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ABSTRACT Siamese region proposal network has made remarkable achievements in visual object tracking
because of its balanced accuracy and speed. However, it regards tracking as a local one-shot detection
task, which lose the power of updating the appearance model online thereby cannot handle the object-
occlusion, fast motion and out-of-view situations. To tackle this problem, we propose amethod that combines
adaptive Kalman filter with Siamese region proposal network (Anti-occlusion-SiamRPN) to make full use
of the object spatial-temporal information. Specifically we first extract target features through deep network
and then uses adaptive Kalman filter to predict target trajectory in these difficult scenarios. Further this
trajectory is used to select the candidate area of the next frame for Siamese region proposal network, which
improve the searching mechanism. In this way, the introduction of adaptive Kalman filter makes the tracking
process online learning which makes up for the disadvantage that Siamese region proposal network can only
track offline. In addition, a hard example discrimination method (HEDM) is proposed to estimate whether
the occlusion occurs and how seriously it is, which also improve Kalman filtering mechanism to make it
update adaptively. Our method being evaluated with the speed of 80 FPS on five widely-applied challenging
benchmarks including OTB2013, OTB2015, OTB50, VOT2016 and VOT2018. The extensive experimental
results demonstrate our method achieves state-of-the-art effects and great improvement in comparison to
other trackers.

INDEX TERMS Visual tracking, Siamese region proposal network, Kalman filter, occlusion judgment,
real-time tracker.

I. INTRODUCTION
Visual object tracking is a fundamental problem in various
tasks of computer vision, such as video surveillance, auto-
matic driving and human-computer interactions. It aims to
estimate the position of a specified object in a changing video,
where the object is only identified with a rectangle in the
starting frame. Although more and more valuable tracking
methods have been proposed, it is still difficult to build a
state-of-the-art tracker especially in challenging scenarios
with occlusions, rotations, illumination variations and other
conditions.

Convolutional Neural Networks (CNNs) have been widely
used in various computer vision tasks including image
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classification, object detection, semantic segmentation and so
on. Unlike handcrafted features, CNNs exhaustively extract
both the shallow appearance information and deep semantic
information of the object to obtain powerful feature repre-
sentation ability, which is beneficial to identify object cat-
egories. However, it is a more difficult challenge to apply
it into visual object tracking task because the target objects
may be arbitrary and vary dramatically in a video sequence.
The methods based on correlation filtering and similarity
comparison have been proposed in recent years, which have
made great progress in this field.

Correlation filter based tracking algorithms use kernel trick
and correlation to model the tracking process and identify
the object with template cropping from current image, which
have an obvious drawback that they produce strong peaks
both for the object and the similar objects (distractors) due to
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their limitedmodeling ability. They are not particularly robust
to different object appearance variations and often fail on
challenging tracking problems such as out-of-view, occlusion
and fast motion.

Siamese networks formulate tracking process as a sim-
ilarity comparison task through the learned feature cross-
correlation operation between the object template and its
candidates from the search region. They have obtained
favorable performance in many challenging benchmarks.
Siamese region proposal network (SiamRPN++ [1]) con-
sists of a template branch and a detection branch which are
offline-trained with large-scale datasets, owing to the work-
ing principle of region proposal network, it can predict the
object location more precisely compared with conventional
Siamese networks [9] [10] [12]. However, there are still two
problems in SiamRPN++: firstly, the tracking process of
SiamRPN++ is completely offline without any online learn-
ing, so it cannot update the object appearance model online
which is essential to account for drastic appearance changes
in tracking scenarios. Secondly, the local search strategy is
employed to track object in the sequences, which will lead to
the tracking failure, especially in the case of full occlusion,
fast motion and out-of-view conditions.

Considering above problems, we propose stably adaptive
anti-occlusion Siamese region proposal network, where the
past trajectory of the object is utilized, which can represent
the object motion information effectively, to as measurement
in Kalman filter for updating trackermodel especially in these
difficult scenarios. Firstly, we exploit the feature-representing
ability of Siamese network to obtain the object feature. Then,
adaptive Kalman filter is used to update the center location
of search area relying on the motion trend of nonoccluded
trajectory from Siamese network, which aims to ensure that
the object will still be in the search area even if distractors
emerge after Siamese region proposal network. Therefore,
this method can enhance the reliability of the object tracking
and suppress the interference of occlusion and distractor
simultaneously, which helps to track the object accurately
especially in the out-of-view, occlusion and fast motion sit-
uations.

Moreover, Siamese networks cannot be conscious of
object-occlusion situation due to its tracking mechanisms.
To address this problem, the hard example discrimination
method (HEDM) is proposed to determine the current state of
object. When the object is judged to be occluded according to
HDEM, the tracker model will update, especially the adaptive
Kalman filter based on the HEDM parameter is used to
update the object search area to tackle the object-occlusion,
rather than the background area generated by Siamese region
proposal network individually.

To summarize, the main contributions of this work are
listed below in threefold:
•A stably adaptive anti-occlusion Siamese region proposal

network is proposed for challenging object tracking tasks,
which adopts the adaptive Kalman filter into the Siamese
region proposal network to update model by obtaining the

trend of object motion information like object trajectory to
achieve rigorous real-time tracking.
•A hard example discrimination method (HEDM) is pre-

sented to efficiently judge the object state of whether being
occluded, fast moving and out-of-view, and improve Kalman
filtering mechanism to make it update adaptively, so that the
method can adaptively decide model updating.
•Our proposed approach can achieve state-of-the-art per-

formance with the speed of 80 FPS (frames per second)
on five benchmarks, including OTB2015 [3], OTB2013 [2],
OTB50, VOT2016 [42] and VOT2018 [47].

The rest of this paper is organized as follows. Section II
briefly outlines some related works in visual object tracking;
In Section III, our new object tracking method is described
in detail; In Section IV, the new method is tested and eval-
uated on five widely-applied challenging benchmarks, and
we illustrates several ablative studies about the presented
components; Section V concludes the paper.

II. RELATED WORK
A. CORRELATION FILTER BASED TRACKING
Visual object tracking has received increasing attention over
the last decades and has remained being a very active research
direction. In the past few years, the Correlation Filter based
tracker is particularly fast and effective because it can dis-
criminate an arbitrary object and its 2D translations from the
background, which was first proposed by Bolme et al. [4].
Henriques et al. [5] proposed KCF using circulant matrices
with the Discrete Fourier Transform and efficiently incor-
porated multi-channel features in a Fourier domain. Several
improved algorithms based on KCF have also achieved good
tracking performance. For example, SAMF [6] can simulta-
neously detect the change of object center and scale by taking
the position where the maximum response is. DSST [7] uses
separate filters for translation and scaling, and SRDCF [8]
reduces the boundary effect by expanding the search area
and constraining the effective scope of the filter template.
Although these approaches have achieved good results in
some specific constrained environments, they all use hand-
crafted features that are vulnerable in dynamic situations
including illumination changes, occlusion, deformation, etc.
Moreover, due to their limited modeling ability, they are not
sensitive to distractors which have similar appearance with
the object especially in the out-of-view, occlusion and fast
motion situations, thus limiting their performance.

B. SIAMESE NETWORKS BASED TRACKING
Siamese trackers apply similarity comparison strategy for
tracking, which was first proposed by Ran et al. [9],
it employed a learned priori deep Siamese similarity func-
tion to search for candidates most similar to the exemplar
given in the starting frame. Bertinetto et al. [10] proposed
a fully convolutional Siamese network (SiamFC) to com-
pare feature similarity between the exemplar given in the
starting frame and the cropped current frame. RASNet [11]
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proposed a Residual Attentional Network to strengthen simi-
larity metric by learning the attention mechanism. GOTURN
[12] used a deep regression network to learn a generic
relationship between an object’s appearance and its motion.
CFNet [13] combined the correlation filters and the Siamese
tracking network to achieve an end-to-end representation
learning. FlowTrack [14] exploited flow information and
spatial-temporal attention mechanism to improve the track-
ing accuracy. SiamRPN [15] introduced a region proposal
network after a Siamese network, which regards the tracking
process as a one-shot local detection task. C-RPN [49] con-
sists of a sequence of RPNs cascaded from the high-level to
the low-level layers in the Siamese network. SiamMask [37]
involved a unified framework for visual target tracking and
video object segmentation. Recently, SiamRPN++ [1] was
proposed to enhance SiamRPN through depth-wise correla-
tion and layer-wise feature aggregation, which was trained
with four large datasets on AlexNet [16] and ResNet-50
[17] respectively. Although Siamese networks based track-
ers obtained favorable achievements because of its balanced
accuracy and speed, it is worth noting that they only enhance
the feature-representing ability and have not improved the
search mechanism yet, which may result in detriment in
accuracy for scenes of out-of-view, occlusion and fast motion.

C. KALMAN FILTER IN TRACKING
In 1960,. Kalman [18] described a recursive solution to
the discrete-data linear filtering problem, which was used
to estimate the state of a linear system whose states were
assumed to be Gaussian distribution. Kalman filter keeps
tracking the object by constantly updating the object’s state,
which is of great significance for online tracking. Reference
[19] developed the tracking algorithm with Kalman filter,
[20] introduced a Kalman filter to estimate the object state
for further tracking the desired dynamic object and filtering
the noise, [21] used an adaptive Kalman filter to construct
the motion model in the tracking process. Dynamical set-
ting Kalman filter [22] was proposed to dynamically set
the optimal process error covariance matrix for a constant
velocity model Kalman filter, which can track a real erratic
object. In addition, adaptive Kalman filter was combinedwith
mean shift [23] or Camshift [24] to improve the robustness.
However, all these improved tracking methods tend to failure
when the object moves drastically fast owing to the fact that
these methods greatly depended on the prediction of Kalman
filter without reliable external supervision.

In summary, correlation filter based trackers and Siamese
network based trackers are basically relied on the feature
representation ability of the tracking system and they are
liable to failure especially in some complex situations with
object appearance incompleteness or uncertainty. While the
Kalman filter based trackers are tend to lose the fast moving
object owing to its limited prediction based on linear system
model. In order to overcome these problems, we propose a
stably adaptive anti-occlusion Siamese region proposal net-
work (Anti-occlusion-SiamRPN), which combines the deep

network with the adaptive Kalman filter for robust object
tracking. It is described in more detail in the following
section.

III. TRACKING BASED ON ANTI-OCCLUSION SIAMESE
REGION PROPOSAL NETWORK
To tracking the occluded object and the fast moving object,
a new framework is presented, named as stably adaptive anti-
occlusion Siamese region proposal network (Anti-occlusion-
SiamRPN), which exploits the feature-representing ability of
Siamese network for identifying drastically moving object
to further establishes the object motion trajectory through
adaptive Kalman filter. As a result, when the object is in
the challenging scenarios like occlusion, fast motion and
out-of-view, the proposed method can accurately predict the
object location while the Siamese network based trackers or
correlation filter based trackers cannot identify the object
correctly. Further, the hard example discrimination method
(HEDM) is proposed to fully monitor the tracking process
when the object encounter these difficult conditions. With
the help of HEDM, our method achieve promising tracking
results owing to the combination of the deep network and the
prediction of adaptive Kalman filter.

In this section, we introduce the proposed Anti-occlusion-
SiamRPN tracker. The overall framework is overviewed in
Section 1). Section 2) introduces the algorithm principle of
Siamese region proposal network. How to use the adaptive
Kalman filter to deal with the object-occlusion, fast motion
and out-of view condition is introduced in Section 3). Last in
Section 4), the working principle of HEDM is demonstrated.

1) THE OVERVIEW FRAMEWORK OF
ANTI-OCCLUSION-SIAMRPN
The tracking framework of Anti-occlusion-SiamRPN is
shown in Fig.1. It consists of two branches, one is called
normally inference branch which applies the Siamese region
proposal network to predict the object position and to crop
the search area for the next frame, and this object trajectory
is used as measurement in Kalman filter simultaneously.
The other is called abnormally inference branch which uses
adaptive Kalman filter to predict the object position and the
center position of the next frame’s search area instead of the
background area generated by the network when the object is
judged occluded or moved fast by HEDM.

The proposed architecture consists of a Siamese tracking
network, an HEDM module and an adaptive Kalman filter
motion trajectory estimation module. The input of the track-
ing network is a pair which consists of a tracking template
cropped from the starting frame (denoted as z) and a search
area cropped from the current T frame image (denoted as x),
whose sizes are 127 × 127 and 287 × 287 respectively.
In the Siamese tracking network, the template and the current
frame’s search area are respectively fed to CNN to obtain
response map and object trajectory. The HEDM module will
evaluate the state confidence of the being tracked object,
which can effectively determine whether the target is in the

VOLUME 8, 2020 161351



F. Wu et al.: Stably Adaptive Anti-Occlusion Siamese Region Proposal Network for Real-Time Object Tracking

FIGURE 1. The overview of our proposed anti-occlusion-SiamRPN framework. In the figure, k denotes the anchor number, ? denotes
depthwise correlation operator.

difficult scenes such as object-occlusion, fast motion, and out
of view.

With the low confidence, the proposed method get into
normally inference branch to track the object, and further
collect the object’s trajectory by the adaptive Kalman filter
module, so as to accumulate the long-term trajectory for more
accurately positioning. Meanwhile, with the high confidence,
which indicates the object may be in occlusion, fast motion,
and out of view condition, the proposed method will turn to
abnormally inference branch to accurately track the object in
these challenging situations. As a result, owing to the comple-
mentary mechanism of our framework, through establishing
the reliable object trajectory estimation and accurately posi-
tioning the search area, the proposed method can smoothly
address the challenging issues in visual tracking.

Supposing the object of the T frame was in occlusion
or fast motion condition, when we take the cropped search
area of the T frame as input into Siamese region proposal
network, the HEDM module will declare the T frame is a
hard example, then the tracking output will not be generated
by the deep network’s background trajectory, on the contrary,
the proposed method will utilize the adaptive Kalman filter to
correctly predict the object trajectory of the T frame accord-
ing to the accumulated measurements of the deep network’s
well-tracking outputs from 1 to T-1 frames, at the same time,
this corrected object trajectory will also be used to replace the
center position of the search area in the T+1 frame to change
the wrong selection way under challenging scenes, which
improve the searching mechanism. That is, our method aims
to learn the motion trend of object trajectory and accurately
predict the object motion information in the case of object-
occlusion, fast motion and out-of-view.

Fig.2 demonstrates the schematic flowchart of our method,
the HEDMmodule is employed to determine the object state,
which consists of the occlusion index (TOI) and the max

FIGURE 2. The schematic flowchart of the proposed approach.

score (Score) in the response score map. Details of the above
are given in Sections 3)-4).

2) ADAPTIVE REPRESENTATION WITH SIAMESE REGION
PROPOSAL NETWORK
Inspired by the recently proposed SiamRPN++ [1],
we firstly pre-offline trained a Siamese region proposal net-
work to adaptively represent the object feature by general
similarity learning. The Siamese region proposal network
consists of a feature extraction subnetwork and a region
proposal subnetwork. There are two branches in the feature
extraction subnetwork. One is called the template branch
which cropped from the starting frame as input (denoted as z).
The other is called the detection branch which cropped from
the current frame as input (denoted as x). These two branch
are used to share parameters in the modified AlexNet [16]
where the groups from conv2 and conv4 are removed [10],
so that both the information from the template branch and the
detection branch can be implicitly encoded through the same
transformation. After that, the region proposal subnetwork
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is used for proposal extraction by the correlation operation
between response map of these two branches, it have k
anchors, and produces 2k channels for classification and 4k
channels for regression. For convenience, we denote ϕ (z)
and ϕ (x) as the output feature maps of the feature extraction
subnetwork, so the output of the Siamese region proposal
network can be defined as follows:

Acls
w×h×2k = Corr([ϕ (x)]cls , [ϕ (z)]cls) (1)

Areg
w×h×4k = Corr

(
[ϕ (x)]reg , [ϕ (z)]reg

)
(2)

where ϕ (∗) is the CNN representation, Corr(∗) is the depth-
wise correlation operation that use the template feature maps
[ϕ (z)]cls and[ϕ (z)]reg as kernel, it is further improved with
kernel function. Then, Siamese region proposal network
is optimized by minimizing the average loss function as
follows:

loss = Lcls + λLreg (3)

where we use the Cross-entropy loss as classification loss
(Lcls) and we employ the smoothL1 loss for bounding box
regression (Lreg), λ is hyper-parameter to balance these two
parts. For bounding box regression, the center point, the
height and the width of the anchor boxes are denoted as
x, y,w, h while those of the ground truth boxes are denoted
as xg, yg,wg, hg. The normalized distance can be expressed
as:

δ [0] = (xg − x)
/
wg (4)

δ [1] = (yg−y)
/
hg (5)

δ [2] = ln (wg
/
w) (6)

δ [3] = ln (hg
/
h) (7)

The mentioned regression loss can be formulated as:

Lreg =

3∑
i=0

smoothL1(δ [i] , σ ) (8)

where the formula of smoothL1 loss is:

smoothL1 (ω, σ ) =


0.5ω2σ 2, |ω| <

1
σ 2

|ω| −
1

2σ 2 , |ω| ≥
1
σ 2

(9)

We use this Siamese region proposal network to generate
response map and object trajectory, which as key information
in the HDEM and the adaptive Kalman filter respectively.
When the object is judged to be occluded according to the
HDEM, our presented method which combined the deep
network with the adaptive Kalman filter is used for accu-
rately positioning object and selecting the search area in the
next frame simultaneously, replacing the background area
generated by the deep network individually, and making the
tracking process online learning to overcome the problem of
not being able to stably track fast moving and occluded targets
in Siamese region proposal network.

In order to directly demonstrate the progressiveness of our
method, the failure screenshot generated by SiamRPN++ on

FIGURE 3. The tracking screenshot of SiamRPN++ and anti-occlusion-
SiamRPN on board challenging sequence.

Board [3] challenging sequence is shown in Fig.3a, where the
blue and red bounding box denote the object and the search-
ing area respectively, and the green bounding box denotes
its ground truth. This example indicates once the object’s
search area selected incorrectly, it is impossible to identify
the object. On the contrary, our method, as shown in Fig3b,
which accurately positioning the object due to the corrected
searching.

3) CANDIDATE AREA PREDICTING WITH ADAPTIVE KALMAN
FILTER
Object tracking is a complex task which typically involves the
temporal and spatial information. SiamRPN++ [1] can get
accurate bounding boxes by applying box refinement proce-
dure, but it only takes advantage of spatial features and cannot
deal with fast motion or occlusion. Therefore, we propose
Anti-occlusion-SiamRPN to integrate the adaptive Kalman
filter and Siamese region proposal network to achieve robust
visual tracking. It combined the motion trend learned from
temporal information by adaptive Kalman filter and reliable
spatial features generated from the deep network, and this
adaptive Kalman filter is constructed with HEDM, which
adaptively changes the reliability of the measurement values
for the Kalman filter. Furthermore, our presented method
has two strengths. The first is that Kalman filter is more
efficient than the other complicated online learning approach,
especially for real-time tracking. The second is that the strong
feature-representing ability of deep network can help to dis-
criminate the object from the background effectively, which
increases the reliability of predictions.

In the tracking process, the Kalman filter is used to capture
the objectmotion trajectorywhich aims tomake full use of the
temporal information of the object to successfully cope with
occlusions. In general, the Kalman filter can approximately
estimate the object state even its observed measurements
with some uncertainties over time, it is a recursive process
that consists of two stages: prediction and update. And the
Kalman filter can be divided into two models: the process
model and the measurement model.

x(k) = Fkx(k− 1)+ Bku (k− 1)+ ωk−1 (10)

z(k) = Hx(k)+ v(k) (11)

where x(k) is the process state at time k, z(k) is the measure-
ment vector, Fk is the state transition matrix applied to the
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previous state vector x(k − 1) which is the optimal result of
the previous state, H is the measurement matrix, Bk is the
control-input matrix applied to the control vector u (k− 1) (if
there is no control, it can be zero), ωk−1 is the process noise
vector, v(k) is the measurement noise vector.

The prediction stage including state prediction and covari-
ance prediction.

ẋ(k) = Fkx̂(k− 1) (12)

ṗ(k) = Fkp̂(k− 1)FTk + Qk−1 (13)

where ẋ(k) is the prior state estimate at time k, x̂(k− 1) is the
optimal state at time k− 1, p̂(k− 1) is a posteriori estimate
error covariance, ṗ(k) is a priori estimate error covariance,
Qk−1 is the covariance matrix of system process noise.

The update stage including calculating the Kalman gain,
status update and covariance update, also known as the cor-
rection phase.

gk = ṗ(k)HT[Hṗ(k)HT
+ Rk]

−1
(14)

x̂(k) = ẋ(k)+ gk[z(k)− Hẋ(k)] (15)

p̂(k) = (I− gkH)ṗ(k) (16)

where gk represents the Kalman gain, Rk is the covariance
matrix of measurement noise, I is a unit matrix.

We introduce the hard example discrimination method
(HEDM) to fully supervise the credibility of the Kalman fil-
ter, specifically, the value of theQk−1 and Rk can be described
by HEDM, where the Qk−1 and Rk denotes the reliability of
the predicted value and the measurement value in the Kalman
filter. When the HEDM value is less than the threshold what
we set, the Qk−1 and Rk are performed as:

Qk−1 = HEDM (17)

Rk =
(
1− 1

/
HEDM

)2 (18)

Otherwise, the Qk−1 and Rk are performed as:

Qk−1 = 0 (19)

Rk = ∞ (20)

The introduction of HEDM can not only judge the occlusion
situation, but also improve Kalman filtering mechanism to
make it update adaptively. Being different from Siamese net-
work based trackers, instead of using the center of the object
position in the previous frame, our method uses the object
position predicted by the adaptive Kalman filter for cropping,
which changes the search mechanism.

The long-term corrected trajectory is adopted as the tracked
location, rather than the output from the deep network in that
a tracker without an online learning process cannot handle
occlusion problems. The working principle of the hard exam-
ple discrimination method (HEDM) is demonstrated in the
next section.

4) HEDM FOR OCCLUSION UPDATING
The learning process of Siamese region proposal net-
work is completely offline. The template for the similar-
ity comparison with the search area is always the ground

truth given in the starting frame and never updates in its
original framework, which brings in the drawback that once
the object encounters large deformation or occlusion, the
Siamese region proposal network cannot stably tracking.
Through combing the Siamese region proposal network with
online learning process, our method effectively compensate
for these defects, the tracking failure can be avoided espe-
cially in the challenging scenes of object-occlusion, fast
motion and out-of-view.

The occlusion index (TOI) utilizes the peak signal-to-noise
ratio of the Siamese region proposal network’s response map,
which determines occlusion state through discriminating the
difference between the response map of the current frame
with the following equation:

TOI =
(
Rpeak − Rlow

) /
Rstd (21)

where Rpeak is the maximum value in the response map, Rlow
is the minimum value in the response map and Rstd is the
standard deviation of the response map. The denominator
implies the undulation of the response map, which means the
stability of confidence in the current frame. The numerator
implies the maximum difference of the response map, which
means the dependability of these object candidates.

David3 is one of sequences in OTB2015 [3], which has
some challenge scenes like occlusion, background clutters,
etc. As shown in Fig.4, when the object is not occluded
(Fig.4a, c), the response map shows one sharp peak, which
indicates the object candidates with high confidence. By con-
trast, there is a shallow peak response map in Fig.4b, which
means the object suffer from serious occlusion, and the TOI
increases significantly due to its average response difference
descending.

The max response score and the TOI value of David3
challenging sequence from 1st frame to 150th frame are
shown in the third row of Fig.4. They have opposite variation
trends when the object is occluded (79th frame to 84th frame),
which also corresponding to the scenarios in the first row of
Fig.4. In order to indicate the confidence of object-occlusion
judgment based on the max response score and the TOI
value above, we define the hard example discrimination
method (HEDM) as follows:

HEDM = θ1 ∗
(
1
/
scoremax

)
+ θ2 ∗ TOI (22)

When the HEDM value, which consist of the max response
score and the TOI with ratios θ1, θ2, is higher than the thresh-
old what we set, the object is judged to be occluded, under
these conditions, our proposed method will determine the
tracking output through combining the adaptive Kalman filter
with the deep network, and simultaneously use this accurate
position to select the search area of the next frame, thereby
avoiding the incorrect searching from the previous object-
occlusion’s center position. To adequately justify the effec-
tiveness of the HEDM, Section IV illustrates several ablative
studies about it.
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FIGURE 4. Three typical shots of David3 sequence and their response maps. The first row shows the
scenarios (a) before occlusion, (b) during occlusion and (c) after occlusion, where the blue and red
bounding box denote the object and the searching area of Siamese region proposal network, respectively,
and the green bounding box denotes its ground truth. The second row shows the response map
corresponding to the scenario above. The third row shows the scores, normalized TOI values and according
overlaps from the 1st frame to the 150th frame.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
For a fair comparison with the baseline SiamRPN++
[1] which using modified AlexNet [10] as backbone,
we set the same hyper-parameters as the baseline to train
our proposed method (Anti-occlusion-SiamRPN). We use
color images offline training on the training sets of
COCO [25], ImageNet DET [26], ImageNet VID [26], and
YouTube-BoundingBoxes Dataset [27] to learn a similar-
ity comparison standard between general objects for visual
tracking. In both training and testing, the sizes of the tem-
plate patches and the searching regions are set to 127 pixels
and 287 pixels respectively, and the optimization method is
SGD. We use a warm-up learning rate of 0.001 for the first
5 epochs to train the RPN branches. For the last 45 epochs,
the whole network is end-to-end trained with learning rate
exponentially decayed from 0.01 to 0.0005. Weight decay of
0.0005 and momentum of 0.9 are used. The anchor number
is 5, the ratios of anchor is set to 0.33, 0.5, 1, 2, 3, respectively,
the aspect ratio penalty for scale change is 0.16 and the
influence of the cosine window is set to 0.4.

In the inference phase, we carried out a simple exper-
imental test without a too-fine parameter search to select
the hyper-parameters of Kalman filter. Under considering
the distribution of Kalman filter parameters while kept other
hyper-parameters no change, in this way we determine the
optimal parameters of the threshold value and adjustment
coefficients. To set the hyper-parameters for the hard example
discriminationmethod (HEDM), under considering the distri-
bution of HDEM value while kept other hyper-parameters on
change, ratios θ1, θ2 are set to 6.7 and 0.9 respectively. Then
these hyper-parameters were evaluated on several challenging
video sequences on OTB benchmarks.

We implemented our tracker in the Pytorch 1.0.0 frame-
work. The experimental results were obtained on a PC
equipped with an Intel R©CoreTMi5-2400 @ 3.10GHz CPU
and a NVIDIA GeForce GTX 1080 GPU.

B. ABLATION ANALYSIS
To verify the effectiveness of the adaptive Kalman fil-
ter and the HEDM components in our method, we con-
duct the ablation study. We compare the proposed method
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TABLE 1. Ablation study of the effectiveness of tracking components on
OTB using the area under the curve (AUC).

(Anti-occlusion-SiamRPN) with the baseline (SiamRPN++)
on OTB2013, OTB2015 and OTB50, respectively. There are
four variants to the baseline, the first is to combine Kalman
filter with the baseline directly, the second is to add the adap-
tiveKalman filter and the Peak to Sidelobe Ratio (PSR)which
was first proposed in MOSSE [4] on the baseline, the third is
to add the adaptive Kalman filter and the max response score
on the baseline, and the fourth represents the final algorithm
of our proposed method which equipped with the adaptive
Kalman filter and HEDM component on the Siamese region
proposal network. We set the same parameters both for the
Kalman filter and the occlusion-judgment methods. We use
the widely applied tracker evaluation method one pass evalu-
ation (OPE) to test the results, and the area under curve (AUC)
of these variants on the OTB benchmarks are shown in
Table 1. As we can see, using Kalman filter to monitor the
tracking process directly is impractical and it is necessary
to add the occlusion-judgment method on it. The PSR and
the max response score can reflect the object-occlusion state
partly. By comparison, only our proposed method achieve
greatly better performance that the AUC scores on OTB2013,
OTB2015 andOTB50 outperform the baseline by 2.6%, 1.3%
and 2.2%, respectively, indicating a more robust tracking
system in practice.

C. COMPARISON WITH STATE-OF-THE-ARTS
We compared Anti-occlusion-SiamRPN with the state-of-
the-art real-time trackers on five benchmarks, including
OTB2015, OTB2013, OTB50, VOT2016 and VOT2018.

1) EXPERIMENTS ON OTB BENCHMARKS
The OTB2013 dataset [3] is one of the most widely used
normative datasets in visual tracking which contains 51 video
sequences. The OTB2015 [3] extends OTB2013 dataset
to 100 video sequences. The OTB50 contains 50 rela-
tively difficult video sequences. All these OTB benchmark
have 11 challenging attributes including illumination varia-
tion, out-of-plane rotation, scale variation, occlusion, defor-
mation, motion blur, fast motion, in-plane rotation, out of
view, background clutter, and low resolution, which are con-
sidered as different challenges in visual tracking, The eval-
uation criteria are the precision plots and the success plots.
The precision plot shows the percentage of frames that the
tracking results are within 50 pixels from the ground-truth
object. The success plot shows the ratios of successful frames
when the threshold varies from 0 to 1, where a successful

FIGURE 5. The precision plots and success plots on OTB-2015
benchmarks. The curves and numbers were generated with the visual
tracker benchmark (OTB) toolkit.

FIGURE 6. The precision plots and success plots on OTB-2013
benchmarks. The curves and numbers were generated with the visual
tracker benchmark (OTB) toolkit.

FIGURE 7. The precision plots and success plots on OTB-50 benchmarks.
The curves and numbers were generated with the visual tracker
benchmark (OTB) toolkit.

frame means its overlap is larger than given threshold. The
area under curve (AUC) of success plot is used to rank
tracking algorithm, which is also regarded as an important
evaluation standard in the visual object tracking field.

Anti-occlusion-SiamRPN tracker is compared with sixteen
recent state-of-the-art trackers including SiamRPN++ [1],
SiamRPN [15], SiamFC [10], DeepSRDCF [28], SRDCF [8],
SRDCFdecon [29], CF2 [30], CNN-SVM [31], LCT [32],
Staple [33], HDT [34], MEEM [35], KCF [5], SAMF [6] and
DSST [7] on OTB2015, OTB2013, and OTB50 benchmarks.
These trackers are evaluated with one pass evaluation (OPE),
and its corresponding precision plots and success plots are
shown in Fig.5-7. The comparison shows that our method
achieves the best performance at real-time speed (80 FPS)
among these real-time trackers on all three OTB benchmarks.
Specifically, compared with the baseline (SiamRPN++),
Anti-occlusion-SiamRPN tracker improves by 2.6%, 1.3%
and 2.2%, respectively.

In Fig.8, we select some tracking examples to intu-
itively show the performances of our tracker compared
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FIGURE 8. The screenshots of the tracking process on six challenging sequences including Bird1, Jumping, Football1, BlurOwl, Board and
Suv. The results of these trackers (anti-occlusion-SiamRPN, SiamRPN++, SiamRPN, KCF and CF2) are respectively marked with red, green,
blue, purple and blue green bounding boxes.

FIGURE 9. The success plots on the OTB-2015, OTB-2013 and OTB-50 dataset in the three scenarios of out-of-view, object
occlusion and fast motion.

with four high accuracy and real-time trackers (represent-
ing the Siamese network and the correlation filter respec-
tively). In order to further reflect the adaptability of our

method in dealing with three difficult scenes of out-of-
view, object-occlusion and fast motion, Fig.9 shows the
OTB2015, OTB2013 and OTB50 success plots in these
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FIGURE 10. The EAO ranking with trackers in VOT2016. The legend shows
the results of the top 20 tracker and anti-occlusion-SiamRPN.

TABLE 2. Performance comparison on VOT2016.

three scenarios, respectively, which proves our method, Anti-
occlusion-SiamRPN, has always maintained good perfor-
mance corresponding to these difficult scenario above.

2) EXPERIMENTS ON VOT2016 AND VOT2018
The VOT competition is the tracking challenge held every
year in the world. We select VOT2016 and VOT2018 to val-
idate the trackers. VOT2016 contains 60 challenging videos,
while VOT2018 includes 10 more challenging sequences.
Whenever the tracking bounding box drifts way from the
ground truth, the tracker re-initializes after five frames. There
are three evaluation metrics in VOT benchmarks, accuracy,
robustness and expected average overlap (EAO). The accu-
racy is computed by the total bounding box overlap ratio. The
robustness represents the number of tracking failures. The
EAO is the inner product of empirically estimated average
overlap and typical sequence length distribution, which has
become the most important metric among them.

Anti-occlusion-SiamRPN tracker is compared with all the
68 trackers on VOT2016, as shown in Fig.10, our tracker
achieves the leading performance and significantly outper-
forms other trackers. Specifically, we compared our tracker
with the baseline (SiamRPN++ [1]), CCOT [38], TCNN
[39], SSAT [40], MLDF [41], Staple [33], DDC [42], EBT
[43], and SRBT [42] on VOT2016 to evaluate their perfor-
mance in detail including the EAO, the accuracy and the
robustness, as shown in Table 2. The EAO score of the
proposed Anti-occlusion-SiamRPN is 0.404, which is sig-
nificantly higher than the peer trackers and outperforms the
baseline (SiamRPN++) by 1.1.

TABLE 3. Performance comparison on VOT2018.

FIGURE 11. The EAO ranking with trackers in VOT2018. The legend shows
the results of the top 20 tracker and anti-occlusion-SiamRPN.

Anti-occlusion-SiamRPN tracker is also compared with
all the 73 trackers on VOT2018, as shown in Fig.11, our
tracker ranked sixth, which also achieves good performance
on VOT2018, Table 3 reports the details of the comparison
with LADCF [44], MFT [45], DaSiamRPN [36], UPDT [46],
RCO [47], DRT [48], SiamRPN++ [1], DeepSTRCF [47],
and CPT [47] on VOT2018. The EAO score of the pro-
posed Anti-occlusion-SiamRPN is 0.364, which is signifi-
cantly outperforms the baseline (SiamRPN++) by 1.2. The
above experimental results demonstrate the effectiveness and
stability of our proposed method.

V. CONCLUSION
In this paper, we have presented a unified framework, referred
to as Anti-occlusion-SiamRPN, to improve Siamese region
proposal network with adaptive Kalman filter for stable anti-
occlusion real-time visual tracking. In addition, we pro-
pose the hard example discrimination method (HEDM)
to effectively judge the occlusion situation, and improve
Kalman filtering mechanism for adaptively updating. In the
framework, our tracker builds the object long-term moving
trajectory by adaptive Kalman filter with the powerful
feature-representation ability of Siamese region proposal
network, which making full use of the object trajectory
based on spatial information and temporal information.
As a result, the proposed tracker enables the tracking pro-
cess online learning to accurately predict the object posi-
tion and improve the search area selection manner so as
to robustly deal with complex tracking scenes such as
fast motion, object occlusion, out-of-view condition and so

161358 VOLUME 8, 2020



F. Wu et al.: Stably Adaptive Anti-Occlusion Siamese Region Proposal Network for Real-Time Object Tracking

on. The Anti-occlusion-SiamRPN tracker was evaluated on
five public datasets including OTB2015, OTB2013, OTB50,
VOT2016 and VOT2018, and our method achieved outstand-
ing gain relative to the baseline and reached state-of-the-art
status with average speed of 80 FPS.
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