
Received August 9, 2020, accepted August 16, 2020, date of publication August 24, 2020, date of current version September 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019080

NOMA-Aided UAV Data Collection System:
Trajectory Optimization and
Communication Design
JUNWEI ZHAO , YING WANG , (Member, IEEE), ZIXUAN FEI , XUE WANG,
AND ZHONGYU MIAO , (Associate Member, IEEE)
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Ying Wang (wangying@bupt.edu.cn)

This work was supported by the Beijing Natural Science Fund-Haidian Original Innovation Joint Fund under Grant L192003.

ABSTRACT Unmanned aerial vehicle (UAV) communication has been deemed as a promising technology
to collect data for the Internet of Things (IoT) in inaccessible areas. However, due to the limited UAV flight
time, traditional UAV communication may not be competent for large-scale IoT data collection. This paper
considers integrating non-orthogonal multiple access (NOMA) into UAV communication systems to collect
data for large-scale IoT devices within UAV flight time. We aim to minimize the total energy consumption
of IoT devices while ensuring data collection, by jointly optimizing UAV trajectory, IoT device scheduling
and transmit power. The formulated problem is a mixed integer non-convex problem, which is challenging
to solve in general. We propose a data collection optimization algorithm (DCOA) to solve it by applying
the Generalized Benders Decomposition (GBD) and successive convex approximation (SCA) techniques.
Then, a greedy algorithm (GA) is also proposed to reduce complexity by simplifying the optimization of
UAV trajectory and IoT device scheduling. Finally, the numerical results demonstrate that, compared with
traditional UAV communication systems, the NOMA-aided UAV system performs better in terms of data
collection and lower total energy consumption of IoT devices can be achieved by DCOA.

INDEX TERMS Unmanned aerial vehicle (UAV) communication, non-orthogonal multiple access (NOMA),
data collection, Internet of Things (IoT), energy consumption minimization.

I. INTRODUCTION
A. MOTIVATION
The Internet of Things (IoT) with powerful connection
and data interaction, is promoting the development of
energy, medical, agriculture and other fields, which has
dramatically changed our daily life [1]–[4]. According to
Cisco, 500 billion devices are expected to be connected to the
Internet by 2030 [5], sensing or interacting with the internal
state or the external environment and communicating over
the IoT. The data collected by IoT devices (IoTDs) can be
processed by IoT applications to provide insights and help
make decisions and actions. However, with the expansion
of the application scale, defects of IoT in data collection
gradually emerge, restricting its further development.

Data collection is an essential function of IoT and the
basis of IoT applications. Limited by the energy consumption,
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quantity and distribution of IoTDs, data collection has
always been a challenge for IoT. Nowadays, the common
data collection technologies are Narrow Band IoT (NB-IoT)
and Long Range (LoRa), due to their advantages of wide
coverage, large-scale connection and low device power
consumption [6], [7]. However, both of them rely heavily on
the infrastructure, such as base stations and signal towers,
making them hard to catch up with the development of IoT,
where more and more IoTDs are deployed in inaccessible
areas, for example, in the forest to monitor the environment.
It is infeasible either technically or economically to construct
infrastructure in inaccessible areas. Therefore, effective data
collection schemes for IoT in inaccessible areas are urgently
needed.

In this context, Unmanned aerial vehicle (UAV) commu-
nication is considered as a promising technology to solve
the above problem, due to its high mobility, low cost and
flexible deployment [8]. UAV can be deployed flexibly in
inaccessible areas at any time, significantly reducing the
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cost. In addition, the line-of-sight channel between UAV
and devices makes data transmission more efficient. Despite
many advantages, limited flight time is still the bottleneck for
UAV communication.1 According to the data from Da-Jiang
Innovations [9], the flight time of existing civil UAV is
generally 10-20 minutes. Taking into account the carried
communication equipment, UAV flight time will be further
shortened. Thus, UAV may not be able to complete data
collection in the case of the wide distribution of IoTDs.
In order to finish the data collection within the flight time, it is
essential to improve the efficiency of UAV communication.

Non-orthogonal multiple access (NOMA) is a powerful
tool to improve spectrum efficiency and solve the access
and data transmission of large-scale IoTDs [10]. Compared
with orthogonal multiple access (OMA), NOMA allows
simultaneous transmission of multiple users on the same fre-
quency, relying on successive interference cancelation (SIC)
techniques at the receiver. Therefore, the application of
NOMA in UAV communication can effectively deal with the
challenges caused by the limited UAV flight time. In this
paper, we propose a NOMA-aided UAV data collection
system for large-scale IoTDs in inaccessible areas. Further-
more, a data collection optimization algorithm (DCOA) is
proposed to minimize the total energy consumption of IoTDs
while ensuring data collection, by jointly optimizing UAV
trajectory, IoTD scheduling and transmit power.

B. RELATED WORKS
1) UAV COMMUNICATION
Most of early UAV studies focused on the basic analy-
sis of UAV communication. Al-Hourani et al. proposed
the air to ground channel that is widely used for UAV
communication [11]. Matolak et al. established the chan-
nel models of UAV communication in the suburbs and
mountains [12], [13]. Yang et al. analyzed the impact of UAV
trajectory and speed on flight and communication energy
consumption [14]. The above studies have greatly promoted
the practical application of UAV. Nowadays, researchers pay
more attention to the performance of UAV communication
systems. According to the optimization objective, the studies
are divided into two categories, improving the performance
of UAV communication systems [15]–[19] and enhancing the
user performance [20]–[23]. Wu et al. analyzed the coverage
performance of cooperative UAV clustering, revealing the
optimal cooperative radius, average altitude and altitude
difference in maximizing the coverage performance [15].
Khuwaja et al. characterized the impact of ground user
mobility, propagation environment and channel fading on
the outage performance of UAV communication [16].
Chakareski et al. designed an efficient resource manage-
ment framework for enhanced coverage and throughput

1 The flight time of UAV is closely related to the energy consumption
of UAV. As the energy consumption of UAV is affected by many factors,
such as UAV load, flight speed, flight altitude, wind speed, etc., in practical,
UAV flight time is more often mentioned as an important parameter of UAV.
Therefore we pay more attention to UAV flight time.

of UAV-based aerial small cells [17]. Energy limitation is
a major bottleneck in UAV communication. Zeng et al.
derived the propulsion power consumption model of the
rotary-wing UAV and found the optimized hovering locations
and durations to minimize the propulsion and communication
energy of UAV [18]. In particular, Sun et al. proposed the
solar-powered UAV, which effectively solved the limitation
of UAV energy and greatly improved the stability and
sustainability of UAV communication. And they maximized
the system sum throughput by optimizing the 3D aerial
trajectory and the wireless resource allocation [19]. In terms
of enhancing user performance, Zhan et al. jointly optimized
the wake-up schedule and UAV trajectory to minimize the
maximum energy consumption of users [20]. Mozaffari et al.
proposed a novel framework to minimize the total transmit
power of devices under their SINR constraint [21]. Lin et al.
maximized the energy efficiency of sensors by adaptively
tuning the frame length at MAC layer according to UAV
flying speed [22]. Wu et al. investigated new type of
multi-UAV enabled wireless networks to maximize the
minimum average rate among all users, by jointly optimizing
user scheduling and association, UAV trajectory and transmit
power [23]. UAV has become an indispensable part of the
future communication system. It is worth noting that the
above studies are based on OMA while we study the UAV
communication systems with the power domain NOMA.
The power domain NOMA separates the signals of multiple
IoTDs at the expense of IoTD power, which leads to the
coupling of IoTD scheduling and power. In addition, SIC in
NOMA is generally conducted according to the descending
order of the channel gain, which is affected by UAV
trajectory. Therefore, the optimization of UAV trajectory,
IoTD scheduling and transmit power in this paper will be
much complicated.

2) NOMA
Saito et al. firstly presented the concept of NOMA in [24]
and they investigated the system level performance of NOMA
with ideal SIC in [25]. Then researchers analyzed the per-
formance of the NOMA system in the actual communication
system [26], [27]. Wang et al. considered the downlink of
NOMA systems with statistical channel state information,
deriving the ergodic data rate, the outage probability and
the sum throughput of NOMA systems [26]. Ding et al.
investigated the performance of NOMA in a cellular
downlink scenario with randomly deployed users [27]. The
data rate of uplink and downlink was optimized in [28]
and [29]. Zhu et al. optimized the achievable sum rate
with minimum rate constraint in a downlink 2-user NOMA
network, considering user pairing and power allocation [28].
Sedagha et al. maximized the sum rate of single antenna
multiple subcarriers NOMA uplinks under frequency-flat
fading and frequency-selective fading [29]. Since the power
domain NOMA is realized via different power level of users
in the same frequency, the studies in [30] and [31] focused
on energy efficiency of the NOMA system. Fang et al.

155844 VOLUME 8, 2020



J. Zhao et al.: NOMA-Aided UAV Data Collection System: Trajectory Optimization and Communication Design

aimed to maximize the system energy efficiency in a NOMA
HetNet via subchannel allocation and power allocation [30].
Zeng et al. optimized power and sub-channel allocation
to maximize the energy efficiency of multi-carrier uplink
NOMA systems considering the user power restriction [31].
Pischella et al. paidmore attention to the proportional fairness
of NOMA. They proposed a graph-based clustering and
resource allocation algorithm to optimize the time-based pro-
portional fairness in the multi-carrier uplink networks [32].

Recently, some researchers considered integrating NOMA
into UAV communication systems to improve UAV perfor-
mance. Hou et al. proposed a NOMA-aided UAV network
by utilizing a stochastic geometry model for providing
wireless service to randomly roaming users [33]. They
also proposed two connection strategies in NOMA-assisted
multi-UAV communication system, user-centric strategy
and UAV-centric strategy, and derived interference and
coverage probability in the imperfect successive interference
cancelation scenario [34]. Sohail et al. optimized the energy
efficiency of the multi-user NOMA assisted UAV com-
munication system by a computationally efficient method
amid multi-QoS constraints [35]. Zhao et al. maximized
the sum rate of the network served users by optimizing
UAV trajectory and precoding vectors [36]. Cui et al. paid
more attention to user fairness. They jointly optimized the
trajectory design and resource allocation to maximize the
minimum average rate between multiple users with the
constraints of UAV flight speed and transmit power [37].
The number of users with satisfactory QoS experience
was maximized in [38], by optimizing UAV deployment,
admission control and power allocation. The above studies
proposed some solutions to improve the performance of
NOMA aided UAV communication systems. However, it is
worth mention that these studies aim at the long-term benefits
of the system without considering the effect of UAV flight
time, which may not be applicable to the scenarios where the
primary goal is to accomplish data collection of large-scale
IoTDs within UAV flight time.

C. CONTRIBUTIONS AND ORGANIZATION
In this paper, we propose the NOMA-aided UAV commu-
nication system to collect data for large-scale IoTDs in
inaccessible areas. The main contributions are as follows.

1) We aim to complete data collection within UAV flight
time and reduce the total energy consumption of IoTDs,
by jointly optimizing UAV trajectory, IoTD scheduling
and transmit power, which is a challenging problem
to solve due to the coupling of the variables. A data
collection optimization algorithm (DCOA) is proposed
to obtain a suboptimal solution.

2) The formulated problem is a mixed integer non-convex
problem, which is difficult to tackle due to the cou-
pling variables. The Generalized Benders Decomposi-
tion (GBD) is used to decouple IoTD scheduling and
transmit power and get the optimal IoTD scheduling.

Then, with the given IoTD scheduling, we propose
a two-step iterative optimization algorithm to get the
optimal UAV trajectory and IoTD transmit power by
applying the successive convex approximation (SCA)
technique. In addition, in order to reduce complexity,
a greedy algorithm (GA) is proposed by simplifying the
optimization of UAV trajectory and IoTD scheduling.

3) Numerical results show that the NOMA-aided UAV
system performs better in terms of the data collection
success rate of large-scale IoTDs compared with
traditional UAV communication systems. Besides,
numerical results also reveal that lower total energy
consumption of IoTDs can be achieved by DCOA. And
the greedy algorithm can greatly reduce the runtime of
algorithm.

The rest of this paper is organized as follows. Section II
introduces the system model and the problem formulation.
In Section III, we present DCOA algorithm andGA algorithm
in detail and analyze the computational complexity of these
two algorithms. The numerical results are investigated in
Section IV. Finally, we conclude this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FOMULATION
A. SYSTEM MODEL
In this paper, as shown in Figure 1, we focus on a
NOMA-aided UAV data collection system for large-scale
IoTDs in inaccessible areas. IoTDs are distributed in
inaccessible areas, denoted as K = {1, 2, . . . k, . . .K }. UAV
is deployed to collect data from IoTDs, denoted as u. The
radius of the inaccessible areas is denoted as R.

FIGURE 1. System model.

1) MODEL OF IoT DEVICES AND UAV
It is assumed that the location and data volume of IoTDs
are known. The parameters of IoTD k can be expressed by
the matrix Mk = {Dk ,Ck ,Pk ,Pmax}. Dk = (xk , yk) is the
coordinate of IoTD. Ck is the amount of uploaded data. Pk
is the transmit power, and the maximum power is denoted
as Pmax .

The parameters of UAV can be expressed by the matrix
Mu = {Du,H ,Vmax ,T }. Du = (xu, yu) is the horizontal
coordinate of UAV. The flying height is denoted as H .
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Vmax is the maximum flight speed and T denotes the flight
time. T is divided into N equal time slots, denoted as
N = {1, 2, . . . n, . . .N }. N is chosen large enough so
that the position of UAV remains approximately unchanged
in each time slot. UAV trajectory can be expressed as
Du = {Du[1], . . . ,Du[n], . . . ,Du[N + 1]} and the following
constraints need to be met.

Du[1] = Du[N + 1], (1)

‖Du[n+ 1]− Du[n]‖2 6 (Vmax · Tn)2, ∀n ∈ N , (2)

Tn =
T
N
. (3)

2) CHANNEL MODEL
The UAV communication channel is divided intoM subchan-
nels, expressed asM = {1, 2, . . .m, . . .M}. The subchannel
bandwidth is W . Referring to [20], [23], [39], we assume
that the communication channel is a line-of-sight (LOS)
channel, and the channel gain follows the free space path loss
model.2 hk [n] represents the channel gain of IoTD k in time
slot n. The channel gain can be assumed constant in each
time slot because the position of UAV is assumed to remain
approximately unchanged in each time slot in UAV model.

hk [n] = β0d
−2
u,k [n] =

β0

‖Du[n]− Dk‖
2
+ H2

, (4)

where β0 represents the channel gain at the reference distance
d = 1 m and du,k [n] represents the distance between IoTD k
and UAV in time slot n.

3) NOMA MODEL
As shown in Figure 1, we divide IoTDs into two sets KI and
KO by a circle with the horizontal position of UAV as the
center and ru as the radius. KI = {KI [1], . . . ,KI [N ]}. KO =

{KO[1], . . . ,KO[N ]}. In time slot n, if an IoTD is in the circle,
it is called internal IoTD and belongs to KI [n]. Otherwise,
the IoTD is called external IoTD and belongs to KO[n]. K =
KI [n]∪KO[n].KI [n]∩KO[n] = ∅, ∀n ∈ N . We assume that
only one internal IoTD and one external IoTD are allowed at
channel m in time slot n.
Referring to [24] and [25], SIC is conducted according to

the descending order of channel gain at the receiver. Since the
channel gain of external IoTD is less than the channel gain
of internal IoTD, the signal-to-interference and noise ratio of
IoTD k can be expressed as

γk [n][m] =


Pk [n]hk [n]

Ik [n][m]+ σ 2 if k ∈ KI [n],

Pk [n]hk [n]
σ 2 if k ∈ KO[n],

∀n ∈ N , ∀m ∈M, (5)

where σ 2 represents the power spectral density of noise.
Ik [n][m] is the interference from external IoTD that access
the same channel m with internal IoTD k in time slot n.

2UAV flies at a higher altitude and there are few buildings in inaccessible
areas, so there are almost no obstructions between UAV and IoTDs.
Therefore the LOS channel can be used as the air-to-ground link channel
model. The channel gain follows the free space path loss model.

IoTD scheduling is expressed as αk [n][m]. If IoTD k is
served by UAV at channel m in time slot n, αk [n][m] = 1.
Otherwise, αk [n][m] = 0. Therefore, the achievable rate of
IoTD k can be denoted as

RIk [n][m] = W log2(1+
αk [n][m]Pk [n]hk [n]∑

i∈KO[n]
αi[n][m]Pi[n]hi[n]+ σ 2 ),

∀k ∈ KI [n], ∀n ∈ N , ∀m ∈M. (6)

ROk [n][m] = W log2(1+
αk [n][m]Pk [n]hk [n]

σ 2 ),

∀k ∈ KO[n], ∀n ∈ N , ∀m ∈M. (7)

B. PROBLEM FORMULATION
The optimization goal of this paper is to accomplish data
collection and minimize the total energy consumption E of
IoTDs by optimizing UAV trajectoryDu[n], IoTD scheduling
αk [n][m] and IoTD transmit power Pk [n].

E = Tn ·
N∑
n=1

K∑
k=1

M∑
m=1

αk [n][m]Pk [n]. (8)

The trajectory optimization and communication design
problem of the NOMA-aided UAV data collection system can
be formulated as

P : min
Du[n],αk [n][m],Pk [n]

E

s.t. 0 6 Pk [n] 6 Pmax , ∀k ∈ K, ∀n ∈ N , (9a)

Tn ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
> Ck ,

∀k ∈ K, (9b)∑
i∈KI [n]

αi[n][m]+
∑

j∈KO[n]

αj[n][m] 6 2,

∀n ∈ N ,∀m ∈M, (9c)
M∑
m=1

αk [n][m] 6 1, ∀k ∈ K, ∀n ∈ N , (9d)

αk [n][m] = {0, 1}, ∀k ∈ K, ∀n ∈ N ,
∀m ∈M, (9e)

‖Du[n+ 1]− Du[n]‖2 6 (Vmax · Tn)2,

∀n ∈ N , (9f)

Du[1] = Du[N + 1], (9g)

where (9a) is IoTD transmit power constraint. (9b) indicates
that the data collection needs to be accomplished within UAV
flight time. (9c) ensures that only one internal IoTD and one
external IoTD are allowed at any subchannel in any time slot.
(9d) implies that IoTD can only access one subchannel in any
time slot. (9f) and (9g) are UAV trajectory constraints.

For problem P, the variables αk [n][m] are binary, and
αk [n][m], Pk [n] and Du[n] are coupled in (9b). So problem P
is a mixed integer non-convex problem. In addition, KI and
KO are determined by the position of UAV, which cannot be
presented by formula. Thus solving problem P optimally is
challenging in general.
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III. PROPOSED ALGORITHM
Notation: For variable A, A∗ represents the optimal value.

Ã, Ā or Â represent the feasible value.

FIGURE 2. The block diagram of DCOA.

In this section, we discuss the proposed DCOA algorithm
for solving problem P. The block diagram of DCOA is
illustrated in Figure 2. We first initialize UAV trajectory
Du[n] with a clustering method. Then, Generalized Benders
Decomposition is used to get the optimal IoTD scheduling
α∗k [n][m] with given Du[n]. Next, we formulate problem P2
with the goal of maximizing the amount of uploaded data
and problem P3 with the goal of minimizing the total energy
consumption of IoTDs. Finally, UAV trajectory and transmit
power are optimized by iteratively solving P2 and P3 under
the condition that the amount of uploaded data is increased
and the total energy consumption is reduced.

A. UAV TRAJECTORY INITIALIZATION
UAV trajectory is initialized based on the position and
the uploaded data of IoTDs. Specifically, the initial UAV
trajectory is designed as a circle. The center is expressed as

(x0, y0) =
K∑

k = 1

$k (xk , yk), (10)

where$k = Ck

/
K∑
k=1

Ck . The radius is denoted by

Ru = ς
T · Vmax

2π
, (11)

where ς (0 < ς < 1) is the parameter to regulate UAV
trajectory. Thus, the initial position of UAV in time slot n can
be expressed as

Du[n] =


x[n] = x0 + Ru cos

(n− 1) · 2π
N

,

y[n] = y0 + Ru sin
(n− 1) · 2π

N
.

(12)

Therefore, radius ru of the internal IoTD area is denoted as

ru =
‖Du[n]− Du[n− 1]‖

2
. (13)

B. IoTD SCHEDULING OPTIMIZATION
With givenDu[n] and ru, IoTD scheduling and transmit power
can be optimized by solving problem P1.

P1 : min
αk [n][m],Pk [n]

Tn ·
N∑
n=1

K∑
k=1

M∑
m=1

αk [n][m]Pk [n]

s.t. 0 6 Pk [n] 6 Pmax , ∀k ∈ K, ∀n ∈ N , (14a)

Tn ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
> Ck ,

∀k ∈ K, (14b)∑
i∈KI [n]

αi[n][m]+
∑

j∈KO[n]

αj[n][m]62,

∀n ∈ N ,∀m ∈M, (14c)
M∑
m=1

αk [n][m] 6 1, ∀k ∈ K, ∀n ∈ N , (14d)

αk [n][m] = {0, 1}, ∀k ∈ K, ∀n ∈ N ,
∀m ∈M. (14e)

P1 is a mixed integer nonlinear programming problem
(MINLP). We intend to solve this problem with Generalized
Benders Decomposition [40], [41]. P1 can be decomposed
into two sub-problems, the primal problem with only
continuous variables Pk [n] and the master problem with only
integer variables αk [n][m]. By iteratively solving these two
sub-problems, the optimal solution is obtained. Specifically,
in the v-th iteration of GBD, the upper bound of problem P1
can be updated by solving the primal problem, and optimality
cut or feasibility cut can be obtained as the constraints of
master problem. By solving the master problem, the lower
bound of problem P1 can be updated, and the optimal
α
(v)
k [n][m] can be obtained for the primal problem of the

next iteration. When the difference between the upper bound
and lower bound is less than the threshold δ, the iteration
converges.

1) SOLVING THE PRIMAL PROBLEM
In the v-th iteration of GBD, with given integer variable
α
(v)
k [n][m], the primal problem can be expressed as

min
Pk [n]

Tn ·
N∑
n=1

K∑
k=1

M∑
m=1

α
(v)
k [n][m]Pk [n]

s.t. 0 6 Pk [n] 6 Pmax , ∀k ∈ K, ∀n ∈ N , (15a)

Tn ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
> Ck , ∀k ∈ K.

(15b)

(15) is a non-convex problem due to the non-convex
constraint (15b). We apply dual decomposition and SCA to
relax (15) into a convex problem.
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Dual Decomposition: With the Lagrange dual, the
Lagrange function of (15) can be denoted as

L(Pk [n], η)

= Tn ·
N∑
n=1

K∑
k=1

M∑
m=1

α
(v)
k [n][m]Pk [n]

+

K∑
k=1

ηk

(
Ck − Tn ·

N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

))
,

(16)

where η = [η1, . . . , ηk , . . . , ηK ]T , ηk > 0 is the Lagrange
multiplier vector. Problem (15) can be written as

min
06Pk [n]6Pmax

max
ηk>0

L(Pk [n], η). (17)

The dual problem can be expressed as

max
ηk>0

min
06Pk [n]6Pmax

L(Pk [n], η). (18)

(18) can be decomposed into a two-layer optimization
problem, the inner layer minimization problem with variable
Pk [n] and the outer layer maximization problemwith variable
η. By iteratively solving these two problems, the optimal
solution of problem (18) is obtained.

a: INNER LAYER MINIMIZATION
In the u-th iteration, with given η(u), the inner layer
minimization problem is expressed as

min
06Pk [n]6Pmax

L(Pk [n], η(u)), (19)

where

L(Pk [n], η(u)) =
K∑
k=1

η
(u)
k Ck +

N∑
n=1

K∑
k=1

M∑
m=1

(L1 + L2), (20)

L1 = Tn · α
(v)
k [n][m]Pk [n]− Tn · η

(u)
k ROk [n][m],

(21)

L2 = −Tn · η
(u)
k RIk [n][m]. (22)

Since RIk [n][m] is a non-concave function with respect to
Pk [n], (19) is not a convex minimization problem. Referring
to [23], we get the sub-optimal solution of problem (19) by
relaxing RIk [n][m] with SCA.
RIk [n][m] can be written as the difference of two concave

functions R̄Ik [n][m] and R̂
I
k [n][m].

RIk [n][m]

= W log2

1+
α
(v)
k [n][m]Pk [n]hk [n]∑

i∈KO[n]
α
(v)
i [n][m]Pi[n]hi[n]+ σ 2


= R̄Ik [n][m]− R̂

I
k [n][m], (23)

where

R̄Ik [n][m] =W log2

 α
(v)
k [n][m]Pk [n]hk [n]

+
∑

i∈KO[n]
α
(v)
i [n][m]Pi[n]hi[n]+σ 2

 ,
(24)

R̂Ik [n][m] = W log2

 ∑
i∈KO[n]

α
(v)
i [n][m]Pi[n]hi[n]+ σ 2

 .
(25)

In order to tackle the non-concave function [25], in the r-th
iteration of SCA, we perform the first-order Taylor expansion
of R̂Ik [n][m] at P

(r)
i [n], and approximate R̂Ik [n][m] as a linear

function R̂I (ub)k [n][m].

R̂Ik [n][m]

= W log2

 ∑
i∈KO[n]

α
(v)
i [n][m]Pi[n]hi[n]+ σ 2



6 W ·


∑

i∈KO[n]
Ai[n][m]

(
Pi[n]− P

(r)
i [n]

)
+log2

( ∑
i∈KO[n]

α
(v)
i [n][m]P(r)i [n]hi[n]+ σ 2

)


1
= R̂I (ub)k [n][m], (26)

Ai[n][m]

=
log2(e) · α

(v)
i [n][m]hi[n]∑

i∈KO[n]
α
(v)
i [n][m]P(r)i [n]hi[n]+ σ 2

. (27)

Then (22) can be transformed into the following convex
function.

L̂2 = −Tn · η
(u)
k

(
R̄Ik [n][m]− R̂

I (ub)
k [n][m]

)
. (28)

The key to the transformation is that R̂Ik [n][m] is a
concave function with respect to Pk [n]. According to [42],
the first-order Taylor expansion of the concave function
at any point is the global upper bound of the function.
Therefore, R̂Ik [n][m] 6 R̂I (ub)k [n][m] and L2 6 L̂2. Thus,
the transformation will not expand the range of problem (19).

Thus, the inner layer minimization problem (19) can be
rewritten as

min
06Pk [n]6Pmax

L̂(Pk [n], η(u))

=

K∑
k=1

η
(u)
k Ck +

N∑
n=1

K∑
k=1

M∑
m=1

(
L1 + L̂2

)
. (29)

It can be found that the first derivative of the function
L̂(Pk [n], η(u)) with respect to Pk [n] is an increasing function,
so the optimal solution of (29) can be denoted as

P̃k [n] =


0 P̄k [n] < 0
P̄k [n] 0 6 P̄k [n] 6 Pmax
Pmax P̄k [n] > Pmax .

(30)

∂L̂(P̄k [n], η(u))
∂Pk [n]

= 0. (31)

The SCA algorithm for problem (19) is shown in
Algorithm 1.
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Algorithm 1 Successive Convex Approximation Algo-
rithm for Solving the Inner Minimization Problem (19)

Input: Objective function L(Pk [n], η(u)), the threshold ε.
Output: P̃(u)k [n].
1: Set r = 1. Choose arbitrary P(1)k [n] in the feasible set.
2: Calculate L̂(1)(P(1)k [n], η(u)).
3: repeat
4: Solve (29) with given P(r)k [n], and get P̃k [n] according

to (30).
5: r ← r + 1, P(r)k [n]← P̃k [n].
6: Calculate L̂(r)(P(r)k [n], η(u)).

7: until
∣∣∣L̂(r+1)

− L̂(r)
∣∣∣ 6 ε.

8: P̃(u)k [n] = P(r)k [n].

b: OUTER LAYER MAXIMIZATION
In the u-th iteration, P̃(u)k [n] is the optimal solution of the
inner layer minimization problem (19). With given P̃(u)k [n],
the outer layer maximization problem is expressed as

max
ηk>0

L(η, P̃(u)k [n]). (32)

Since L(η, P̃(u)k [n]) is differentiable with respect to ηk ,
the gradient method can be applied to solve the multi-
plier η(u+1)k .

η
(u+1)
k =

η(u)k + ϕ ∂L
(
ηk , P̃

(u)
k [n]

)
∂ηk

+, (33)

where ϕ(ϕ > 0) is the step size in the u-th iteration. The
iteration terminates when

∣∣L(u+1)
− L(u)

∣∣ 6 κ , where κ is
the threshold.

Hence, the optimal solution of the primal problem in the v-
th iteration of GBD can be obtained by solving problem (19)
and (32). P̃(v)k [n] = P̃(u)k [n] and η̃(v) = η̃(u).

The Algorithm 2 for the primal problem is as follows.

Algorithm 2 A Two-Layer Iteration Optimization Algo-
rithm for Solving the Primal Problem

Input: α(v)k [n][m], objective function L(Pk [n], η), Pmax , κ .
Output: P̃(v)k [n], η̃(v).
1: Set u = 1. Choose arbitrary η(1) in the feasible set.
2: repeat
3: Solve (19) with given η(u) by Algorithm 1, and get

P̃(u)k [n].
4: Calculate L(u)(P̃(u)k [n], η(u)).
5: Solve (32) with given P̃(u)k [n], and calculate η(u+1)

according to (33).
6: u← u+ 1.
7: until

∣∣L(u+1)
− L(u)

∣∣ 6 κ .
8: P̃(v)k [n] = P̃(u)k [n], η̃(v) = η̃(u).

2) FEASIBILITY CHECK FOR THE PRIMAL PROBLEM
In the v-th iteration of GBD, α(v)k [n][m] for the primal
problem is the optimal solution of the master problem in
the (v− 1)-th iteration. However, not all α(v)k [n][m] make the
primal problem feasible. Therefore, with given α(v)k [n][m],
there are two cases for the primal problem, feasibility and
infeasibility.

a: THE PRIMAL PROBLEM IS FEASIBLE
If the primal problem is feasible in the v-th iteration, we can
get the optimality cut and add it as a constraint of the master
problem.

L(αk [n][m], P̃
(v)
k [n], η̃(v)) 6 θ. (34)

b: THE PRIMAL PROBLEM IS INFEASIBLE
If the primal problem is infeasible, define a set of η̃(v) ∈ 3 ={
ηk > 0

∣∣∣∣ K∑
k=1

ηk = 1
}
which should satisfy

min
06Pk [n]6Pmax

L̄(α(v)k [n][m],Pk [n], η̃(v)) > 0, (35)

where

L̄

=

K∑
k=1

η̃
(v)
k

 Ck

−Tn ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

). (36)
The calculation of η̃(v) is presented in APPENDIX A.
By solving (35), the optimal P̃(v)k [n] is obtained. The
feasibility cut can be denoted as

L̄(αk [n][m], P̃
(v)
k [n], η̃(v)) 6 0. (37)

3) SOLVING THE MASTER PROBLEM
With the given optimality cut and feasibility cut, the master
problem can be expressed as

min
αk [n][m],θ

θ

s.t. L(αk [n][m], P̃
(u)
k [n], η̃(u)k ) 6 θ, ∀u ∈ {1, 2, . . . v1},

(38a)

L̄(αk [n][m], P̃
(w)
k [n], η̃(w)k ) 6 0, ∀w ∈ {1, 2, . . . v2},

(38b)∑
i∈KI [n]

αi[n][m]+
∑

j∈KO[n]

αj[n][m] 6 2,

∀n ∈ N , ∀m ∈M, (38c)
M∑
m=1

αk [n][m] 6 1, ∀k ∈ K, ∀n ∈ N , (38d)

αk [n][m] = {0, 1}, ∀k ∈ K, ∀n ∈ N , ∀m ∈M,

(38e)

where v1 is the number of times the primal problem is
feasible, and v2 is the number of times the primal problem
is infeasible. v1 + v2 = v. Problem (38) is a 0-1 integer
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programming problem, which can be solved by the branch
and bound method or the cut plane method [43], [44].

With the dual decomposition and the first-order Taylor
expansion, the primal problem is transformed into a convex
optimization problem. Therefore, according to [45], the con-
vergence of GBD algorithm can be guaranteed. In addition,
it should be noted that the primal problem must be feasible in
the first iteration of GBD algorithm [41].

GBD algorithm for problem P1 is shown in Algorithm 3.

Algorithm 3 Generalized Benders Decomposition for Solv-
ing P1
Input: N , M , K , Ck , Dk , Pmax , Du[n], T , KI [n], KO[n].
Output: α∗k [n][m], P̃k [n].
1: Initialization: the iteration index v = 1, LB(0) = 0,

UB(0) = 2Tn ·MN · Pmax , α
(1)
k [n][m] in the feasible set,

the threshold ε, and the maximum number of iteration
vmax .

2: repeat
3: Solve the primal problem (15) with given α(v)k [n][m]

by Algorithm 2.
4: if (15) is feasible then
5: Get the optimal transmit power P̃(v)k [n], η̃(v) and the

optimal objective value Ẽ .
6: Obtain the optimality cut with dual decomposition.
7: The upper bound value is updated with UB(v) =

min
{
UB(v− 1), Ẽ

}
.

8: else
9: Solve problem (35) and get P̃(v)k [n], η̃(v).
10: Obtain the feasibility cut according to (37).
11: end if
12: Add the optimality cut or the feasibility cut to the

master problem.
13: Solve the master problem (38) with branch and bound

method, and get α(v)k [n][m]. Update LB(v).
14: if |UB(v)− LB(v)| 6 ε then
15: Global optimal solution = true;
16: return P̃k [n] = P̃(v)k [n], α∗k [n][m] = α

(v)
k [n][m].

17: else
18: v← v+ 1.
19: end if
20: until Convergence = true or v = vmax .

C. UAV TRAJECTORY OPTIMIZATION
With given α∗k [n][m] and P̃k [n], in this subsection, we max-
imize the amount of uploaded data per time slot to optimize
UAV trajectory.

P2 : max
Du[n],ρ[n]

ρ[n]

s.t. Tn ·
K∑
k=1

M∑
m=1

(RIk [n][m]+ R
O
k [n][m]) > ρ[n],

∀n ∈ N , (39a)

‖Du[n+ 1]− Du[n]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(39b)

‖Du[n]− Du[n− 1]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(39c)

Du[1] = Du[N + 1]. (39d)

(39b) and (39c) are convex sets, because UAV trajectory in
other time slots is available when optimizing UAV trajectory
in time slot n. (39a) is a non-convex constraint, so (39) is
not a concave maximization problem, which cannot be solved
directly in general.
RIk [n][m] in (39a) can be expressed as

RIk [n][m] = W log2

1+

αk [n][m]P̃k [n]β0
‖Du[n]−Dk‖2+H2∑

i∈KO[n]

αi[n][m]P̃i[n]β0
‖Du[n]−Di‖2+H2 + σ

2


= R̄Ik [n][m]− R̂

I
k [n][m], (40)

where

R̄Ik [n][m] = W log2


αk [n][m]P̃k [n]β0
‖Du[n]− Dk‖

2
+ H2

+∑
i∈KO[n]

αi[n][m]P̃i[n]β0
‖Du[n]−Di‖2+H2 + σ

2

 , (41)

R̂Ik [n][m] = W log2

 ∑
i∈KO[n]

αi[n][m]P̃i[n]β0
‖Du[n]− Di‖

2
+ H2

+ σ 2

 .
(42)

(39a) can be rewritten as

ρ[n] 6 Tn

·

K∑
k=1

M∑
m=1

 R̄Ik [n][m]+ R
O
k [n][m]

−W log2

( ∑
i∈KO[n]

αi[n][m]P̃i[n]β0
‖Du[n]−Di‖2+H2 + σ

2

),
∀n ∈ N . (43)

Referring to [23], we introduce the relaxation variable S.

S =
{
su,i[n] = ‖Du[n]− Di‖

2,∀i ∈ KO[n],∀n ∈ N
}
. (44)

Therefore (39) can be written as

max
Du[n],S,ρ[n]

ρ[n]

s.t. ρ[n] 6 Tn ·

K∑
k=1

M∑
m=1

 R̄Ik [n][m]+ R
O
k [n][m]

−W log2

( ∑
i∈KO[n]

αi[n][m]P̃i[n]β0
su,i[n]+H2 + σ

2

),
∀n ∈ N , (45a)

‖Du[n]− Di‖
2 > su,i[n], ∀i ∈ KO[n], ∀n ∈ N ,

(45b)

‖Du[n+ 1]− Du[n]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(45c)
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‖Du[n]− Du[n− 1]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(45d)

Du[1] = Du[N + 1]. (45e)

It can be proved that (45b) holds with equality when
problem (45) is optimal. Otherwise, we can always increase
su,i[n] without decreasing ρ[n]. (45a) is a non-convex set,
because R̄Ik [n][m] and ROk [n][m] are non-concave function
with respect to Du[n]. (45b) is a non-convex set because
the superlevel set of the convex quadratic function is
generally not a convex set. Therefore, (45) is a non-convex
problem.

SCA can be used to deal with the non-convexity of (45a)
by relaxing R̄Ik [n][m] and ROk [n][m] to concave function.
Specifically, in each iteration, we perform the first-order
Taylor expansion of R̄Ik [n][m] and R

O
k [n][m] at certain point

D(r)
u [n]. Thus, (45a) is transformed into a convex set. The

key to the transformation is that R̄Ik [n][m] and R
O
k [n][m] are

convex function with respect to ‖Du[n]− Dk‖
2. According

to [42], the first-order Taylor expansion of the convex
function at any point is the global lower bound of the function.
Therefore, this transformation does not expand the feasible
region of problem (45).

Specifically, R̄Ik [n][m] can be transformed to

R̄Ik [n][m]

= W log2


αk [n][m]P̃k [n]β0
‖Du[n]− Dk‖

2
+ H2

+

∑
i∈KO[n]

αi[n][m]P̃i[n]β0
‖Du[n]− Di‖

2
+ H2

+ σ 2


> −BI (r)k [n][m]

 ‖Du[n]− Dk‖
2
−∥∥∥D(r)

u [n]− Dk

∥∥∥2
+ C I (r)

k [n][m]

1
= R̄I (lb)k [n][m], (46)

where

BI (r)k [n][m]

= W · log2(e)

·


αk [n][m]P̃k [n]β0(∥∥∥D(r)
u [n]−Dk

∥∥∥2+H2
)2 +

∑
i∈KO[n]

αi[n][m]P̃i[n]β0(∥∥∥D(r)
u [n]−Di

∥∥∥2+H2
)2

αk [n][m]P̃k [n]β0∥∥∥D(r)
u [n]−Dk

∥∥∥2+H2
+

∑
i∈KO[n]

αi[n][m]P̃i[n]β0∥∥∥D(r)
u [n]−Di

∥∥∥2+H2
+ σ 2

 ,
(47)

C I (r)
k [n][m]

= W · log2


αk [n][m]P̃k [n]β0∥∥∥D(r)
u [n]− Dk

∥∥∥2 + H2
+

∑
i∈KO[n]

αi[n][m]P̃i[n]β0∥∥∥D(r)
u [n]− Di

∥∥∥2 + H2
+ σ 2

 . (48)

ROk [n][m] can be transformed to

ROk [n][m]

= W log2

(
1+

αk [n][m]P̃k [n]β0
σ 2
(
‖Du[n]− Dk‖

2
+ H2

))

> −J I (r)k [n][m]

(
‖Du[n]− Dk‖

2
−∥∥∥D(r)

u [n]− Dk

∥∥∥2
)
+ K I (r)

k [n][m]

1
= RO(lb)k [n][m], (49)

where

J I (r)k [n][m]

= W ·

log2(e)
αk [n][m]P̃k [n]β0

σ 2
(∥∥∥D(r)

u [n]−Dk
∥∥∥2+H2

)2

log2

1+ αk [n][m]P̃k [n]β0

σ 2
(∥∥∥D(r)

u [n]−Dk
∥∥∥2+H2

)
 , (50)

K I (r)
k [n][m]

= W · log2

1+
αk [n][m]P̃k [n]β0

σ 2

(∥∥∥D(r)
u [n]− Dk

∥∥∥2 + H2

)
 (51)

In the same way, because ‖Du[n]− Di‖
2
2 is a convex function

about Du[n], we can perform the first-order Taylor expansion
of ‖Du[n]− Di‖

2
2 at certain point D(r)

u [n] without expanding
the set of constraint (45b).

‖Du[n]− Di‖
2 >

∥∥∥D(r)
u [n]− Di

∥∥∥2 + 2
(
D(r)
u [n]− Di

)T
×

(
Du[n]− D(r)

u [n]
)
, ∀i ∈ KO[n],∀n ∈ N .

(52)

Therefore, problem (45) can be rewritten as

max
Du[n],S,ρ[n]

ρ[n]

s.t. ρ[n] 6 Tn

·

K∑
k=1

M∑
m=1

 R̄I (lb)k [n][m]+ RO(lb)k [n][m]

−W log2

( ∑
i∈KO[n]

αi[n][m]P̃i[n]β0
su,i[n]+H2 + σ

2

),
∀n ∈ N , (53a)∥∥∥D(r)

u [n]− Di

∥∥∥2 + 2
(
D(r)
u [n]− Di

)T
×

(
Du[n]− D(r)

u [n]
)
> su,i[n], ∀i ∈ KO[n],

∀n ∈ N , (53b)

‖Du[n+ 1]− Du[n]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(53c)

‖Du[n]− Du[n− 1]‖2 6 (Vmax · Tn)2, ∀n ∈ N ,
(53d)

Du[1] = Du[N + 1]. (53e)
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Problem (53) is a convex optimization problem, which can
be solved with CVX [42]. Due to the function relaxation,
the optimal solution of problem (53) is the lower bound of
the optimal solution of problem P2. And the optimal UAV
trajectory of problem (53) can be denoted as D̂u[n].
The Algorithm 4 for problem P2 is presented as follows.

Algorithm 4 Successive Convex Approximation Algorithm
for Solving P2

Input: α∗k [n][m], P̃k [n], the threshold ψ .
Output: Optimal D̂u[n], ρ∗[n].
1: Set r = 1. Choose the initial UAV trajectory as D(1)

u [n].
2: Calculate ρ(1)[n].
3: repeat
4: Obtain (46), (49) and (52) with given D(r)

u [n], and add
them to problem (53).

5: Solve (53) with CVX, and get the optimal D̂u[n].
6: r ← r + 1, D(r)

u [n] = D̂u[n].
7: Calculate ρ(r)[n].
8: until

∣∣ρ(r+1)[n]− ρ(r)[n]∣∣ 6 ψ .
9: D̂u[n] = D(r)

u [n], ρ∗[n] = ρ(r)[n].

D. IoTD TRANSMIT POWER OPTIMIZATION
As shown in Figure 2, R1[n] represents the amount of
uploaded data in time slot n, with given α∗k [n][m], P̃k [n][m]
and D̃u[n]. R2[n] is the optimal solution of problem (53).
R2[n] = ρ∗[n]. If R2[n] > R1[n], it means that we can
optimize the total energy consumption of IoTDs by solving
problem P3 with given α∗k [n][m] and D̂u[n].

P3 : min
Pk [n]

Tn ·
N∑
n=1

K∑
k=1

M∑
m=1

α∗k [n][m]Pk [n]

s.t. 0 6 Pk [n] 6 Pmax , ∀k ∈ K, ∀n ∈ N , (54a)

Tn ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
> Ck ,

∀k ∈ K. (54b)

Problem P3 is similar to problem (15), so Algorithm 2 can
be applied to solve it. The optimal IoTD transmit power of
problem (54) is denoted as P̂k [n].

In summary, data collection optimization algorithm shown
in Figure 2 is shown in Algorithm 5.

E. DESIGN OF GREEDY ALGORITHM
In order to reduce algorithm complexity, we propose a
greedy algorithm for the NOMA-aided UAV data collection
system. As shown in Algorithm 6, we propose an IoTD
pairing scheme based on the amount of uploaded data and
channel gain of IoTDs to optimize IoTD scheduling, and the
initial UAV position is taken as the optimal UAV trajectory.
In addition, more than two IoTDs are allowed to reuse the
same channel in the same time slot in the greedy algorithm.

Algorithm 5 Data Collection Optimization Algorithm
(DCOA) for Solving P
Input: T , N , M , K , Ck , Dk , Pmax , τ .
Output: α∗k [n][m], P

∗
k [n], D

∗
u[n].

1: Initialize UAV trajectory according to (12), and get
Du[n].

2: Solve P1 with given Du[n] by Algorithm 3, and get
α∗k [n][m], P̃k [n], and E1.

3: Set E2 = 0.
4: repeat
5: Calculate R1[n] with given α∗k [n][m], P̃k [n] and D̃u[n].

6: Solve P2 with given α∗k [n][m] and P̃k [n] by Algo-
rithm 4. Get D̂u[n] and R2[n].

7: if R2[n] > R1[n] then
8: Solve P3 with given α∗k [n][m] and D̂u[n], and get

P̂k [n] and E2.
9: else

10: return P∗k [n] = P̃k [n], D∗u[n] = D̃u[n], E∗ = E1.
11: end if
12: if E2 < E1 then
13: E1← E2, D̃u[n]← D̂u[n], P̃k [n]← P̂k [n].
14: else
15: P∗k [n] = P̃k [n], D∗u[n] = D̃u[n], E∗ = E1.
16: end if
17: until E2 > E1 and |E2 − E1| < τ .

F. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the proposed algorithm
DCOA and GA is analyzed as follows. The computational
complexity of DCOA depends on Algorithm 2, 3 and 4. In the
worst case, the computational complexity of Algorithm 2 is
roughly estimated as O

(
umaxrmaxK 2MN 2

)
. The primal

problem of Algorithm 3 is solved by Algorithm 2. The
master problem of Algorithm 3 is solved by the branch and
bound method or the cut plane method, so its computational
complexity is O

(
(4KMN )3

)
[44], [46]. In the worst case,

the computational complexity of Algorithm 3 is roughly esti-
mated asO

(
64vmax(KMN )3

)
. The computational complexity

of Algorithm 4 in the worst case is roughly estimated as
O
(
max

{
3rmaxKMN 2, 8rmaxN 4

})
[42]. Assume that the loop

number of Algorithm 2 and Algorithm 4 in DCOA is L. The
computational complexity of DCOA algorithm in the worst
case is roughly estimated as (55). The GA algorithm consists
of the following three parts: UAV trajectory optimization,
IoTD scheduling and power optimization. The computational
complexity of the three parts are roughly estimated as
O (N ), O

(
2K 3

)
and O

(
umaxrmaxK 2MN 2

)
respectively.

Therefore, the computational complexity of the proposed
GA algorithm in the worst case is roughly estimated as
O
(
max

{
2K 3, umaxrmaxK 2MN 2

})
.

O
(
max

{
umaxrmaxLK 2MN 2,

64vmax(KMN )3, 8rmaxLN 4

})
. (55)
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Algorithm 6 Greedy Algorithm (GA) for NOMA-Aided
UAV Data Collection System
Input: T , N , M , K , Ck , Dk , Pmax .
Output: α∗k [n][m], P

∗
k [n], D

∗
u[n].

1: Initialize UAV trajectory according to (12), and getDu[n]
and ru. Initialize αk [n][m] = 0.

2: D∗u[n] = Du[n].
3: Obtain KI and KO with given D∗u[n], ru and Dk .
4: for n = 1 : N do
5: Get K̃I [n] by sequencing IoTDs inKI [n] from large to

small according to Ck .
6: repeat
7: Assign channel for IoTDs in K̃I [n] according to

their sequence number.
8: For k ∈ K̃I [n], αk [n][m] = 1. M is the sequence

number of IoTD k .
9: until m > M or All IoTDs in K̃I [n] are assigned.
10: end for
11: KY = K\KI .
12: Get K̃Y by sequencing IoTDs in KY from large to small

according to Ck .
13: repeat
14: Assign channel for IoTDs in K̃Y according to their

sequence number.
15: For k ∈ K̃Y , αk [n][m] = 1. IoTD k is closest to UAV

in time slot n. m is the channel number of idle channel
in time slot n.

16: until All channels are assigned.
17: repeat
18: Let Pk = Pmax . According to (6) and (7), calculate

C̃k = Tn ·
N∑
n=1

M∑
m=1

Rk [n][m].

19: Ĉk = Ck − C̃k .
20: if Ĉk > 0 then
21: Let k ∈ KY . Ck = Ĉk .
22: else
23: Let k ∈ KN .
24: end if
25: Get K̃Y by sequencing IoTDs inKY from large to small

according to Ck .
26: Get K̃N by sequencing IoTDs in KN from small to

large according to Ck .
27: Assign channel according to the sequence number of

IoTD k in K̃Y .
28: For k ∈ K̃Y , αk [n][m] = 1. The time slot n and the

channel number m are the same as those of IoTD j (j ∈
K̃N ), and the sequence number of IoTD j in step 26 is
same as the sequence number of IoTD k in step 25.

29: until KY = ∅.
30: return α∗k [n][m] = αk [n][m].
31: Calculate optimal P∗k [n] with given α∗k [n][m], D∗u[n]

according to Algorithm 2.

IV. NUMERICAL RESULTS
In this section, numerical results are presented to demonstrate
the performance of the proposed algorithm. In the simulation,

we assume that IoTDs are randomly distributed in a circular
area with radius R = 70 m. The amount of uploaded data
Ck varies randomly from 1 Mbit to 5 Mbit. The maximum
transmit power is Pmax = 4 W. The flight height and
maximum flight speed of UAV are H = 50 m and Vmax =
7 m/s. The trajectory initialization parameter is set as ς =
0.7. Furthermore, assuming the number of system channels
is M = 7 and the bandwidth of sub-channel is W = 30 kHz.
The normalized channel gain is β0 = −50 dB. The noise
power is σ 2

= −100 dBm.

FIGURE 3. Convergence of GBD algorithm.

FIGURE 4. Convergence of the two-step iteration optimization algorithm.

In Figure 3 and Figure 4, we evaluate the convergence
performance of GBD algorithm and the two-step iterative
optimization algorithm for problems P2 and P3 in DCOA.
We set N = 6, K = 70 and T = 60s. As shown in Figure 3,
for GBD algorithm, the initial upper bound is set to the
maximum energy consumption of IoTDs (2 · 6 · 7 · 10s ·
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4W = 3360 J), and the lower bound is 0 J. It can be found
that the difference between the upper bound and the lower
bound gradually decreases and GBD algorithm converges
after 13 iterations. For the two-step iterative optimization
algorithm shown in Figure 4, the initial value is the total
energy consumption optimized by GBD algorithm, and it
converges after 6 iterations. It can be seen that the minimum
energy consumption can be obtained with several iterations
in DCOA, which shows that DCOA is effective.

FIGURE 5. The distribution of IoTDs and optimized UAV trajectory.

Figure 5 shows the distribution of IoTDs and UAV
trajectory optimized by GA and DCOA, respectively, when
N = 6, K = 60 and T = 60s. The GA UAV trajectory is
the initial UAV trajectory according to (12), and the DCOA
UAV trajectory is the UAV trajectory optimized by DCOA
algorithm. In this paper, the GA UAV trajectory is designed
based on the amount of uploaded data and the location of
IoTDs, with the goal of ensuring IoTDs fairness. Moreover,
it can be observed that the DCOA UAV trajectory is around
the GA UAV trajectory. This is due to the fact that the DCOA
UAV trajectory is optimized based on the GAUAV trajectory.
Because the increase in the channel gain difference of IoTDs
which access the same channel in NOMA is conducive to the
reduction of energy consumption. In order to minimize the
total energy consumption of IoTDs, UAV tends to be close
to IoTDs with large amount of uploaded data and away from
IoTDs with small amount.

In Figure 6, we compare the total energy consumption
of IoTDs achieved by GA algorithm and DCOA algorithm
under different numbers of IoTDs when N = 6 and
T = 60s, 70s, 80s. It can be observed that the total
energy consumption presents an exponential growth with
the increase in the number of IoTDs. This is because that
the power domain NOMA scheme is realized at the cost of
increasing of IoTDs power. In addition, in terms of NOMA,

FIGURE 6. Total energy consumption versus the number of IoTDs
parameterized by different UAV flight time.

interference from co-channel IoTDs is much greater than
noise. Thus, according to equations (6) and (7), the power
of internal IoTD needs to be increased several times to
ensure the data rate. Therefore, when the number of IoTDs
is less than the number of channels (K = 30, 40), IoTDs
are more likely to upload data by OMA to reduce energy
consumption. As the number of IoTDs increases (K =

60, 70, 80), the number of NOMA IoTDs increases, resulting
in the exponential growth of IoTDs energy consumption.

In addition, compared with GA algorithm, DCOA algo-
rithm can effectively reduce the total energy consumption
when K = 60, 70, 80. The more IoTDs, the more obvious the
advantages of DCOA. The reason is that the pairing of IoTDs
can affect the transmit power of IoTDs greatly, and DCOA
algorithm optimizes IoTD scheduling by GBD algorithm.
And the distance betweenUAVand paired IoTDs is optimized
to reduce the interference from external IoTD by optimizing
UAV trajectory.
Note: When K = 80, we set Pmax = 10W to get a

generalized simulation result, which can intuitively show the
impact of the increased number of IoTDs on the total energy
consumption.

Figure 7 shows the total energy consumption versus UAV
flight time optimized by DCOA algorithm and GA algorithm
when N = 6, K = 60, 70, 80 and ru = 23.3958m. It can
be observed that the total energy consumption decreases
exponentially with UAV flight time increasing. The reason
is as follows. First, according to constraint (9b), P ∝ Tn

√
2c

and c = Ck/W . So, IoTD transmit power decreases rapidly
with the increase of flight time, especially when Tn or c is
large. Second, when the power of external IoTDs decreases,
its interference with internal IoTDs also decreases, according
to equation (6), which can significantly reduce the power
of the internal IoTDs. Therefore, as presented in Figure 7,
although communication time increases linearly, the total
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FIGURE 7. Total energy consumption versus UAV flight time
parameterized by the number of IoTDs.

energy consumption of IoTDs decreases exponentially. From
the numerical results, it can be found that increasing UAV
flight time will greatly improve the performance of the
proposed NOMA-aided UAV data collection system in terms
of the total energy consumption of IoTDs.

In fact, UAV flight time is generally unchangeable, but Tn
can be changed with the value of N . Therefore, in Figure 8,
we analyze the impact of N on total energy consumption.

FIGURE 8. Total energy consumption versus the value of N .

In Figure 8, we simulate the total energy consumption
optimized by DCOA algorithm and GA algorithm when
K = 60, T = 70s and R = 60m, 70m, 80m. It can be
observed that with unchangeable UAV flight time, the total
energy consumption increases significantly as N increases.
Therefore, combining with the results of Figure 7, we can
conclude as follows. For the proposed NOMA-aided UAV
data collection system, in terms of reducing total energy
consumption of IoTDs, reducing N to increase the length
of one time slot Tn is more effective than increasing N to

increase the number of subchannels. In addition, as shown
in Figure 8, small change of the radius R has little effect on
the total energy consumption.

FIGURE 9. Total energy consumption versus the amount of IoTDs
uploaded data Ck .

In Figure 9, we analyze the impact of the amount of IoTD
uploaded data on the total energy consumption optimized by
DCOA algorithm. We set N = 6, T = 60s and the number of
IoTD uploaded data is 1 Mbit ∼ 5 Mbit or 2 Mbit ∼ 5 Mbit.
It can be observed that when the number of IoTD is large,
the range of data volume of IoTDs will greatly affect the total
energy consumption. And the larger the range of data volume
changes, the lower the total energy consumption. Therefore,
based on numerical results, we can find that the proposed
UAV-aided NOMA data collection system is suitable for
collecting data in inaccessible areas where multiple IoTDs
with large differences in data volume coexist.

TABLE 1. Runtime of GA and DCOA.

Furthermore, we compare the runtime of GA algorithm
and DCOA algorithm under the same computer configuration
when N = 6, R = 70m and T = 60s. As shown in Table 1,
the runtime of GA algorithm is greatly shortened since
the optimization of UAV trajectory and IoTD scheduling is
simplified. Combining the results of Figure 6 and Figure 7,
compared with DCOA algorithm, the performance of GA
algorithm decreases little when the number of IoTDs is small
or UAV flight time is long. Therefore, in the above situation,
GA algorithm may be more advantageous.

Finally, we compare the impact of NOMAandOMAon the
success rate of data collection when T = 70s. For NOMA,
we set N = 6. For OMA, in order to ensure the access of
IoTDs, the number of subchannels should be more than the
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number of IoTDs. So, we setN = 8 whenK = 50 andN = 9
when K = 60. As shown in Table 2, NOMA technology
is more suitable than OMA technology for collecting data
within limited time.

TABLE 2. Success rate of IoTDs uploading data.

V. CONCLUSION
In this paper, we have investigated a NOMA-aided UAV
communication system to collect data within UAV flight
time for large-scale IoTDs in inaccessible areas. Specifically,
UAV trajectory, IoTD scheduling and transmit power are
jointly optimized to minimize the total energy consumption
of IoTDs while ensuring data collection. Then data collection
optimization algorithm is proposed to get the sub-optimal
solution relying on the Generalized Benders Decomposition
and successive convex approximation techniques. And we
propose the greedy algorithm to reduce complexity by
simplifying the optimization of UAV trajectory and IoTD
scheduling. Finally, the numerical results demonstrate that,
compared with the traditional UAV communication systems,
the proposed NOMA-aided UAV system performs better in
terms of the data collection and DCOA can effectively reduce
the total energy consumption of IoTDs.

APPENDIX A
SOLUTION OF THE FEASIBILITY CUT
The calculation of η̃(v) and P̃k [n] can be achieved by solving
the following `1 ∼ norm problem when the primal problem
is infeasible.

min
sk ,Pk [n]

K∑
k=1

sk

s.t. 0 6 Pk [n] 6 Pmax , ∀k ∈ K, ∀n ∈ N , (56a)

Ck−T ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
6 sk ,

∀k ∈ K. (56b)

Similar to (23)-(27), (55b) can be transformed into

Ĝ (Pk [n]) 6 sk , (57)

where

G (Pk [n]) = Ck−T ·
N∑
n=1

M∑
m=1

(
RIk [n][m]+ R

O
k [n][m]

)
6 Ck−T ·

N∑
n=1

M∑
m=1

(
R̄Ik [n][m]− R̂

I (up)
k [n][m]

+ROk [n][m]
)

= Ĝ (Pk [n]) (58)

Thus, problem (56) can be transformed into a convex
problem. The optimal solution P̃k [n] and η̃ satisfy the
following KKT conditions.

1−
K∑
k=1

η̃k = 0

K∑
k=1

η̃k · ∇Pk [n]Ĝ(P̃k [n]) = 0

η̃k ·
[
Ĝk (P̃k [n])− sk

]
= 0

η̃k > 0 (59)

Therefore, if the primal problem is infeasible in the v-th
iteration of GBD, the optimal solution P̃(v)k [n] and η̃(v) can
be obtained by (59). Then we can get the feasibility cut as
follows.

L̄(αk [n][m], P̃
(v)
k [n], η̃(v))

=

K∑
k=1

η̃
(v)
k

(
Ck−T ·

N∑
n=1

M∑
m=1

(RIk [n][m]+ R
O
k [n][m])

)
6 0

(60)
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