25, 0.5, 0.25}, respec-
tively, where Es is the energy of the PU bit.

• xSUn ∈ {−
√
ESUn ,+

√
ESUn} is the BPSK modulated

signal corresponding to the n-th SU decision bit CSUn ∈
{−1,+1} where ESUn is the energy of the n-th SU bit.

• hSUnand hFCn are Rayleigh flat fading channel gains of
the links between the PU and the n-th SU and between
the n-th SU and the FC, respectively, where E[h2SUn ] =
E[h2FCn ] = 1.

• wSUn and wFCn are AWGN with zero mean and variances
N0SUn/2, and N0FCn/2 at the SU receiver and at the FC
receiver, respectively.

The signals received at the FC fromM SUs can be written
in a matrix form as follows

Y = HX +W (3)

where Y = [yFC1yFC2 . . . ..yFCM ]
T , X = [xSU1

xSU2
. . . ..xSUM ]

T ,
W = [wFC1

wFC2
. . . ..wFCM

]T , and the channel matrix H is
given by

H =


hFC1 0 0 . . . . . . 0
0 hFC2 0 . . . . . . 0
. . . . . . . . . . . . .

.

.

0 0 0 . . . . . . hFCM

 . (4)

The received vector Y is used by the MAP-based detector
to make the final decision about the PU status. This decision
depends on the quality of the channels between the PU and
the SUs, the detection thresholds used by the SUs, and the
quality of the channels between the SUs and the FC.

IV. MAP-BASED DETECTION TECHNIQUE
Unlike the majority voting and MRC techniques, the MAP-
based detection technique takes into consideration the quality
of the detection links between the PU and the SUs. The
quality of these links is measured using false alarm and
misdetection probabilities. These probabilities are passed
to the MAP detection algorithm together with the received
vector Y to make the final decision about the existence of the
PU. TheMAP detection technique is optimal in the sense that
it minimizes the false alarm and misdetection probabilities at
the FC [29].
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TABLE 2. MAP decision scheme for a case of three SUs.

To describe the proposed algorithm, we consider a
secondary network composed of three SUs and one FC.
However, the same procedure can be generalized to support
an arbitrary number of SUs. Let CW =

[
CSU1 CSU2 CSU3

]T
be the codeword of the individual detection decisions sent by
the SUs to the FC. If the channels between the PU and the SUs
have the same quality (i.e equal received SNRs), and all of the
SUs use the same detection threshold TH , this codeword will
take one of two values [+1 + 1 + 1]T or [−1 − 1 − 1]T .
Since, in general, these channels don’t necessarily have the
same quality, this codeword will take one of eight possible
values. The probability of sending a codeword depends on the
status of the PU (active or idle) as illustrated in Table 2 where
PDn , PMDn , and PFAn are the local probabilities of detection,
misdetection, and false alarm, respectively, at the nth SU. The
values of these local probabilities are calculated according to
the following equations [30]–[32]

PMDn = 1− 0

1,

√
TH√

σ 2
wn

(
1+
√
γSUn

)
 (5)

PDn = 1− PMDn (6)

PFAn = 2Q

(√
TH
σ 2
wn

)
(7)

where σ 2
wn = N0SUn/2 is the noise variance at n-th SU, γSUn =

Es/N0SUn is the received SNR at n-th SU, and 0(., .) is the
incomplete Gamma function. For mathematical traceability,
we assign two different indices to the same codeword in order
to represent the difference in its probability (i.e., CWi+8 =

CWi but P(CWi+8) 6= P(CWi)).
The MAP detection technique estimates the transmitted

codeword ĈW as follow:

ĈW = argmax
CWi

P(CWi|Y )

= argmax
CWi

P(Y |CWi)P(CWi)
P(Y )

.

= argmax
CWi

P(Y |CWi)P(CWi) (8)

where the maximization process occurs over the sixteen
possible codewords provided in Table 2,

P(Y |CWi) =
1

(πN0FC )
3/2 e

−‖Y−HXi‖2/N0FC , (9)

and Xi is the transmitted vector corresponding to the
codeword CWi, e.g., X2 =

[
+
√
ESU1 +

√
ESU2 −

√
ESU3

]T
.

Substituting from (9) into (8) yield

ĈW = argmax
CWi

(
P(CWi)

(πN0FC )
3/2 e

−‖Y−HXi‖2/N0FC

)
= argmin

CWi

(
‖Y − HXi‖2 − N0FC log (P(CWi))

)
(10)

After estimating the codeword ĈW , the FC makes a
decision about the PU status as follows
• PU is active if ĈW ∈ {CW1,CW2, . . . .CWM }

• PU is idle if ĈW ∈ {CWM+1,CWM+2, . . . .CW2M }

Algorithm 1 depicts the operation of proposed MAP-based
detection technique at the FC.

Algorithm 1 The Proposed MAP-Based Technique as a
Detection System at the FC
Input : Y , H , P(CWi), and N0FC
Output: PU status

1 for (i = 1 to 2M ) do // All Possible CodeWords for M
Secondary Users

2 Calculate
3 KAi ← ‖Y − HXi‖

2
− N0FC log (P(CWi))

4 KIi ← ‖Y − HXi‖
2
− N0FC log

(
P(CWi+2M )

)
5 end
6 KAmin ← min(KA1KA2 . . .KA2M )
7 KImin ← min(KI1KI2 . . .KI2M )
8 if KAmin < KImin then
9 PU status← PU is Active
10 else
11 PU status← PU is Idle
12 end
13 return PU status

V. SYSTEM PERFORMANCE
In this section, in order to analyze the performance of the
proposed technique, we derive closed-form expressions for
the upper bounds on the final false alarm and misdetection
probabilities (i.e., PFA, and PMD at the FC). The derived
expressions are used to determine the theoretical limits of
the system performance and for the sake of comparison with
other techniques.

For M SUs, the probabilities of false alarm and misdetec-
tion are given by

PFA ≤
2M+1∑

k=2M+1

2M∑
i=1

P (CWk → CWi)P (CWk) (11)
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and

PMD ≤
2M∑
k=1

2M+1∑
i=2M+1

P (CWk → CWi)P (CWk) , (12)

respectively, where P (CWk → CWi) is the pairwise error
probability of confusing CWk with CWi when CWk is
transmitted and when these are the only two hypotheses.
P(CWk ) can be calculated by substituting from (5), (6),

and (7) into codewords probabilities given in Table 2. In order
to calculate the upper bounds on PFA and PMD (i.e., the right
hand sides of (11) and (12) ), we need to derive an analytical
expression for P (CWk → CWi) for all possible values of
i, k . In the mathematical analysis, we continue with the
assumption of having three SUs. However, following the
same outlines, the derivation can be generalized to support
an arbitrary number of SUs.

When the transmitted codeword is CWk , the received
vector would be Yk = HXk+W . According to (10), the prob-
ability P (CWk → CWi) is given by (13), as shown at the
bottom of the next page, where 〈W ,H (Xk − Xi)〉 denotes the
dot product of the two vectors W and H (Xk − Xi). When
h =

[
hSU1 hSU2 hSU3

]T is given, 〈W ,H (Xk − Xi)〉 would
be a zero mean Gaussian random variable with variance
N0
2 ‖H (Xk − Xi)‖

2. Accordingly,

P (CWk → CWi|h) = Q
(
‖H (Xk − Xi)‖
√
2N0

+

√
N0/2 log (ϑki)
‖H (Xk − Xi)‖

)
(14)

where ϑki = P (CWk) /P (CWi). In order to find
P (CWk → CWi), (14) has to be averaged over the distribu-
tion of the random variable ‖H (Xk − Xi)‖. Since gains of all
channels have the same distribution, then, the distribution of
the ‖H (Xk − Xi)‖ depends on the hamming distance between
CWk and CWi, i.e., the number of positions at which CWk
and CWi are different. In what follows, the hamming distance
between CWk and CWi will be denoted by δki where δki ∈
{0, 1, 2, 3}. Hence, the distribution of the ‖H (Xk − Xi)‖
would be the same for any pair of codewords with the same
δki. Therefore, the probability P (CWk → CWi) depends on:

1) The hamming distance δki
2) The ratio between codewords probabilities ϑki.

Let ρδki (ϑki) = P (CWk → CWi). Then, we need to derive
ρδki (ϑki) for δki ∈ {0, 1, 2, 3}.

• Derivation of ρ0 (ϑki)
Since ρ0 (ϑki) = P (CWk → CWi) when CWk = CWi
(butP(CWk ) 6= P(CWi)), we can not use (14) to continue
our derivation and we have to go one step backwards.
From (13),

ρ0 = P
(
log

(
P(CWk )
P(CWi)

)
< 0

)
= P (log (ϑki) < 0) (15)

Since P(CWk ) and P(CWi) are deterministic variables,
then

ρ0 (ϑki) =

{
0 ϑki ≥ 1
1 ϑki < 1

(16)

• To derive ρ1 (ϑki), we consider the case when k = 3 and
i = 7 that can be generalized to all values of k and i such
that δki = 1. From (14),

P (CW3→ CW7| h)

= Q
(
‖H (X7 − X3)‖
√
2N0

+

√
N0/2 log (ϑ73)
‖H (X7 − X3)‖

)
= Q

√2h2SU1
γFC +

log (ϑ73)

2
√
2h2SU1

γFC

 (17)

Averaging (17) over distribution of h2SU1
, yields

ρ1 (ϑki) =


1− 0
2

ϑ
−

(
1+ 1

0

)
/2

ki ϑki ≥ 1

1−
1+ 0
2

ϑ
−

(
1− 1

0

)
/2

ki ϑki < 1
(18)

where 0 =
√
γFC/(1+ γFC ), and the derivation of (18)

is provided in Appendix VII.
• To derive ρ2 (ϑki) considering the case when k = 4 and
i = 6 (and which imply generally, {∀ i, k : δki = 2})

ρ2 (ϑ46) = P (CW4→ CW6| h)

= Q

(√
2
(
h2SU1
+ h2SU2

)
γFC

+
log (ϑki)

2

√
2
(
h2SU1
+ h2SU2

)
γFC


= Q

(√
2Z2 +

log (ϑki)

2
√
2Z2

)
(19)

where Z2 =
(
h2SU1
+ h2SU2

)
γFC . Since h2SU1

and h2SU2

have an exponential distribution, the distribution of their
summation Z2 is given by [33], [34].

fz (Z2) =
1

γ 2
FC

Z2 e−Z2/γFC , (20)

Averaging (19) over the distribution of Z2 which is given
in (20) yields to (23), as shown at the bottom of the 8th
page; the derivation is given in the Appendix VII.

• To derive ρ3 (ϑki) considering the case when k = 2 and
i = 7 (and which imply generally, {∀ i, k : δki = 3})

ρ3 (ϑ27) = P (CW2→ CW7| h)

= Q

(√
2
(
h2SU1
+ h2SU2

+ h2SU3

)
γFC

+
log (ϑki)

2

√
2
(
h2SU1
+ h2SU2

+ h2SU3

)
γFC


= Q

(√
2Z3 +

log (ϑki)

2
√
2Z3

)
(21)
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where Z3 =
(
h2SU1
+ h2SU2

+ h2SU3

)
γFC . Since h2SU1

,

h2SU2
, and h2SU3

have an exponential distribution, the dis-
tribution of their summation Z3 is given by [33].

fz (Z3) =
1

2γ 3
FC

Z2
3 e
−Z3/γFC , (22)

and averaging (21) over (22) yields (24), as shown at
the bottom of the next page; the derivation is given in
Appendix VII.

FIGURE 2. Comparison between the simulation results and the upper
bound of the false alarm probability for the proposed MAP technique,
when SUs’ average SNR is 15dB.

VI. PERFORMANCE EVALUATION
In this section, the performance of the proposed MAP-based
cooperative spectrum sensing technique is evaluated.
We started by studying the effect of the detection threshold
value at the SUs on the performance of the proposed
technique compared to the traditional techniques. Then,
we characterize the performance of the system in terms of
its probabilities (PFA and PMD) over the feasible Range of
Operation (RO) [35]. Then we study the effect of different
links quality in terms of different SNR values on the
system performance. Finally, the effect of the number of
reporting SUs is investigated. The network model used in
the evaluation process is depicted in Fig. 1. The default
simulation parameters are listed in Table 3 unless otherwise
clearly mentioned. All experiments were carried out using
MATLAB. The upper bounds for PFA and PMD are shown
in Fig. 2 and Fig. 3, respectively. The figures show how

FIGURE 3. Comparison between the simulation results and the upper
bound of the misdetection probability for the proposed MAP technique,
when SUs’ average SNR is 15dB.

TABLE 3. Simulation parameters.

much the proposed technique performance is very close to
its mathematical upper bounds.

A. THE PROPOSED SYSTEM DETECTION CAPABILITY
In this experiment, we study the PU detection ability of
the proposed technique. Fig. 4 shows the value of the
FC detection probability PD against the detection threshold
TH . As can be inferred from the figure, the MAP-based
technique outperforms other techniques, especially at higher
threshold values. Fig. 5 shows the Receiver Operating
Characteristic (ROC) of the proposed technique compared
to the other combining techniques and its theoretical upper
bounds. As can be noticed, the performance of the proposed
technique is better than the other combining techniques
especially at lower PFA where there are enhancements

P (CWk → CWi) = P
(
‖Yk − HXi‖2 − N0 log (P (CWi)) < ‖Yk − HXk‖2 − N0 log (P (CWk))

)
= P

(
‖H (Xk − Xi)+W‖2 + N0 log

(
P (CWk)

P (CWi)

)
< ‖W‖2

)
= P

(
〈W,H (Xk − Xi)〉 >

‖H (Xk − Xi)‖2

2
+
N0

2
log

(
P (CWk)

P (CWi)

))
(13)
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FIGURE 4. Comparison among the proposed MAP, EGC, SC, and MRC
using PD versus threshold in W, when SUs’ average SNR is 15dB.

FIGURE 5. System ROC (PD against PFA) for MRC, SC, EGC, and MAP, when
SNR1 = 13dB, SNR2 = 15dB, and SNR3 = 17dB; including the UB curve
form the analysis.

in the PD of about 10%. This means that the proposed
system is able to achieve a higher probability of detection
at low false alarm probability values compared to the

FIGURE 6. A comparison among the proposed MAP, the progressive
MAP-OR and the progressive MAP-majority techniques for three SUs and
average SNR = 10dB.

other techniques. To complete the performance analysis,
we compare the proposed MAP-Based technique with the
progressive MAP proposed in [27]. As can be inferred
from Fig. 6, the proposed technique outperforms both the
progressive MAP-OR and the progressive MAP-majority
techniques especially at low (acceptable) values of PFA.
The relationship between PMD and PFA can illustrate the

overall system performance, which characterizes the ability
of the system to make a trade-off between the high ability to
detect the presence of the PU and the possibility of triggering
a false alarm. The RO, as defined by [35], is a certain
region where both PMD and PFA are suitable to be used with
general cognitive radio systems, this region extends from
10−3 to 10−1 for both probabilities. A comparison between
the proposed MAP and the other combining techniques,
at different values of SNR at the SUs side, is shown
in Fig. 7. The comparison shows that the proposed technique
outperforms the other techniques, even that for low SNRs
where the other combining techniques failed to achieve
acceptable results as shown in Fig. 7.b.

ρ2 (ϑki) =


1
2
ϑ
−

(
1+ 1

0

)
/2

ki

(
1− 0 −

0

2 (1+ γFC )
+

1− 0
40 (1+ γFC )

log ϑki

)
, if ϑki ≥ 1

1−
1
2
ϑ
−

(
1− 1

0

)
/2

ki

(
1+ 0 +

0

2 (1+ γFC )
−

1+ 0
40 (1+ γFC )

log ϑki

)
, if ϑki < 1.

(23)

ρ3 (ϑki) =



1
2
ϑ
−

(
1+ 1

0

)
/2

ki

(
1− 0 −

0

2 (1+ γFC )
+

1− 0
40 (1+ γFC )

log ϑki −
30

8 (1+ γFC )2

+
1− 30

160 (1+ γFC )2
log ϑki +

1− 0

3202 (1+ γFC )2
log2 ϑki

)
, if ϑki ≥ 1

1−
1
2
ϑ
−

(
1− 1

0

)
/2

ki

(
1+ 0 +

0

2 (1+ γFC )
−

1+ 0
40 (1+ γFC )

log ϑki +
30

8 (1+ γFC )2

−
1+ 30

160 (1+ γFC )2
log ϑki +

1+ 0

3202 (1+ γFC )2
log2 ϑki

)
, if ϑki < 1.

(24)
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FIGURE 7. PMD Vs. PFA for the proposed technique and the other
techniques to show the improvement in the overall system performance
using different received SNR at SUs.

The same result can be observed if we compared the
system performance in terms of PD against average SUs’
SNR values at a given value of PFA (e.g., PFA = 10−2).
As shown in Fig. 8, the proposed technique has a much better
performance compared to other combining techniques even
at lower SNR values. For example, the MAP-based system
achieved PD = 90% at SNR value = 9dB. However, in order
to achieve the same value of PD with other techniques,
the SNR has to reach 13 dB. Also, the PD value of other
combining techniques doesn’t exceed 96% when the SNR
equals 20 dB; While the proposed MAP-based technique can
achieve it at 12 dB SNR.

B. THE EFFECT OF LINKS QUALITY
In this experiment, we investigate the effect of the detection
link (PU→ SU) and the reporting link (SU→ FC) quality on
the system performance. The link quality is expressed by the
value of the SNR at the receiving node. Fig. 9 shows the effect
of the detection link and the reporting link on the value of PD.

FIGURE 8. System performance (PD against average SNR ) for MRC, SC,
EGC, and MAP, when at fixed PFA = 10−2.

FIGURE 9. The effect of changing the average received SNR at SU and at
FC on the system PD.

Two curves are plotted, the first one (dashed line) shows the
effect of the detection link quality represented by the received
SNR at the SU when the SNR at the FC (representing the
SU→ FC link status) is kept constant at 10dB. In the same
way, the second curve (solid line) shows the effect of the
reporting link between the SU and the FC at constant SU’s
SNR. By comparing the two curves, we can conclude that
the detection link has a much higher effect on the overall
detection process compared to the reporting one.

The full study of the effect of the two links and their
combined effect on PD can be obtained from Fig. 10 which
shows the performance of the system at different links status.
It generalizes the previous finding that the detection link has
a higher effect on the system performance compared to the
reporting link.

C. THE EFFECT OF NUMBER OF REPORTING SUs
In this experiment, we investigate the effect of the status and
the number of reporting SUs on the detection performance
of the system. In the first experiment, we examine the effect
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FIGURE 10. The combined effect of the two links quality on the overall
system PD.

FIGURE 11. The effect of the third SU SNR’s on the PD when the average
SNR of the first and second SU is fixed to 5dB, 10dB and 13dB.

of adding an additional SU to the cooperative set of SUs
on the overall performance. We assume a set of two SUs
with an average SNR value, for which the system achieves
a certain probability of detection PD2 . Fig. 11 shows the
enchantment in the system performance, in terms of the value
of PD, due to the contribution of the third SU at different
average SNR values for the original two SUs. As can be
inferred from the figure, there is a threshold value for the
third SU’s SNR value after which the contribution of third
SU becomes noticeably effective in the detection process
and enhances the overall system performance. Also, this
threshold value has an inversely proportional relation with
the average SNR of the original SUs. From this result,
it can be inferred that adding a new SU to the cooperative
set may not be always useful taking into consideration
the additional communication overhead and the increase in
detection algorithm computational complexity as will be
discussed later.

In the second experiment, we evaluate the effect of the
number of reporting SUs on the achieved value of PD by
comparing the performance of the proposed MAP-based

FIGURE 12. The effect of the number of SUs on PD for average SNR at SU
= 10dB, and 15dB and at FC = 20dB.

technique with that of the other combining techniques for
the same number of reporting SUs. As shown in Fig. 12 the
MAP-based technique outperforms the other techniques at
the same number of SUs especially at low values of average
SNR at the SUs.

D. SYSTEM COMPLEXITY
In this section, we calculate the system complexity (O) as
a function of the number of reporting SUs for the proposed
system as well as the traditional combining techniques. Also,
we compare the performance of the proposed techniques
(value of PD) with other traditional techniques. To explain
how to get the order of complexity, we need first to calculate
the complexity of basic mathematical operations; If we have
two numbers of n1 and n2 bits, so the complexity order of their
addition operation is O (max(n1, n2)), their multiplication
operation is O (n1 n2), and for taking the log operation of n-
bit number is O

(
n2 ln (n)

)
[36].

For the proposed algorithm, let lh, ls, and lp be the number
of bits representing the channel coefficient h, transmitted
signal X from the SU, and the P(CWi) respectively, and M
is the number of SUs. The computational complexity of the
proposed MAP technique can be calculated by analyzing the
terms of (10) as follows:
• ‖Y − HXi‖2: Since Xi is the BPSK modulated signal
corresponding to the ith SU decision bit and only be
either {+1, −1}, the complexity order of this term is
O
(
2M (lslh)2

)
.

• log (P (CWi)): The complexity order of this term will be
O
(
2M l2p ln(lp)

)
.

As the two parts are summed, the complexity order of (10)
can be shown as,

O
(
2 max

(
M (lslh)2 , 2M l2p ln(lp)

))
Using the same method for the traditional combining
techniques, as defined in [17] and [18], the computational
complexity order can be calculated as follows:
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• EGC

O
(
M ls l3h ln(lh)

)
• MRC

O
(
M ls l3h

)
• SC

O
(
M (ls lh)2

)
While the previous set of computational complexities show

that the MAP-based technique has a higher complexity,
it is more fair to compare the complexity for the same
performance level. In our case, we should compare the
complexity of different systems that achieve the same value
of PD. Assuming that lh = 4, ls = 6, the average SNR
value of SUs = 10dB, and the SNR value at the FC =
20dB will be used during the comparison. Fig. 13 shows a
comparison between the achieved value ofPD forMAP, EGC,
and MRC techniques at nearly the same complexity values.1

The MAP technique achieves a higher value for PD for the
same complexity.2 Moreover, for the same complexity value,
the MAP-based technique utilizes a smaller set of reporting
SUs which means less communication overhead. From
the previous analysis, we can notice that the MAP-based
technique provides a fair trade-off between the complexity
and the performance.

FIGURE 13. The PD VS. the order of system complexity for the proposed
system with average SNR at SUs = 10dB and at FC = 20dB.

VII. CONCLUSION
In this paper, we presented a Maximum A Posteriori (MAP)
based cooperative spectrum sensing technique for dynamic
spectrum access networks. The proposed technique was
implemented at the central fusion center where the individual
sensing decisions, regarding the presence of the primary

1SC technique is excluded from this comparison as its PD will be equal to
the highest PD received from SUs

2Here, we change the complexity by changing the number of reporting
SUs and fixing the other parameters like lh and ls.

user, are transmitted from the secondary users. The fusion
center applies the MAP technique using the collected results
to obtain a final estimation regarding the presence of the
primary user and disseminated it to the secondary users.
Besides the algorithm design, the mathematical upper bounds
in terms of the probability of detection and probability of
false alarm have been derived for the sake of comparison. The
performance of the proposed technique has been compared
to that of other techniques found in literature. The results
show that our proposed technique outperforms the others in
terms of the ability to detect the presence of the primary user
represented by enhancing the probability of detection (10%
improvement) for the same false alarm probability. Also,
the proposed system achieves a better performance in terms of
the required number reporting secondary users compared to
other techniques for the same probability of detection which
compensates for the higher complexity of the system. Also,
MAP is considered as a green communication technique by
having less power consumption by reducing the number of
reporting SUs.

APPENDIXES
APPENDIX A
DERIVATION OF ρ1

(
ϑki

)
Averaging (17) over h2SU1

distribution, and with assumbtion
that all channels are Rayleigh flat fading channels with
AWGN,

ρ1 (ϑki) =

∫
∞

0
Q
(√

2Z1 +
log (ϑki)

2
√
2Z1

)
fZ (Z1) dz (25)

where Z1 = h2SU1
γFC , and

fZ (Z1) =
1
γFC

e

(
−Z1
γFC

)

Substituting fZ (Z1) into (25) taking in consideration that
Q (ν) = 0.5 erfc

(
ν
√
2

)
ρ1 (ϑki) =

1
2γFC

∫
∞

0
erfc

(√
Z1 +

C
√
Z1

)
e

(
−Z1
γFC

)
dz (26)

whereC = log(ϑki)
4 . Integrating (26) using integration by parts

where U = erfc
(√

Z1 + C
√
Z1

)
, dV = e

(
−Z1
γFC

)
dz, dU =

−1
√
πZ1

(
1− C

Z1

)
e
−(Z1+C)

2

Z1 dx, and V = − γFCe

(
−Z1
γFC

)
yields

ρ1 (ϑki) =
1

2γFC

[
γFC erfc

(√
Z1 +

C
√
Z1

)
e

(
−Z1
γFC

)

−
γFC
√
π

∫
1
√
Z1

(
1−

C
Z1

)
e−

Z1
γFC
−
(Z1+C)

2

Z1 dz

]∞
0
(27)

=

{
T1 C ≥ 0
1+ T1 C < 0

(28)

where

T1 = −
1

2
√
π

∫
∞

0

1
√
Z1

(
1−

C
Z1

)
e−

Z1
γFC
−
(Z1+C)

2

Z1 dz (29)
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after some manipulations, (29) can written as

T1 = −
e−r

2
√
π

∫
∞

0

1
√
u

(
0 −

d
u

)
e−

(u+d)2
u du (30)

where r = 2b
(
1−

√
1+ 1

γFC

)
, d = C

√
1+ 1

γFC
, and u =

Z1
(
1+ 1

γFC

)
. (30) can be written as follows

T1 = −
e−r

2
√
π

∫
∞

0

1
√
u

(
−1+ 0 + 1−

d
u

)
e−

(u+d)2
u du

= (1− 0)
e−r

2
√
π

∫
∞

0

1
√
u
e−

(u+d)2
u du

−
e−r

2
√
π

[
erfc

(
√
u+

d
√
u

)]∞
0

(31)

=

{
T ∗1 C ≥ 0
1+ T ∗1 C < 0

(32)

where

T ∗1 = (1− 0)
e−r

2
√
π

∫
∞

0

1
√
u
e−

(u+d)2
u du (33)

By changing variables, let y =
√
u , dy =

du
2
√
u
, and after

substitution in (33)

T ∗1 = (1− 0)
e−r
√
π

∫
∞

0
e
−

(
y2+d
y

)2

dy

= (1− 0)
e−(2d+r)
√
π

∫
∞

0
e
−y2− d2

y2 dy (34)

Using Mathematica to find the integral in (34) yields

T ∗1 =


1
2
(1− 0) e−4d−r C ≥ 0

1
2
(1+ 0) e−r C < 0

(35)

After substituting for the d , r and C ,

T ∗1 =


1
2
(1− 0) ϑ

−
1
2 (1+1/0)

ki ϑki ≥ 1
1
2
(1+ 0) ϑ

−
1
2 (1−1/0)

ki ϑki < 1
(36)

Substituting from (36) into (32) then into (28) yields (18)

APPENDIX B
DERIVATION OF ρ2

(
ϑki

)
Consider the case when k = 4 and i = 6 (which have two
different bits belong to SU1,and SU3), and averaging (19)
over the distribution of Z2 (20) yields

ρ2 (ϑ46)=
1

2γ 2
FC

∫
∞

0
erfc

(√
Z2+

C
√
Z2

)
Z2 e
−

Z2
γFC dz (37)

where C =
log(ϑki)

4 . Integrating (37) using integra-

tion by parts where: dV = Z2 e−
Z2
γFC dz, U =

erfc
(√

Z2 + C
√
Z2

)
, dU = −1

√
πZ2

(
1− C

Z2

)
e
−(Z2+C)

2

Z2 dZ , and

V =
[
−γFC (γFC + Z2) e−Z2/γFC

]∞
0 yields

ρ2 (ϑki)

=
1

2γ 2
FC[
−γFC (γFC + Z2) e−Z2/γFC erfc

(√
Z2 +

C
√
Z2

)
−
γFC
√
π

∫
1
√
Z2
(γFC+Z2)

(
1−

C
Z2

)
e
−(Z2+C)

2

Z2
−

Z2
γFC dz

]∞
0

=

{
T2 C ≥ 0
1− T2 C < 0

(38)

where

T2 =
1

2γFC
√
π

×

∫
∞

0

1
√
Z2
(γFC + Z2)

(
1−

C
Z2

)
e
−(Z2+C)

2

Z2
−

Z2
γFC dz.

(39)

Using Mathematica to solve this integration yields

T2

=


1
2

(
1−0−

1
1+γFC

(
0

(
1
2
+d

)
−d

))
e−4d−r C≥0

1
2

(
1+0−

1
1+γFC

(
0

(
1
2
−d

)
−d

))
e−r C<0.

(40)

Substituting back for r,d,and C then using (40) in (38), and
after some mathematical manipulations, (23) is obtained.

APPENDIX C
DERIVATION OF ρ3

(
ϑki

)
Consider the case when k = 2 and i = 7 (which have three
different bits belong to SU1, SU2, and SU3). Averaging (21)
over the distribution of Z3 (22) yields

ρ3 (ϑ27)=
1

4γ 3
FC

∫
∞

0
erfc

(√
Z3+

C
√
Z3

)
Z2
3 e
−

Z3
γFC dz (41)

where C =
log(ϑki)

4 . Integrating (41) using integra-

tion by parts where: dV = Z2
3 e−

Z3
γFC dz, U =

erfc
(√

Z3 + C
√
Z3

)
, dU = −1

√
πZ3

(
1− C

Z3

)
e
−(Z3+C)

2

Z3 dZ , and

V =
[(
−γFCZ2

3 − 2γ 2
FC − 2γFCZ3

)
e−Z3/γFC

]∞
0 yields

ρ3 (ϑki)

=
1

4γ 3
FC

[
erfc

(√
Z3 +

C
√
Z3

)
e−Z3/γFC (−γFCZ2

3

− 2γ 2
FC − 2γFCZ3

)
−
γFC
√
π

∫
−Z2

3 − 2γFC − 2Z3
√
Z3

(1

−
C
Z3

)
e
−(Z3+C)

2

Z3
−

Z3
γFC dz

]∞
0

(42)
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=

{
T3 C ≥ 0
1− T3 C < 0

(43)

where

T3 =
1

4γ 2
FC
√
π

∫
−Z2

3 − 2γFC − 2Z3
√
Z3

(1

−
C
Z3

)
e
−(Z3+C)

2

Z3
−

Z3
γFC dz. (44)

Using Mathematica to solve this integration and substi-
tuting back in (43), and after some mathematical manipula-
tions, (24) is obtained.

REFERENCES
[1] S. D. A. Nkalango, H. Zhao, Y. Song, and T. Zhang, ‘‘Energy efficiency

under double deck relay assistance on cluster cooperative spectrum sensing
in hybrid spectrum sharing,’’ IEEE Access, vol. 8, pp. 41298–41308, 2020.

[2] M. McHenry, NSF Spectrum Occupancy Measurements Project Summary.
Vienna, VA, USA: Shared Spectrum Company, 2005.

[3] C. Sun and R. Jiao, ‘‘Discrete exclusion zone for dynamic spectrum access
wireless networks,’’ IEEE Access, vol. 8, pp. 49551–49561, 2020.

[4] W. Liang, S. X. Ng, and L. Hanzo, ‘‘Cooperative overlay spectrum access
in cognitive radio networks,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1924–1944, 3rd Quart., 2017.

[5] F. Awan, N. Sheikh, and M. Hanif, Information Theory of Cognitive Radio
System. London, U.K.: IntechOpen, Nov. 2009.

[6] J. Pastircak, J. Gazda, and D. Kocur, ‘‘A survey on the spectrum trading in
dynamic spectrum access networks,’’ in Proc. ELMAR, Sep. 2014, pp. 1–4.

[7] W. S. H. M. W. Ahmad, N. A. M. Radzi, F. S. Samidi, A. Ismail,
F. Abdullah, M. Z. Jamaludin, and M. N. Zakaria, ‘‘5G technology:
Towards dynamic spectrum sharing using cognitive radio networks,’’ IEEE
Access, vol. 8, pp. 14460–14488, 2020.

[8] Ridhima and A. Singh Buttar, ‘‘Fundamental operations of cognitive radio:
A survey,’’ in Proc. IEEE Int. Conf. Electr., Comput. Commun. Technol.
(ICECCT), Feb. 2019, pp. 1–5.

[9] I. Gupta, A. Hari, and O. P. Sahu, ‘‘Hardware implementation of energy
detection scheme in cognitive radio networks,’’ inProc. Int. Conf. Comput.,
Power Commun. Technol. (GUCON), Sep. 2018, pp. 575–577.

[10] S. MacDonald, D. C. Popescu, and O. Popescu, ‘‘Analyzing the perfor-
mance of spectrum sensing in cognitive radio systems with dynamic PU
activity,’’ IEEE Commun. Lett., vol. 21, no. 9, pp. 2037–2040, Sep. 2017.

[11] G. I. Tsiropoulos, O. A. Dobre, M. H. Ahmed, and K. E. Baddour, ‘‘Radio
resource allocation techniques for efficient spectrum access in cognitive
radio networks,’’ IEEECommun. Surveys Tuts., vol. 18, no. 1, pp. 824–847,
1st Quart., 2016.

[12] M. Karimi, S. M. S. Sadough, and M. Torabi, ‘‘Optimal cognitive radio
spectrum access with joint spectrum sensing and power allocation,’’ IEEE
Wireless Commun. Lett., vol. 9, no. 1, pp. 8–11, Jan. 2020.

[13] N. H. Kamil and X. Yuan, ‘‘Detection proposal schemes for spectrum
sensing in cognitive radio,’’ Wireless Sensor Netw., vol. 2, no. 5,
pp. 365–372, 2010.

[14] V. Ramani and S. K. Sharma, ‘‘Cognitive radios: A survey on spectrum
sensing, security and spectrum handoff,’’ China Commun., vol. 14, no. 11,
pp. 185–208, Nov. 2017.

[15] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, ‘‘Cooperative spectrum
sensing in cognitive radio networks: A survey,’’ Phys. Commun., vol. 4,
no. 1, pp. 40–62, Mar. 2011.

[16] A. Sharmila and P. Dananjayan, ‘‘Spectrum sharing techniques in cognitive
radio networks—A survey,’’ in Proc. IEEE Int. Conf. Syst., Comput.,
Autom. Netw. (ICSCAN), Mar. 2019, pp. 1–4.

[17] N. Kaur, ‘‘SNR and BER performance analysis ofMRC and EGC receivers
over Rayleigh fading channel,’’ Int. J. Comput. Appl., vol. 132, no. 9,
pp. 12–17, Dec. 2015.

[18] M. S. Danijela Aleksic and D. Krstic, ‘‘Outage probability comparison
of mrc, egc and sc receivers over short term fading channels,’’ Int. J.
Commun., vol. 1, pp. 104–109, 2016.

[19] S.-C. Lin and Y.-C. Chiang, ‘‘Performance analysis for optimum
transmission and comparison with maximal ratio transmission for MIMO
systemswith cochannel interference,’’ inProc. 8th Int. Conf. Inf., Commun.
Signal Process., Dec. 2011, pp. 1–5.

[20] A. Rauniyar, J. M. Jang, and S. Y. Shin, ‘‘Optimal hard decision fusion rule
for centralized and decentralized cooperative spectrum sensing in cognitive
radio networks,’’ J. Adv. Comput. Netw., vol. 3, no. 3, pp. 207–212, 2015.

[21] D. Hamza, S. Aissa, and G. Aniba, ‘‘Equal gain combining for cooperative
spectrum sensing in cognitive radio networks,’’ IEEE Trans. Wireless
Commun., vol. 13, no. 8, pp. 4334–4345, Aug. 2014.

[22] R. Sharma and J. Wallace, ‘‘Analysis of fusion and combining for wireless
source detection,’’ in Proc. Int. ITG Workshop Smart Antennas, Feb. 2009,
pp. 16–18.

[23] S. Nallagonda, S. Dhar Roy, S. Kundu, G. Ferrari, and R. Raheli,
‘‘Performance of MRC fusion-based cooperative spectrum sensing with
censoring of cognitive radios in Rayleigh fading channels,’’ inProc. 9th Int.
Wireless Commun. Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 30–35.

[24] J. Luo and X. He, ‘‘A soft-hard combination decision fusion scheme for
a clustered distributed detection system with multiple sensors,’’ Sensors,
vol. 18, no. 12, pp. 1–18, Dec. 2018. [Online]. Available: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC6308585/

[25] A. Maleki, D. Mirzahosseini, and N. A. Moghaddam, ‘‘Cooperative
Bayesian-based detection framework for spectrum sensing in cognitive
radio networks,’’ IET Commun., vol. 13, no. 15, pp. 2280–2284, Sep. 2019.

[26] X. Bai, M. Hao, and W. Wang, ‘‘Frequency spectrum sensing of cognitive
radio based on Bayesian network,’’ in Proc. 8th Int. Congr. Image Signal
Process. (CISP), Oct. 2015, pp. 1095–1099.

[27] G. Zhou, J. Wu, and K. Sohraby, ‘‘Cooperative spectrum sensing
with a progressive MAP detection algorithm,’’ in Proc. IEEE Global
Telecommun. Conf. GLOBECOM, Dec. 2011, pp. 1–5.

[28] H. Mohammed and T. A. Khalaf, ‘‘Optimal positioning of relay node in
wireless cooperative communication networks,’’ in Proc. 9th Int. Comput.
Eng. Conf. (ICENCO), Dec. 2013, pp. 122–127.

[29] R. Bassett and J. Deride, ‘‘Maximum a posteriori estimators as a limit
of bayes estimators,’’ Math. Program., vol. 174, nos. 1–2, pp. 129–144,
Mar. 2019, doi: 10.1007/s10107-018-1241-0.

[30] M. Tahir, M. Hadi Habaebi, and M. R. Islam, ‘‘Novel distributed algorithm
for coalition formation for enhanced spectrum sensing in cognitive
radio networks,’’ AEU Int. J. Electron. Commun., vol. 77, pp. 139–148,
Jul. 2017.

[31] H. J. C. Tellambura and S. Atapattu, Conventional Energy Detector.
New York, NY, USA Springer, 2014, pp. 11–26.

[32] O. Altrad and S. Muhaidat, ‘‘A new mathematical analysis of the
probability of detection in cognitive radio over fading channels,’’EURASIP
J. Wireless Commun. Netw., vol. 2013, no. 1, p. 159, Dec. 2013.

[33] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[34] P. Oguntunde, O. Odetunmibi, and A. O. Adejumo, ‘‘On the sum of
exponentially distributed random variables: A convolution approach,’’ Eur.
J. Statist. Probab., vol. 2, pp. 1–8, 03 2014.

[35] A. Tohamy, U. S. Mohammed, and T. A. Khalaf, ‘‘Cooperative sensing
using maximum a posteriori as a detection technique in cognitive radio
network,’’ in Proc. 36th Nat. Radio Sci. Conf. (NRSC), Apr. 2019,
pp. 266–272.

[36] S. Arora and B. Barak, Computational Complexity: A Modern Approach,
1st ed. Cambridge, U.K.: Cambridge Univ. Press, Jun. 2009, p. 594.

AHMED TOHAMY was born in Assiut, Egypt,
in 1982. He received the B.Sc and M.Sc degrees
in electrical engineering from Assiut University,
Assiut, in 2004 and 2014, respectively, where
he is currently pursuing the Ph.D. degree. From
2004 to 2016, he was a System Engineer with
Assiut University. From 2016 to 2018, he was a
Lecturer with the Electrical Department, Faculty
of Engineering, Tabuk University, Saudi Arabia.

156420 VOLUME 8, 2020

http://dx.doi.org/10.1007/s10107-018-1241-0


A. Tohamy et al.: Cooperative Spectrum Sensing Using MAP as a Detection Technique

USAMA SAYED MOHAMED received the B.Sc.
and M.Sc. degrees in electrical engineering from
Assiut University, Assiut, Egypt, and the Ph.D.
degree in electrical engineering from Czech Tech-
nical University in Prague, Czech Republic. From
November 1999 to February 2000, he was a
Research Assistant with the University of Cal-
ifornia at Santa Barbara (UCSB), USA. From
November 2001 to April 2002, he was a Post-
doctoral Fellow with the Faculty of Engineering,

Czech Technical University in Prague. He was the Head of the Electrical
Engineering Department. He was the Vice Dean for Graduate Studies and
Research with the Faculty of Engineering, Assiut University. He is currently
a Professor with the Faculty of Engineering, Assiut University. He has
authored or coauthored more than 150 scientific articles, three undergraduate
books, and some chapters in reference books. His research interests include
signal processing, wireless communications technology, wireless networks,
image coding, statistical signal processing, blind signal separation, and
video coding. He was given several awards, including the Soliman Hozain
Award of Engineering Science, in 2007, the Best Paper Award in Electrical
Engineering from Assiut University, in 2005, and the Best Paper Award in
the two conferences NRSC2018 and NRSC2019. He acts as a Reviewer and a
member of the editorial board for several scientific journals and conferences.
He has been selected for the inclusion in 2010 Edition of the USA-Marquis
Who’s Who in the World. He is a Reviewer for the Quality Assurance and
Accreditation of Egyptian for Higher Education and theQuality Assurance of
the special program in the Ministry of Higher Education in Egypt. He is the
National Key Facilitator (NKF) from International Labor Organization (ILO)
in the entrepreneurship.

MOHAMMAD M. ABDELLATIF (Senior Mem-
ber, IEEE) received the B.Sc. degree in electronics
and communications engineering from Assiut
University, Assiut, Egypt, in 2004, the M.Sc.
degree in telecommunication engineering from the
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia, in 2006, and the Ph.D.
degree in telecommunications engineering from
the Electrical and Computer Engineering Depart-
ment, University of Porto, Portugal, in 2015.

He is currently a full-time Lecturer with The British University in Egypt.
He received a four-year scholarship from the Foundation of science and
technology of Portugal (FCT) for his Ph.D, as well as a one year CMU
Porto Joint Research Project Award (SELF-PVP). He has been served as
a Reviewer for many IEEE conferences, and the IEEE TRANSACTIONS ON

COMMUNICATIONS and the IEEE JOURNAL IN SELECTED AREAS IN COMMUNICATION

(JSAC).

TAHA A. KHALAF (Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineering
from Assiut University, Assiut, Egypt, in 2000 and
2004, respectively, and the Ph.D. degree from Iowa
State University, Ames, IA, USA, in May 2011.
He is currently an Associate Professor with the
Department of Electrical Engineering, Assiut Uni-
versity. His major research interests include wire-
less communications include cooperative commu-
nications, network coding, cognitive radio, and

physical layer security. He received ECEB Washington DC grant 2006–
2010. He received excellence awards during his study from Mobinil, Six
October University, and the Egyptian Syndicate of Engineers.

MOHAMED ABDELRAHEEM (Member, IEEE)
received the B.Sc. and M.Sc. degrees in electri-
cal engineering from Assiut University, Egypt,
in 2004 and 2010, respectively, and the Ph.D.
degree in electrical engineering from Virginia
Tech, in 2015. He is currently an Assistant
Professor of electrical engineering with Assiut
University. His research interests include wireless
networking, the Internet of Things, and embedded
systems design. He has been a PI and Co-PI for a

number of research projects from Egyptian funding entities, such as STDF,
NTRA, and ITIDA. He is a Royal Academy of Engineering-leaders in
Innovations Fellow. He has been serving as a Reviewer for a number of IEEE
conferences and journals.

VOLUME 8, 2020 156421


