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ABSTRACT In recent years, persistent news updates on autonomous vehicles and the claims of companies
entering the space, brace the notion that vehicular autonomy of level 5 is just around the corner. However,
the main hindrance in asserting the full autonomy still boils down to environmental perception that affects
the autonomous decisions. An efficient perceptual system requires redundancy in sensor modalities capable
of performing in varying environmental conditions, and providing a reliable information using limited
computational resources. This work addresses the task of 3D object detection and tracking in the vehicles’
environment, using camera and 3D LiDAR as primary sensors. The proposed framework is designed to
operate in an embedded system that visually classifies the objects using a lightweight neural network,
while tracking is performed in 3D space using LiDAR information. The main contribution of this work
is 3D LiDAR point cloud classification using visual object detector, and an IMM-UKF-JPDAF based object
tracker that jointly performs 3D object detection and tracking. The performance evaluation is carried out
using MOT16 metrics and ground truths provided by KITTI Datasets. Furthermore, the proposed tracker
is evaluated and compared with state-of-the-art approaches. The experiments suggest that the proposed
framework offers a suitable solution for embedded systems to solve 3D object detection and tracking
problem, with added benefits.

INDEX TERMS Kalman filter, object detection, object tracking, point cloud classification, sensor fusion.

I. INTRODUCTION
The delay in large scale commercialization of autonomous
vehicles, circle around the factors pertaining to safety, fea-
sibility and affordability. The push towards driver-less cars
has been supported by the prospect of saving human lives.
The current car fatality rate in the US is about 1.22 deaths per
100 million miles driven, including safety violation cases [1].
Effectively that sets the benchmark for an autonomous vehi-
cle failure, which remains a huge challenge [2]. Furthermore,
the autonomous vehicles require to take decisions while
making trade-offs between safety and feasibility. Such as,
avoiding lane changes, driving slow at all times, or not to
drive at all; may be considered safe but remains infeasible.
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Another challenge in the autonomous vehicles’ paradigm is
of rising computational demands to process the raw data from
sensors in real time. However, a moving datacenter in the
name of autonomous vehicle is infeasible [3]. Although, edge
computing can offer remote processing of computationally
expensive tasks, but with a compromise on security and reli-
ability of information.

An important potentiality of an effective environmental
perception is to understand the dynamic properties of coex-
isting entities. This has put forth huge requirements on the
associated research domains related to 3D object detection
and tracking. The 3D object detection provides a faithful
representation of 3D space around the vehicle, in terms of
class, dimensions, and pose. Whereas, tracking enables the
estimation of the dynamic parameters. Furthermore, tracking
also addresses the issue of temporally missed detections due
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to the shortcomings of the detector. The key challenges in
developing a framework for autonomous vehicles to perform
3D object detection and tracking include, real-time perfor-
mance, limited computational demand, applicability in vari-
ety of weather and lighting conditions, and ease of adapting
the change in number and positioning of sensors.

The autonomous vehicles are generally equipped with
numerous sensors for environmental perception like ultra-
sonic, radar, LiDAR (light detection and ranging), cam-
eras, and so on. Among the above sensors, many modern
approaches use camera, LiDAR, or a fusion of both for 3D
object detection tasks. Although, LiDAR and camera can
perform the object detection independently, each sensor pos-
sesses some limitations. LiDARbased approaches are suscep-
tible to harsh weather conditions and low resolution [4]–[6].
Whereas camera-based methods are primarily challenged by
inadequate light and depth information [7]. Therefore, both
sensors require a joint operation to complement the individual
limitations, and to enable the applicability in a wider range of
environmental conditions [8]–[11].

The Visual-LiDAR based 3D object detection methods
adopt either early, late, or deep fusion schemes [12]. The
modalities are combined at the beginning of process in
early fusion scheme [13], with interdependent representa-
tion of data. The late fusion scheme processes the modali-
ties independently up to the last stage where information is
fused [10], [11]. The deep fusion schemes tend to mix the
modalities hierarchically in neural network layers, allowing
the features from different modalities to interact over lay-
ers [8], [9], [14]. In order to exploit redundant information
of modalities while compensating the individual sensor limi-
tations, late fusion schemes are most appropriate selection.

The tasks of 3D object detection and 3D object tracking
are traditionally approached independently. Recent works
that jointly perform 3D object detection and tracking tasks
are proposed in [15]–[18], reflected on performance leader-
boards across various benchmarking platforms. The approach
adopted in [15], [16], utilize visual-LiDAR setup for detec-
tion, unlike monocular setups for detections in [17], and 3D
LiDAR as the only sensor for detections in [18]. The meth-
ods being learning based, require laborious and expensive
annotation process to prepare training datasets. Furthermore,
change in the number, type or positioning of sensors require
retraining of the networks. Moreover, the inference time and
computational needs limit their use in real-time applications.

Currently, more and more trackers are being proposed
that perform tracking in 3D space [19]–[22]. However, these
trackers require reasonably accurate 3D detections. Thereby
adding the computational demand on the system. The tracker
proposed in [19] utilizes 3D IoU thresholding for data associ-
ation under a 3D Kalman Filter paradigm. The approach pro-
posed in [20] does perform in real-time but at the cost of GPU
utilization. Furthermore, a multi-modality approach proposed
in [22] focuses on fusion of detected objects information, that
remains infeasible from application perspective as multiple
networks run for detections. The authors of [21], distinctly

addresses the problem of tracking by seeking diversity using
detrimental point processes to forecast the trajectories of
objects. The main drawback in the existing schemes are the
parameters of networks that require training, computational
needs, inapplicability on embedded systems, and reliance on
3D object detector performance.

In this work, a comprehensive framework for joint 3D
object detection and tracking for an embedded system is
proposed. The framework makes use of visual-LiDAR setup
to exploit the information redundancy for real-time reliable
results. The 3D LiDAR point cloud is represented in a cylin-
drical grid and possible candidates for objects are filtered.
The candidates are tracked and the information of position,
pose, dimensions, and class vector is maintained. In paral-
lel, a neural network is employed for visual classification
of objects for proposal generation that temporally updates
the class vector of the tracked candidates. The framework
is an extension of previous work [23], where only LiDAR
was considered as the perceptual sensor but lacked in proper
classification of objects, resulting in large number of false
positives.

The advantages of the proposed approach are in many
folds, as challenges pertaining to occlusions and missed
visual detections are temporally addressed. Furthermore,
even in poor lighting conditions the LiDAR detector con-
tinues to operate. Moreover, since no training is involved in
direct classification of point clouds, the approach can seam-
lessly integrate into a variety of sensor arrangement. In addi-
tion, the tracker can temporally provide dynamic attributes of
the detected objects, that can be directly used for autonomous
decisions. The proposed framework is implemented on an
embedded system and performance evaluation is carried out
using well-established metrics for object detection and track-
ing on the ground truths provided by KITTI Datasets [24].
The main contributions of this work include a novel 3D
object detector, an efficient point cloud processing for object
candidate estimation, and clutter aware probabilistic tracking
algorithm for an embedded system.

The perception module with efficient 3D object detection
and tracking capabilities directly impacts the quality of spa-
tial localization, mapping and motion planning. The local-
ization can benefit from the static part of the environment in
conjunction with the redundancy of the sensory setup, espe-
cially in a dense and dynamic urban environment. Similarly,
regions of the environment pertaining to the dynamic objects
can be ignored for mapping. In addition, motion patterns of
the dynamic objects in the vicinity can be utilized for safer
motion planning [25].

The remainder of the paper is organized as follows: in
section II, the proposed architecture is described in terms
of hardware/software and information flow. Working of
the framework is explained in section III, followed by the
specifications on implementation platform in section IV.
A detailed description of the proposed framework at mod-
ular level is made in section V. The evaluation criteria are
defined in section VI, including results and comparisons
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with state-of-the-art. In section VII framework implemen-
tation on the platform is demonstrated. The added features
of the proposed framework are discussed in section VIII,
followed by conclusions in section IX.

II. SYSTEM ARCHITECTURE
The scope of this work is 3D object detection and tracking,
which is part of smart car project that involves a broad V2X
based autonomous vehicle architecture. Idea is to let vehicles
communicate over V2X protocol and share the environmental
information. As in a dense urban situation most part of the
environment is occluded by other dynamic objects. Given
that all vehicles can share minimal MODT information of
the environment, visibility beyond the sensors range can be
attained. Furthermore, the fast-paced development of Edge
computing and 5G can enhance the computation and com-
munication capacity.

FIGURE 1. MODT in a V2X based architecture.

The proposedMODT scheme is implemented in a Vehicle-
to-everything (V2X) based autonomous vehicle architecture
shown in Fig. 1, in basic form. Idea is to populate Local
Dynamic Map (LDM) to aid controls of individual ‘n’ num-
ber of smart cars in the network and share safety mes-
sages. Once the smart car is localized in the map, the local
MODT information is fused with the LDM information via
V2X transceiver. This provides an environmental percep-
tion ranging beyond the sensing capability of single vehicle
sensors. This article is focused on MODT framework for a
single vehicle, therefore localization, transmission protocols,
safety messages and control mechanism will not be discussed
further.

III. PROPOSED FRAMEWORK
The objective of 3D MODT is to detect objects by class,
dimensions and orientation, and to maintain unique IDs along
with the parameters pertaining to the position and kine-
matics. However, researchers approach 3D object detection
and tracking problems separately, evident from the well-
established evaluation metrics and leaderboard rankings. The
motivation of this work is derived from the notion that the
consecutive visual frames in the application areas of object
detection in most cases are temporal. That is, scene does not
change abruptly, rather appearance of an object in the scene
remains visible for several frames. Furthermore, application
areas such as autonomous vehicles largely benefit from the
dynamic information of the detected objects. This usually

is addressed by a tracker that maintains a unique ID for
a detected object and predicts the motion patterns of the
detected objects. Thus, accurate 3D object detection without
tracking provides no information regarding object motion.

FIGURE 2. 3D MODT framework.

The proposed framework addresses the 3D object detec-
tion and tracking problem jointly in a temporal fashion,
information flow is shown in Fig. 2. The framework runs
on two threads, associated with LiDAR and Camera inputs
respectively. The LiDAR point cloud is treated with ground
removal and clustering to predict initial pose and dimensions
of potentially trackable objects. The centroids of the objects
are considered as measurements for the IMM-UKF-JPDAF
based tracker. The second thread in parallel predicts visual
detections in the image, providing localized bounding boxes
and class information. Instead of assigning a fixed class
and dimensions to an object in a single frame, a tracked
object is assigned a class, whereas parameters pertaining to
dimensions, pose, and velocity are updated temporally across
multiple time frames. The tracking information is merged
with visual detections to provide 3D object poses along with
associated tracking parameters.

IV. PLATFORM FOR 3D MODT IMPLEMENTATION
The proposed framework is implemented and tested on
Hyundai i30 (HyundaiMotor Company, Seoul, South Korea),
shown in Fig. 3. Platform is equipped with OS1-64 Ouster
LiDAR (Ouster, San Francisco, CA, USA), mounted on the
center top of platform. For visual perception, ZED camera
(Stereo Labs, San Francisco, CA, USA) is mounted beside
LiDAR inside a custom-made casing. The sensors provide
raw measurements to Jetson AGX Xavier unit by Nvidia
(Nvidia Corporation, Santa Clara, CA, USA), that performs
the computations associated to the proposed framework. Fur-
thermore, vehicle CAN is interfaced along with V2XModem
to perform V2X communication. The framework is devel-
oped to operate on ROS (robot operating system) ‘‘Melodic
Morenia’’ middleware on top of Ubuntu Linux 18.04.1. The
GPU of Xavier is utilized through CUDA 10.0 libraries
for visual detections. Whereas, LiDAR preprocessing and
tracking tasks are handled by NVIDIA Carmel ARM CPU
processors.
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FIGURE 3. Sensor setup and implementation platform.

V. 3D MODT
The proposed 3D MODT framework comprises of two
threads pertaining to the processing of 3D LiDAR and camera
respectively. The thread for processing of 3D LiDAR point
cloud is composed of sub modules, ground segmentation,
clustering, box-fitting, and tracking. Whereas, the thread
responsible for treating images from camera is composed of
YOLO v3 [42] implemented as a ROS package to provide
object class information. The operation and structure of each
sub module is explained in the subsequent subsections.

A. GROUND CLASSIFICATION
The ground classification is an essential pre-processing task
in which LiDAR point cloud is partitioned into ground and
non-ground measurements. The portion of point cloud classi-
fied as ground can be further processed for road markings,
curb detection, traversable area, and path planning tasks.
Whereas, part of point cloud corresponding to non-ground
LiDAR measurements is effectively used for the tasks per-
taining to 3D object detection. Several approaches for ground
classification exist in the literature that largely vary in terms
of sensor setups and assumptions made for the environment.

The prominent strategies for ground classification utilize
scan-rings [26], voxels [27], height threshold [28], or feature
learning [29]. The scan-ring based approaches are gener-
ally applicable on single LiDAR setups, in which distance
between consecutive scan lines are studied for ground clas-
sification. Whereas, voxelization of point cloud into 2D or
3D space is also a common practice to scale down the
number of measurements for estimation. Similarly, with the
assumption of planner ground environment, setting a height
threshold is enough for ground classification. On the other
hand, some approaches utilize neural networks to address
the classification of the sparse LiDAR point cloud. In this
work, possibility of ground to be non-planner is considered
and point cloud is assumed to be a merger of multiple cali-
brated LiDARs that are arbitrarily positioned. This assump-
tion rules out the approaches that rely on height threshold and

scan-rings. Furthermore, the variability in number and posi-
tioning of LiDAR sensors, and constraints of embedded com-
puting limits the use of learning-based approaches.

FIGURE 4. 2D polar grid for ground classification.

The approach adopted in this work involves indexing of
point cloud into a 2D array that processes the classification
task efficiently. Each cell of an array contains indexes of
the point cloud measurements that belong to a section of
vertically sliced cylinder into channels and bins, as shown
in Fig. 4. Each channel is traversed independently, directed
outward from the vehicle, to estimate the ground level in
each cell of the grid. The sensor height from the ground
is considered as the initial ground level, and slope to the
lowest measurement of consecutive cell is computed. The
slope exceeding a threshold related to a cell containing non-
ground measurements and previous ground level is main-
tained. Whereas, slope within a threshold limit updates the
ground level for subsequent cells. With all cells of the grid
getting the ground level, point cloud is segregated with a
tolerance parameter to remove the edge noise.

The proposed ground classification module in comparison
to the module developed in prior work [23], is optimized
further to reduce the process time to about one half. The
approach in former work for ground classification was sim-
ilar, however the point cloud was traversed multiple times
for data representation into cylindrical grid, labeling of grid
cells, and labeling of LiDAR points respectively. The ground
classification module evaluated on the similar datasets pro-
cessed the data in an average time of 7.8ms, that former to
optimization consumed 15.7ms. Similarly, the process time
on embedded system reduced to an average of 39.1ms from
64.9ms. The execution times are further expressed in the
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evaluation section. The key modifications for optimization
are,
• The lowest and highest point, of each cell is found when
indexes of the point cloud are being distributed into grid.

• Instead of traversing each channel twice, estimation of
slope and local ground level along the bins are carried
out in a single traversal.

• The iterators for the point cloud indexes are efficiently
utilized to form point clouds for ground and non-ground
points, skipping the step of labeling the bins.

In addition to the processing speed of computational plat-
form, and optimized programming approach, the parameters
for data representation contribute in the overall processing
time. This include the range of measurements from sensor
Rrange, number of LiDAR measurements in a time step,
LiDAR field of view to be considered FOV, and resolution
of grid-based representation, expressed in terms of grid cell
area,

GAcell =
FOV · π

channels · 180
(R2i − R

2
i−1), (1)

Ri =
Rrange
Bins

· i, where i = 0, 1, 2, . . .Bins (2)

The number of bins and channels determine the area and
number of grid cells that need to be traversed for slope test
and local ground estimation. Higher resolution demands addi-
tional processing, whereas lower resolution provides compact
representation. Once the ground is classified, the point cloud
pertaining to non-ground LiDAR measurements is presented
to the clustering module.

B. CLUSTERING
The concept of clustering is to group the entities based on
some similarity [30]. Clustering a LiDAR point cloud such
that each cluster corresponds to a unique object is a chal-
lenging task, due to sparsity and lack of textured information.
The clustering approaches generally utilize connectivity [28],
centroid [30], density [31], distribution [32], or learned
features of the LiDAR measurements. Connectivity or
hierarchy-based approaches rely on proximity of neighboring
measurements and expand iteratively.

The centroid-based approaches require prior knowledge
of the number of clusters to divide data into, such as
K-means, Gaussian Mixture Models, and Fuzzy c-mean.
While, density-based approaches identify high density
regions for clustering, but density of LiDAR measurements
radially decrease as a function of distance from the sensor.
Moreover, occluded measurements further affect the densi-
ties, thus density-based clustering approaches are not effec-
tively applicable in 3D object detection paradigm.

The distribution-based clustering methods utilize distri-
bution models to fit potential clusters of objects, providing
more information compared to density-based methods, but
at the cost of complexity. However, absence of distribution
model and measurements under partial occlusion suffers in
proper clustering. Similarly, learning based approaches trains
a neural network for a set of optimization functions/criteria

to cluster or per point classification such as [14], [33]. The
approaches prove to be effective for 3D object detection tasks
but require excessive computational resource, beyond the
constraints of embedded platforms.

In this work, the LiDAR point cloud is clustered using
connectivity-based approach. To reduce the complexity, 3D
cylindrical grid is used instead of point wise clustering. The
advantage of 3D grid over 2D grid is to cater the measure-
ments pertaining to elevated structures, like traffic lights and
bridges. Furthermore, cylindrical grid can address the sparsity
of measurements that are far from the sensor. The point cloud
for clustering is represented in a 3D array, where each cell
contains the corresponding indexes of points.

The 3D array is processed through a 3D connected compo-
nent clustering approach to group the grid cells in proximity.
The formulation of clustering traverses all the cells of 3D
array and examines the immediate neighbors for minimum
number of cells to include in a cluster. The clusters of point
cloud are filtered based on dimensions, large clusters gener-
ally correspond to buildings while very small clusters either
belong to noise, insignificant obstacles, or over segmentation.
Furthermore, the clusters elevated from the ground are also
filtered, as intention is to track the moving objects on the
ground. The remaining clusters are treatedwith the box fitting
task to estimate the pose of object and the centroid, further
explained in the subsequent subsection.

Like ground segmentation, clustering module developed in
previous work [23], is optimized and process time is substan-
tially reduced. The clusteringmodule developed in the former
work used a rectangular grid-based representation of point
cloud, requiring relatively higher resolution. Furthermore,
to cluster the occupied grid cells, all 26 neighbors of each
cell were traversed for occupancy check. The average process
time of clustering together with the box fitting task on similar
datasets is reduced to 3.66ms from 14.3ms, and on embedded
system the process time is reduced to 17.3ms from 31.18ms.
The execution times at modular level are further explained
in the evaluation section. The key modifications in clustering
module are listed below,
• Rectangular grid is replaced with a 3D cylindrical grid,
to exploit the point cloud of single LiDAR instead of
merged point cloud of three LiDARs.

• Instead of searching 26 neighbors of grid cell for clus-
tering, 6 immediate neighbors are traversed.

In the clustering process, unlike 2D representation of LiDAR
data for ground classification, 3D or volumetric representa-
tion is adopted. In addition to the bins and channels, the ver-
tical range Vrange of LiDAR cloud is divided into layers. The
number of LiDAR measurements however are reduced to
only non-groundmeasurements within FOV and rangeRrange.
The volume of grid cell is then represented as,

GVcell =
FOV · π

channels · 180
·
Vrange
levels

(
R2i − R

2
i−1

)
, (3)

The clustering method adopted in this work requires that
the adjacent cells of the grid pertaining to unique objects
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are populated with LiDAR cloud indexes. Therefore, optimal
resolution parameters are desired to set GVcell, as higher res-
olution results in over segmentation, despite increased com-
putational resource. Whereas, low resolution representation
tends to cluster LiDAR measurements pertaining to objects
in proximity as single object. Therefore, the volume GVcell
provides a balance between performance and computation
time.

The clustering module includes the task of box fitting that
greatly affects the overall performance of tracking. Even if
the tracked object undergoes a partial occlusion, the dimen-
sions and pose history of the tracked object still contribute
in recovering the accurate centroid and pose, handled by the
track management module.

C. BOX FITTING
Box fitting of clustered LiDAR point cloud data is an essen-
tial and challenging task, as the measurements are always
occluded because of obstructions in the sensor line-of-sight.
An efficient box fitting technique estimates the correct object
pose and centroid, considering the partially measurements.
Several approaches tend to address this problem by either
model-based [34] or feature-based methods [35]. The model-
based methods match the raw point cloud with a known
geometric model, whereas features-based approaches exploit
the edge features to estimate the pose. Lack of generality
and excessive computational requirement bars the use of
model-based approaches in MODT applications. Similarly,
the selection of features that best describe the object pose is
a difficult task. Currently, neural networks are also trained
for feature selection process, as utilized in [10]. However,
change in sensor setups often require labeling of datasets and
retraining of networks.

In this work, considering the computational constraints a
feature-based method is utilized, that performs the L-shape
point cloud fitting within a minimum rectangle area. Ini-
tially, the indexes of points with coordinates that define the
minimum box fitting are traversed to identify the corners
of clustered point cloud on the horizontal axis. The farthest
corners based on dimensions and location of object cluster
are used to formulate a line, and all points of the cluster are
traversed to find the farthest point from the line as a third cor-
ner. Using the three corners, dimension of the bounding box
and centroid is updated. Lastly, the pose of clustered object
is calculated about the updated centroid. Since the presence
of occlusions affect the correct pose and centroid estimation,
the tracker module maintains the history of tracked object
and heuristically adjusts the dimensions and pose of object
temporally. The information flow is expressed in Fig. 6,
where point a and b are the farthest points of the cluster
identified by the maximum and minimum coordinates of the
cluster respectively.

The box fitting task is performed within clustering module
and finding the farthest points in the clusters contribute in
overall process time. The key factors modified to acquire
optimized process time are as follows,

FIGURE 5. Cylindrical grid for clustering.

FIGURE 6. L-shape box fitting.

• Instead of traversing all the points, the points corre-
sponding to the minimum and maximum coordinates of
the cluster are exploited.

• The farthest points of the cluster are heuristically found
by making use of dimensions and cluster position with
respect to the sensor.

D. TRACKING
The multi-object tracking is an essential component in the
perception pipeline of autonomous vehicles. The object
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tracking capabilities can enable the system to make better
decisions of actions to perform in cluttered environments.
An extensive literature on 2D MOT algorithms exist that
focuses on object tracking in image plane [36], where the
objective is to maintain unique identities and to provide
temporally consistent location of detected objects. However,
tracking of objects in 3D space is becoming popular in
the research community [19], as more and more 3D MOT
schemes are being proposed. The 3DMOT systems in general
share the similar components of 2D MOT systems, a part
form the distinction of object detections in 3D space instead
of image plane. This potentially allows the design of motion
models, data association, occlusion handling, and trajec-
tory maintenance directly in 3D space without perspective
distortion.

An autonomous vehicle acts like a dynamic system that is
required to track objects in the environment. In this scenario,
the tracked objects tend not to follow a regular motion pattern,
giving rise to motion uncertainties. Similarly, the cluttered
environments and sensor limitations impose partial or com-
plete occlusion of objects that adds up the uncertainty in
position and pose of the tracked objects. To perform tracking
in the presence of uncertainties, Bayesian filtration strategies
are usually deployed. Where the state estimation is carried
out with either the assumption of Gaussian Mixture for den-
sity or Gaussian distribution for transition. The assumption
leads to the use of Gaussian mixture Probability Hypothesis
Density Filter (PHDF) [37] or Joint Probabilistic Data Asso-
ciation Filter (JPDAF) [38] for state estimation, respectively.
Whereas, for non-Gaussian assumption Particle Filter (PF)
methods are used [39]. The states of the tracked objects
are updated after association between tracks and detection
information is established.

In this work, like the former implementation in [23], the
uncertainties due to clutter are addressed with an assump-
tion of Gaussian distribution, and JPDAF is applied for data
association. Similarly, the uncertainties due to motion is
handled by an Interacting Multiple Model (IMM), to per-
form non-linear prediction of states for tracked objects.
To cater the non-linearities of motion models for Gaussian
process, an Unscented Kalman Filter (UKF) is utilized. The
implementation of IMM-UKF-JPDAF is an approach that
efficiently addresses the problem of recursively estimating
states and mode probabilities of targets, described by a jump
Markov non-linear system, in the presence of clutter.

The trackable objects are assumed to follow r motion
models M =

{
Mj
}r
j=1, represented as a non-linear stochastic

state space model,

xk+1 = fj (xk , uk)+ wj,k , (4)

zk = hj (xk , uk)+ vj,k . (5)

That operates the system function fj and measurement func-
tion hj, with the input vector uk ∈ Rp, state vector xk ∈ Rn,
and measurement vector zk ∈ Rq at each time step k .
Where the zero-mean Gaussian noise sequences wj,k and

vj,k are mutually independent covariance matrices Qj,k and
Rj,k respectively. Moreover, the progression of system among
r models is considered as first order Markov chain with time
invariant Markovian model transition probability matrix:

5 =

 p11 · · · pr1
...

. . .
...

p1r · · · prr

 ∈ Rr×r. (6)

The elements of the matrix pij represent mode transition
probability from model i to j.

The proposed IMM-UKF-JPDAF tracker follows a five-
step process: (a) interaction, (b) state prediction and mea-
surement validation, (c) data association and model-based
filtering, (d) mode probability update, and (e) combination
step. A similar approach for a single target is explained in
[40], that addresses data association of measurements to a
single tracked object. In comparison, a JPDAF is deployed
in the proposed framework to perform tracking of multiple
objects. This requires computation of association probability
between each track and measurement, while considering all
feasible joint association events across all measurements,
leading to a combinatorial explosion problem.

To mitigate the possible combinatorial explosion, cluster-
ing technique is adopted, where the association matrix is
clustered into the sets of marginal θj,q and joint associa-
tion events 2 =

⋂Nk
j=1 θj,qj . The number of clusters equal the

sum of marginal and joint association events. The clustering
technique helps in mitigating the combinatorial explosion of
hypothesis that naturally grows in the cluttered environments.
Furthermore, the covariance of a track prediction increases
with unassociated measurement in consecutive time steps,
consequently increasing the gate area for association. The
larger gate area results in larger number of joint association
events.

The hypothesis of all possible occurrences of events within
every cluster, marginal association probabilities are com-
puted, that is the probability sum of the joint association
events; given that the measurement j belongs to track q:

βcljq =

cl∑
2

P
{
2cl
|zk
}
ω̂cljq

[
2cl

]
,

j = 1, . . . ,N cl and q = 1, . . . ,Tcl, (7)

P
{
2cl
|zk
}
=

1
c

N cl∏
j=1

gjqPD
T cl∏
q=1

(1− PD)δq
N cl∏
j=1

βφj . (8)

where, ω̂cljq represents the joint association event within the
cluster cl of N measurements and T tracks. Furthermore,
gjq is the likelihood of measurement j being associated to
track q, normalized by a factor c. Moreover, δq and φj rep-
resent the number of unassociated tracks and measurements,
respectively, within the cluster. Subsequently, weighted mea-
surement residual z̃I ,q,k is computed for each corresponding
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model i of filter according to the associated measurement set:

z̃i,q,k =
N cl∑
j=1

βclj,qz̃i,j,q,k (9)

The cross-covariance matrix Cxk ,zk between predicted states
and measurements are used together with innovation covari-
ance matrix Sk to calculate the optimal Kalman gain Kk .
Subsequently, the states and covariances of each model for
the corresponding tracks are updated.

Kk = Cxk ,zkS
−1
k (10)

xi,q,(k | k) = xi,q,(k | k−1) + Ki,q,k z̃i,q,k (11)

The states, covariances, and mode probabilities of IMM-
UKF-JPDAF are recursively estimated with the help of indi-
vidual model likelihoods. The individual filter states and
covariances are combined into a single weighted output using
mode probabilities of tracks. The flow of tracker module
is elaborated in Fig. 7, along with the clustered association
matrix, forming three association clusters as sub problems
for the tracker. Furthermore, a tracked object is shown that
presents the tracking parameters along with the class and
confidence percentage.

FIGURE 7. IMM-UKF-JPDAF tracker with clustered associations.

The execution times of tracker module mainly rely on
the number of maintained tracks. The former implemen-
tation [23] without visual classification, pruned the tracks
merely based on inconsistent measurements, resulting in
large number of tracks to maintain. With an additional con-
dition of tracked object being classified by visual object
detector, reduce the number of tracks, resulting in decreased
process time. The average execution time of tracker including
track management and visual class association on similar

datasets consumes 6.4ms and 18.5ms on desktop and embed-
ded computing platforms, respectively. Whereas, in former
implementation consumed 8.3ms on desktop and 24.6ms on
embedded system respectively, without visual class associ-
ation. The key factor responsible in optimizing the process
time is of an efficient track management module that limits
the false positive measurements for tracking.

E. OBJECT CLASSIFICATION
The paradigm of fusing multiple modalities followed in this
work can be regarded as late fusion, where the tracked clusters
of point clouds are classified. The classification of tracked
point cloud clusters rely on two components; class association
and class management.
• The class association involves the process of assigning a
visually detected objects’ class to the tracked point cloud
cluster.

• The class management utilizes the assignment history to
maintain and select a class for the tracked object.

The visual object detection is carried out using
YOLO-v3 [42] that is pretrained in Microsoft COCO
datasets [43] and detection classes are limited to track-
able dynamic objects. YOLOv3, uses Darknet-53 (a CNN
model with 53 convolutional layers) backbone, and delivers
57.9 mAP (AP50) on Microsoft’s COCO dataset, using an
input resolution of 608× 608 pixels. The optimized variants
of the network can perform real-time on embedded systems
but at the cost of compromised accuracy.

In this work, the input image resolution is tuned to
416× 416 pixels that maintains the process time well below
100 milliseconds on the embedded system. Although, reduc-
tion in input image resolution results in missed detections due
to size, saturation, and exposure issues in image. The tracker
module handles the missed detections with the class vector
that probabilistically assigns the class to objects. In addition,
the LiDAR range is limited to 60-80m, beyond this range
point cloud is too sparse for accurate estimation of object
dimensions and pose. Visual detector detecting an object
beyond this range only adds an additional complexity for the
class association process.

Let T k andDk be the sets of maintained tracks and visually
detected objects respectively at time step k . The corrected
centroids of tracked clusters oki are projected onto the image
frame of corresponding time stamp, resulting in a 2D pixel
location in image ōki . Similarly, the localization and dimen-
sions of visually detected objects are used to calculate the
centroids mkj . Using the 2D centroids of both sources the

Euclidian distance cost matrix Ek =
[
ckij
]
is populated,

where i = {1, 2, . . . ,T } and j = {1, 2, . . . ,D}. Furthermore,
constrained by the criterion that at least 30% of overlap exists
among the corresponding 2D bounding boxes.

ckij =

{
d( ¯oki ,m

k
j ) ifiou

(
¯tki , d

k
j

)
> 0.3

1000 otherwise
(12)
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Following the Munkres association strategy for optimized
minimum cost is performed and set of index pairs ϒ per-
taining to associated tracks tki and visual detections dkj is

obtained. Using the setϒ class association matrix Êk =
[
ĉkij
]

can be formulated such that,

ĉkij =

{
vj if < i, j >⊂ ϒ
0 otherwise,

(13)

where, v is the number that represents the class of visually
detected object and the dimension index of class association
vector Aiv = (ai1, . . . a

i
n). The matrix Êk is used to update the

class association vectorAi with an increment in the associated
class dimension,

ĉkij =

{
aiĉij if ĉkij = 0

aiĉij + 1 otherwise,
(14)

The updated vector Ai, along with the age of track tage is
utilized to compute the class certainty Pic of tracked objects
and the ratio Pio of object, that reasons the tracked object to
be an outlier.

Pic =
max (av)
tage

(15)

Pio =

(
tage −

∑n
v=1 a

i
v
)

tage
(16)

FIGURE 8. Visual object detector to classify tracked objects using class
vector.

In Fig. 8, the flow of object classification is presented that
runs in parallel with the LiDAR based detection tracking
thread. Furthermore, the class vector of a mature track is
shown that represents the age and counts of class associations
resulting in the class certainty of 66.6%. Moreover, the red

and blue dots in the image represent the projected centroid of
cluster, and center of visually detected objects respectively.

The tracked objects maintain a class vector with each
dimension registered to a visually detectable class. At the
fusion step, after a successful association, a unit increment is
made in the corresponding class dimension of the vector. The
maximum count is a dimension of the class vector specifies
the object class, whereas the certainty is computed against the
life of the track.

F. TRACK MANAGEMENT
The MODT task in the presence of uncertainties pertain-
ing to classification, clutter, and motion of objects require
a robust track managing module to maintain and provide
reliable information. The main purpose of track management
module is to initialize and maintain track statistics, occlusion
handling of the tracked object, and pruning out of tracks
pertaining to false positive measurements.

The track managing module initiates new tracks for unas-
sociated measurements with unique identity, and records
track age in terms of frame count. In addition, the dimensions
and pose of the tracked object are retained while consid-
ering the LiDAR properties. The measurements related to
the objects moving farther from the sensor tend to experi-
ence increased occlusions, and report decreased dimensions.
On the other hand, objects approaching closer to the sensor
get more exposure and provide comparatively more accurate
dimensions. Similar pattern is observed in the estimated pose
of the object and is handled by smoothing the sudden changes
in the yaw angles. The accuracy of maintained dimensions
and pose aids the occlusion handling and centroid correction.
As the centroid of the measurement pertaining to the object
under occlusions is also shifted proportional to the change in
the dimensions. By capitalizing on the sensor characteristics
and maintained information the centroid C of the tracked
object is corrected using change in length 1L, width 1W ,
height 1H and yaw ϕ.

C ′x = Cx +1L ·
cos (ϕ)

2
, (17)

C ′y = Cy +1W ·
sin (ϕ)

2
, and (18)

C ′z = Cz +1H . (19)

The tasks associated with the track management module are
presented in Fig. 9, with an example of centroid correction.
The mature track of an object retains the dimensions as width
W and length L, compared with the measured dimensions
Wm and Lm to find the difference between 1W and 1L. The
change in dimensions is utilized together with the position of
object relative to the sensor to acquire the correct centroidC’.
Furthermore, the mature tracks of objects represent the mea-
sured dimensions by a wire frame bounding box, along a
red box with correct dimensions and centroid. The initialized
track requires measurement association for consecutive five
time-steps to be regarded as a mature track. If a track misses
an association measurement without getting a classification
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FIGURE 9. Tracks manager with pose, dimensions, and centroid corrector.

from a visual detector within the maturity period, the track
is pruned out. Moreover, the ratio Pio for all mature tracks
getting higher than 60% are filtered out as outliers. Further-
more, mature tracks that share common measurements for
consecutive five time-steps results in pruning of inconsistent,
or younger track. The trajectory of tracked object including
the position, pose, and time is stored, and utilized to calculate
relative heading direction, velocity, and angular velocity of
the tracked objects at every time-step, as shown in Fig. 9.
In addition, class vector Ai is updated that provides the class
certainty Pic to the tracked objects.

VI. EVALUATION
The KITTI datasets [44] are widely accepted as a standard
evaluation platform for MOT tasks. However, a tool to eval-
uate 3D MODT systems directly in 3D space is not provided
by KITTI dataset. The convention of evaluating 3D MOT
systems is to project 3D tracking results to the 2D image
plane to perform evaluation. Recently, an extension to the
official KITTI 2D MOT is proposed in [19], where the cost
function is modified from 2D IoU to 3D IoU, and tracking
evaluation is performed directly in 3D space. As the proposed
framework performs MOT in 3D space, the extension of 3D
MOT evaluation is more relevant. In the proposed framework
however, MODT is jointly performed where an object while
being tracked may require several time steps before getting
an accurate class, dimensions, and orientation. To evaluate
the true potential and fair comparison with state-of-the-art
systems, MODT is evaluated on the KITTI datasets with
ground truths [44], based on the MOT16 evaluation metrics
proposed in [41]. Whereas, the MOT component is indepen-
dently evaluated using off-the-shelf 3D object detector [45],
[46] against the 3D MOT evaluation extension [19].

The metrics used to evaluate the proposed MODT are:
(a) tracker to target assignment, (b) multi object tracking
accuracy MOTA, (c) multi object tracking precision MOTP,
and (d) track quality. The metric for tracker to target assign-
ment measures the number of False Positives (FP), False
Negatives (FN), and ID Switches IDSW. Where, FP and FN
deals with incorrect associations of the measurements. Fur-
thermore, the IDSW determines the number of ID switches
across all the fames for an object, the metric for MOTA is
computed by:

MOTA = 1−

∑
t
(FNt+FPt+IDSW)∑

t Gt
, (20)

where, t is the frame index and G is ground truth value.
The negative MOTA indicates that the number of errors has
exceeded the actual number of objects, maximized at 100.
Furthermore, the metric MOTP is evaluated by the average
3D IOU of the tracked object. The metric for track quality
is described by classification of a track into: Mostly Tracked
(MT), Partially Tracked (PT), and Mostly Lost (ML). This
measures the extent of ground truth G trajectory recovered
by the tracker. A target is MT if it is successfully tracked
for at least 80% of its life span. Where, IDSW number is
irrelevant in this metric, as the ID needs not to remain the
same throughout the track. If the recovered track is for less
than 20% of its total length, it is said to be (ML). Other tracks
fall under the class of (PT). A higher number of (MT) and
few (ML) is desirable.

In this work, a criterion is proposed that overlaps the
ground truth information pertaining to the camera and LiDAR
frame as a reference. Hence, a subset of ground truth is
attained such that: (a) object is in FOV of LiDAR and camera,
(b) existence of object within 40meters range from the sensor,
and (c) the lifetime of a track is specified by the duration
of first two conditions being true. The range criterion is set
to 40 meters range, as the Velodyne HDL-64E sensor used
in KITTI datasets has the effective measurement range of
20-40 meters [47]. Furthermore, instead of evaluating the
detected objects and corresponding tracks framewise, the
trajectories of objects are compared with the provided ground
truths. As the proposed framework temporally assigns the
class to the tracked objects. Since, the dimensions of objects
are not provided frame-wise in the ground truth. The dimen-
sions of tracked objects evaluated across the life of track are
used for evaluations. The raw data provided by the KITTI
datasets under the category of ‘City’, with the ground truth
annotations are used for being more relevant to this imple-
mentation. However, the objects of type ‘Tram’, ‘Misc’, and
‘person sitting’ are excluded for evaluation, and contribute to
FP if detected and tracked.

A. EVALUATION RESULTS FOR MODT
The raw KITTI Dataset is provided with the ground truth
for tracking information structured in XML format. More-
over, a support to generate similar XML file directly from
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TABLE 1. Tracking evaluation with datasets information.

tracking algorithm is provided. To perform the evaluation
and benchmarking, the MODT framework is programmed
to produce an XML file similar in format to that of ground
truth. In addition,MATLABwrapper is also offered byKITTI
Dataset to extract tracking information from the XML files to
perform the evaluations. The evaluation results of 10 dataset
sequences, along with dataset recording number, frame count
and the number of trackable objects that qualify the defined
criterion are tabulated in Table. 1.

The evaluated metrics in Table. 1 reflect that MODT algo-
rithm performs reasonably within a 40 meters range. How-
ever, metric scores drastically degrades with an increase in
range. The main contributors are the FP and FN, as IDSW
notably remain low. The error metric specifies the average
Euclidian distance from the object centroids of the detector
and the ground truth at every time step. The range of centroid
error being around a meter shows that the measurements of
detector lies within proximity of object under occlusion. The
metrics for the quality of tracks establish that two-thirds of
the tracks fall under the category of MT. The ML metric is
contributed mainly due to the sparsity of LiDAR at larger
distances. The overall tracking quality is affected mainly due
to the variation in the datasets with lowest quality resulting in
dataset 1, 9, and 51. These datasets also contribute in higher
FP and FN. The algorithm being sensitive to sudden change
in speed and sharp turns that loses the track reflected in the
IDSW count.

B. EXECUTION TIMES
The metric evaluations for KITTI datasets are carried out on
desktop computer; however, time complexity is measured on
the Jetson board. The time consumed by individual modules
of the algorithm while executing in respective computational
environment is presented in Table. 2. The overall perfor-
mance of the algorithm in terms of metrics pertaining to
accuracy, precision, and quality are comparable to state-of-
the-art MODT paradigms. Furthermore, the computational

TABLE 2. MODT time consumption on desktop and jetson board.

requirements adhere to demands of embedded systems,
as overall execution cycle of the algorithm remains within the
sampling time of LiDAR.Moreover, ample time is at disposal
at every time step for communication across the platform.

The best performing parameters are used for evaluations
while considering the constraints of computational resource
and real-time requirements. The area of grid cell for ground
classification, volume of grid-cell for clustering task, and the
input image resolution are the key factors for optimization to
realize real-time and resource constraint implementation of
the proposed 3D object detection and tracking framework.

C. EVALUATION RESULTS FOR MOT
The extension in 2D MOT evaluation tool by KITTI for
3D MOT evaluation [19] include integral metrics to better
express the performance of the frameworks. The purpose is to
average the MOTA and MOTP at different threshold values
for detection scores, like the existing approach of average
precision for object detection [48]. Thus, AMOTA is defined
as,

AMOTA

=
1
L

∑
r∈
{
1
L ,

2
L ,...,1

}
1−

[∑
t
(FNt+FPt+IDSW)

]
r∑

t Gt

, (21)

where L is the number of recall values set at 40, and all
metrics are computed at r recall value. Furthermore, a scaled
accuracy metric (sAMOTA) is used that provides the absolute
measure of the system performance at a recall value r [19].
The tracking module in the proposed framework is tested on
the validation set of KITTI tracking dataset, with an extended
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TABLE 3. 3D MOT evaluation results.

TABLE 4. 3D MOT evaluation comparison.

evaluation tool. As KITTI dataset does not have an official
train/validation split, following the approach in [19], [49] the
sequences 1, 6, 8, 10, 12, 13, 14, 15, 16, 18, 19 are used
for validation. Furthermore, a modification is made in the
tracking module to comply with the input format of detector
and tracking output readable for the evaluation tool.

The 3DMOT evaluation tabulated in Table. 3, depict better
overall metric scores in car and cyclist categories compared
to the pedestrian category. Furthermore, the lower scores in
pedestrian category is also reflected in higher number of iden-
tity switches and fragmentation counts with comparatively
lower percentage of MT percentage. This is mainly because
of datasets with crowded pedestrians in proximity. The 2D
MOT metrics show better weightages as tracks are evaluated
on the image plane at a best performing recall threshold
value. The speed of the tracker consistently remaining above
200 FPS without GPU utilization is an exceptional advantage
as the framework is intended to run on embedded systems.

The recent 3D MOT methods on the KITTI leader-
boards including FANTrack [20], Complexer-YOLO [15],
DSM [16], and FaF [18] have not released the code yet to be
evaluated on the new metrics. However, in AB3DMOT [19]
reproduced results of FANTrack are evaluated and compared
using the 3D MOT metrics. Similarly, mmMOT [22], GTrk-
Forecast [21], and 3DT [17] are evaluated using the same
evaluation tool, against common datasets to produce the cor-
responding metric results. The evaluation results of 3D MOT
over validationKITTI-car dataset are tabulated in Table 4. For
fair comparison all 3D MOT methods are provided with the
object detections obtained by PointRCNN [45], so that only
tracking performance of the methods are evaluated.

The comparison results suggest that the performance
weightages lie close to state-of-the-art approaches, with a

leading score of precision in 2D MOT format. Furthermore,
the proposed method performs computation at the highest
speed of 236 FPS. Similarly, the identity switching count
ranks third among the compared approaches with a total
of 21. Thus, the proposed tracker can perform on a budgeted
computational resource, with performance metrics at par with
the state-of-the-art approaches.

FIGURE 10. Detection and tracking of vehicle and pedestrian.

VII. EXPERIMENTS ON PLATFORM
The proposed algorithm is put to test under the scenario of
fast emergency vehicle passing by and a model dummy being
swiftly dragged across the front of platform as a pedestrian.
Fig. 10. Shows that the framework efficiently tracks and
reports the tracking parameters in both scenarios. The emer-
gency vehicle is identified as a car with certainty of 100%,
this implies that the tracked object in every time frame got
assigned the same class, while maintaining a unique ID, and
getting a measurement associated in the last time step.

The analysis of evaluation results against benchmarking
datasets and experiments performed on the platform high-
lighted some failure cases and limitations of the proposed
framework. The framework is set to capture and start tracking
an object moving at a relative speed of less than 80 Km/h,
the object entering the detection region with larger relative
speed fails to establish a mature track. This results in ID
switches and poor pose and tracking parameters estimation.
Furthermore, the correct dimensions of a tracked object can-
not be estimated that remains partially occluded throughout
the track life, this reflects an error in estimated centroid.

The parameters of yaw angle (in radians) and speed of
the emergency vehicle (in m/sec) are reported relative to the
heading and speed of platform. Similarly, the trail of pedes-
trian track relative to platform reports the tracking parame-
ters, as the platform stops at a distance to let the pedestrian
vacate the path. Here, the class certainty is lower than 100%
either because of missed visual detections or an incorrect
class assignment in the track history.

VIII. ADDED POSSIBLE APPLICATIONS
The prime focus of this work is to perform multiple object
detection and tracking. However, the proposed approach
offers additional features that can benefit from the over-
all autonomous vehicle architecture. Such as, classification
of static and dynamic regions in the scene can realize an

156296 VOLUME 8, 2020



M. Sualeh, G.-W. Kim: Visual-LiDAR Based 3D Object Detection and Tracking for Embedded Systems

informed selection of visual features for visual odometry.
Similarly, the motion patterns of dynamic objects can benefit
from the path planning. Furthermore, the tracking of static
objects can aid the odometry, that is often required in dense
urban environment where conventional localization methods
become less reliable. Furthrmore, instance aware semantic
segmentation of visual scene can also be realized in a cost-
effective way, requiring the up sampling of tracked LiDAR
clusters projected on image, as demonstrated in Fig. 11.

FIGURE 11. MODT based instance aware semantic segmentation.

IX. CONCLUSION
In this work an efficient MODT framework is proposed for
embedded systems that operate on visual-LiDAR setups. The
framework takes advantage of spatial LiDAR data and 2D
scene understanding by performing late fusion of modalities
temporally. The framework is tested on well-established per-
formance metrics against publicly available synthetic KITTI
datasets. Whereas, the tracking component is also indepen-
dently tested for a 3D MOT for a fair comparison with state-
of-the-art methods. It is intended to further extend this work
in future to improve the object detection by early classifica-
tion of objects and to realize MODT based semantic anno-
tations of images. Moreover, MODT can be exploited to aid
visual odometry in dense environmental conditions.
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