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ABSTRACT The remaining useful life (RUL) prediction is essential for the IGBT module when setting
a reasonable maintenance schedule and improving IGBT reliability by design. In this article, an RUL
prediction method is proposed based on the particle filter (P.F.) algorithm with a multi-parameter precursor
developed from the IGBT aging data. By fusing the junction temperature (Tj) and collector-emitter on-
voltage(VCE(on)), a new fault precursor is established to monitor IGBTs’ condition. A simplified aging model
of the precursor is also developed based on a two-stage fitting. After input the historical aging data of the
selected IGBT module, the RUL of IGBT can be predicted by the proposed fault precursor based on P.F.
algorithm. According to the aging data collected from accelerated aging experiments, the performance of
RUL prediction using the fusing precursor is superior to those with the single parameter precursor.

INDEX TERMS IGBT, condition monitoring, RUL prediction, reliability.

I. INTRODUCTION
IGBT module is one of the core devices of the power con-
verter and the second most vulnerable component in the
motor drive system [1]–[3]. As listed in the fault distribution
report on a CRH3 trains (Wuhan-Guangzhou high-speed rail-
way, from 2009 to 2013) [4], the IGBT failure account for
around 64% among all the power converter faults.

To improve the reliability of IGBT, the condition moni-
toring (CM) technology is widely used to detect early faults
of the IGBTs. However, since the health condition of IGBT
might degrade to failure within a short time, CM alone is
hard to predict the sudden occurrence of catastrophic fail-
ure of the device. For the system maintenance, it is more
critical to predict the RUL of the IGBTs based on the CM
data. The operators of power converters will benefit from the
RUL prediction since it helps to make optimizedmaintenance
scheduling and repair plans in a timely manner, especially in
high-power applications like high-speed railway systems or
high voltage D.C. transmission systems [5].

Much research effort has been carried out to acquire an
accurate RUL estimation for IGBTs. The main methods
include the model-based method and the data-driven method.
As for the model-based prediction method, the industry con-
structs an analytical model by statistically summarizing a
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large number of experimental power data likeCoffin-Manson,
Norris-Landzberg [6], et al. However, if the material or
technology applied to manufacture the device changes, the
analytical model parameters need to be re-determined. Con-
sequently, many researchers established physical failuremod-
els based on analyzing the stress, strain, energy density, and
other mechanical properties of the solder layer during the
degradation process [7], in which the aging process such as
creep crack expansion is described more accurately. How-
ever, there are complex layers and bonding connections in
the IGBT structure. It is hard to describe the IGBT internal
degradation mechanism in a mathematical way.

The data-driven method could be a more efficient way
since we can describe the aging process by some critical
precursors of the IGBT and avoiding complex physical mod-
eling. A general data-driven IGBT RUL prediction process
can be shown in Fig.1 [8]. Firstly, the accelerated aging
experiments are used to speed up the aging and failure of
IGBTs. Then, based on data collected in the test, the IGBT
prognostic algorithm is developed.

Ahsan et al. [9], proposed a data-driven prediction method
based on a neural network (N.N.) and an adaptive neuro-fuzzy
inference system (ANFIS)model for the degradation of IGBT
devices. By comparing the prediction results of RUL of neural
network and ANFIS, it shows that the prediction based on
the neural network has better performance than that based
on ANFIS. Samie et al. [10] developed a prediction model
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FIGURE 1. A general process for the IGBT RUL prediction [8].

based on fuzzy knowledge and fuzzy system with VCE(on)
and 1VCE as the CM precursors. The experimental data
shows that the VCE(on) is the best degradation indicator, and
the change of 1VCE reflects the dynamic process of IGBT
degradation [11]. Haque et al. [12] put forward a kind of
robust estimation method based on auxiliary particle filter-
ing (APF). The method fully reduces the estimated variance
by increasing the dimensions and keep the diversity of the
samples. In addition, the author employed the APF when
IGBT entered the degradation region identified by a simple
slope-based method, which can effectively reduce the amount
of calculation.

Among the data-driven RUL prediction method mentioned
above, P.F. has strong applicability when the researched
object is non-linear electronic systemmixedwith interference
noise that the hidden state of the system can be evaluated
from the observed quantity containing noise through the fil-
tering process. In addition, the particle filtering method can
estimate the system state recursively by combining the prior
probability and the current observation value and can update
the recursion relation constantly. Therefore, the results can
be used for dynamic estimation of RUL and fault diagnosis
of IGBT in real-time.

At present, most of the RUL predictions based on P.F.
for IGBT are monitoring the IGBT with a single faulty
precursor while ignoring the influence of the junction tem-
perature Tj. However, choosing a suitable precursor will
play an essential role in IGBT condition monitoring. Some
widely adopted precursors include the collector-emitter satu-
ration voltage VCE(on), gate threshold voltage VGE(th), cut-off
times Toff , case-junction thermal resistance Rth [13]–[15].
Research shows that the VCE(on) has a significant sensitivity
for the bond-wire lifting off and solder layer fatigue. It is
also accurate and able to be on-line measured in a wide
temperature range.

Therefore, in this article, a new IGBT failure precur-
sor is proposed by fusing the VCE(on) and Tj to improve
the prediction accuracy. Meanwhile, the IGBT wire bond
liftoff mechanism is considered in the data-driven modeling
method. Furthermore, a new IGBTRUL prediction procedure
is proposed based on the particle filter (P.F.). It is verified by
the experiment that the P.F. algorithm based on the new fault
precursor performs better than the single fault precursor in
IGBT RUL prediction.

II. CONSTRUCTION OF FAULT PRECURSOR
As an indicator of IGBT degradation, the VCE(on) can well
describe the aging process of IGBT. However, VCE(on) not

only changes with the aging of IGBT but is also affected by
junction temperature. That is to say, VCE(on) has a strong cou-
pling relationship with Tj. Meanwhile, it is often difficult to
maintain a constant temperature during the accelerated aging
test. Therefore, CM and life prediction of IGBT must depend
on the changes of VCE(on) and Tj. It can be known from
formula (1) that VCE(on) is correlated with Tj, and VCE(on) is
also affected by the current IC . However, further theoretical
analysis and simulation experiments are needed to research
the coupling relationship between the three ones.

VCE(ON ) = f (Ic,Tj) (1)

A. RELATION BETWEEN VCE(on) AND Tj
According to [16], the saturation voltage of IGBT can be
expressed as

VCE(ON )(Tj, ICE ) = f (Tj, IC )

= [V0 − a(Tj − Tj0)]

+ [R0 + b(Tj − Tj0)]× ICE (2)

where VCE(on), Tj, and IC are the saturation voltage, junction
temperature, and current of IGBT module, respectively. V0
and R0 are the saturation voltage and equivalent resistance of
the IGBT power module at the reference junction temperature
Tj0, respectively. a and b are the temperature coefficients
for V and R, respectively. The value of the second term
‘‘[R0 + b(Tj − Tj0)]’’ is positively correlated with junction
temperature Tj. The correlation between VCE(on) and Tj is
determined by these two terms collectively. Reference [16]
points out that when IC is equal to the high current IC(h),
the second term dominates the influence on the value of
VCE(on), and VCE(on) is positively correlated with Tj. Substi-
tute IC = IC(h) into equation (2), we can ignore the former
term in equation (2) and get

VCE(on) = R0IC + bIC (Tj − Tj0) = p1 × Tj + p2
p1 = bIC , p2 = (R0 − bTj0)× IC
IC = IC (h)

(3)

However, whether VCE(on) and Tj are linear in the condition
of high current needs further simulation research to verify.

In order to verify the above theoretical analysis, simulation
is carried out in Saber software. As shown in Fig.2, the
simulation circuit adopts the IGBT module based on Hefner
physical model from Saber software itself. The junction tem-
perature input interface of this module is connected to a heat
source. The value of the heat source controls the junction
temperature. the dc power supply is adjusted so that the
current IC is equal to the large current under accelerated
aging experiment conditions. The switching on and off of
IGBT is controlled by a pulse power source. The parameter
scanning tool in Saber was used to simulate the junction
temperature from 120◦C to 200◦C (increased by 10◦C), and
the corresponding VCE(on) was obtained by simulation.

The voltage between the collector and emitter during two
periods is shown in Fig.3. The one that is circled in red is
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FIGURE 2. Saber simulation circuit under constant current and linearly
increasing junction temperature.

FIGURE 3. Waveform of VCE when IC is certain and Tj varies from 120◦C
to 200◦C.

FIGURE 4. Local amplification of waveforms when IGBT is saturated.

when IGBT is saturated, which is shown in Fig.4 after local
amplification. As shown in Fig.4, VCE(on) increases approxi-
mately linearly when junction temperature varies from 120◦C
to 200◦C at a certain speed.

Record the simulation data and make a scatter diagram
(VCE(on),Tj) of the two-dimensional relationship between
VCE(on) and Tj, which approximates a straight line. which
shows saturation voltage VCE(on) has a good linear relation-
ship with Tj when IC remains high current, and the calibration

curve of saturation voltage VCE(on) and junction temperature
Tj, VCE(on) = f (Tj) can be expressed as follows

VCE(ON )=p1×Tj+p2 (4)

The value of p1,p2 can be obtained as follows by fitting
the scatter diagram (VCE(on),Tj) acquired from the simulation
with the formula (4)

p1 = 0.0003051, p2 = 1.983 (5)

B. PROPOSED PRECURSOR
It’s hard for junction temperature kept constant during the
accelerated aging experiment. Therefore, in order to eliminate
the influence of junction temperature brought on the charac-
teristic precursor VCE(on), which will affect the assessment
of IGBT degradation, VCE(on) at different junction temper-
atures need to be normalized to the same initial junction
temperature T0. Suppose V′CE(on) is the saturation voltage
after normalization to T0.

V ′CE(ON ) = p1 × T0 + p2 (6)

Subtract (6) from (5) and eliminating the common term p2

V ′CE(ON ) = VCE(ON ) − p1 × (Tj − T0) (7)

where, VCE(ON ) was normalized to equivalent saturated volt-
age whose junction temperature is at the initial junction tem-
perature T0 (T0 = 120◦C), which is also the definition of the
proposed new precursor V′(VCE(on), Tj) for IGBT condition
monitoring as shown in formula (8).

V ′(VCE(ON ),Tj) = VCE(ON ) − p1 × (Tj − T0) (8)

The linear relationship of VCE(on) and Tj will be changed
along with the degradation of the IGBTmodule. Relationship
between VCE(on) and Tj under different age of IGBT is shown
in Fig.5, from which it can be seen that, VCE(on) and Tj
remains linear under the same high current IC . The slope of
trend line almost stay the same with the degradation of the
IGBTmodule. That is to say, with the aging process of IGBT,
only p2 changed in formula (4), p1 remains constant. There-
fore, the degradation of IGBT will not affect formula (7),
which is exactly the proposed new precursor V′(VCE(on), Tj).
As IGBT ages, VCE(on) will gradually increases and so

does V′(VCE(on), Tj). When V′(VCE(on), Tj) is higher than
1.05 times of the initial value V′0, the IGBT power module
can be considered as invalid [13]. Then the failure threshold
is

V ′(VCE(ON ),Tj) = 1.05V ′0 (9)

When V ′(VCE(on),Tj) > 1.05V ′0, IGBT was judged faulty.
Based on the above analysis, the two-dimensional degrada-
tion indicator V ′(VCE(on),Tj) including VCE(on) and Tj was
determined as the characteristic precursor to monitor IGBT
health condition in this article, based on which, P.F. algorithm
was used to predict the RUL of IGBT later in the paper.
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FIGURE 5. Voltage variation with junction temperature at high current[16].

III. PARAMETER TRAINING OF DATA DRIVEN MODEL
This part takes the aging data of V′(VCE(on), Tj) from IGBT
sample A as an example to illustrate the establishment of
IGBT degradation model and the process of parameters
training.

A. PREPROCESS OF THE AGING DATA
Due to the inevitable errors in measurement, there are bad
points in the original data. First of all, remove the bad points
through rindar criterion [17]. In the meanwhile, the life span
of each sample IGBT is different, in other words, the number
of the thermal cycles an IGBT experienced from health to
failure is different. In order to make the aging model better
adjusted to the degradation process of all the IGBT sample,
in the paper, the whole life span of each IGBT sample is
compressed to 120 cycles before prediction. Assume the
number of cycles in the aging experiment is K . Set

S = K/120(integer) (10)

where S is the number of thermal cycles contained in the
compressed period, and set the average value V ′(VCE(on), Tj)
of 1∼S period as V ′1 ∼ V ′N , the aging data after compression
is

V ′CE(ON ),1 = (V ′1 + V
′

2 + . . .V
′
S )/S

V ′CE(ON ),2 = (V ′S+1 + V
′

S+2 + . . .V
′

2S )/S

. . . . . .

V ′CE(ON ),120 = (V ′119S+1 + V
′

119S+2 + . . .V
′

120S )/S (11)

Therefore, one period of the compressed aging data con-
tains N thermal cycle. One cycle of the original data is 6s,
so each cycle of V ′CE(on) after compression is 6Ns. Plot the
degradation curve of V ′CE(on),i (i=1∼120) as shown in Fig.6.

B. AGING MODEL SIMPLIFICATION
According to [11], the degradation and resultant change of
V′(VCE(on),Tj) can be categorized into three regions. After
analyzing the general trend of the aging data obtained from
the experimental conditions in the paper, the model is simpli-
fied into two regions: constantly changing region and expo-
nential changing region which can be shown as below.

FIGURE 6. The degradation curve of V′CE(ON) after data preprocessing.

1) CONSTANT CHANGING REGION
Before V′(VCE(on), Tj) increases its 2% of the initial value,
the V′CE(on) increases linearly, which corresponding to the
constant change region of IGBT. This region indicates the
primary degradation of IGBT, where the upward trend is
obvious, but the change in the slope approximates zero. The
simplified degradation model can be expressed as follows,
which can be used as the health baseline [18].

V ′CE(ON ) = p1 · n+ p2 (12)

where n is the number of the thermal cycle. Equation (12) and
Fig.7 obtained from the curve fitting toolbox in MATLAB
demonstrate that the first two-thirds of the data has an excel-
lent fitting effect when using line fitting.

FIGURE 7. Performance of curve fitting for the constant changing region.

2) EXPONENTIAL CHANGING REGION
V′(VCE(on), Tj) increases exponentially and reaches the
threshold value, which indicates the failure of IGBT in this
region. The slope of the trend line is significantly changing,
and the aging data can be fitted by double exponential func-
tion [19], as formula (13) and Fig.8 showed

V ′CE(ON ) = a · exp(b · n)+ c · exp(d · n) (13)
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FIGURE 8. performance of curve fitting for the exponential changing
region.

C. PARAMETER TRAINING OF THE AGING MODEL
For region 1, the formula (14) obtained from the deforma-
tion of equation (12) is applied to train the model param-
eters, which is also more in line with the form of the P.F.
state transition model mentioned in the following contents as
page 5 shows.

V ′CE(ON ),k = V ′CE(ON ),k−1 + p2 + vk−1 (14)

where p2 is the slope of the trend line fitted byMATLAB, and
vk−1 is the process noise.
The expression of V ′CE(ON ) at kth thermal cycle for for-

mula (13) is as follows

V ′CE(ON ),k = a · exp(b · k)+ c · exp(d · k) (15)

The corresponding model expression at (k-1)th cycle is as
follows

V ′CE(ON ),k−1 = a · exp(b · (k − 1))+ c · exp(d · (k − 1))

(16)

The deformed double exponential model is obtained by
eliminating the common term a ·exp(b ·k) which is expressed
as equation (17)

V ′CE(ON ),k = V ′CE(ON ),k−1 · exp(b)

+ c · exp(d · k)(1− exp(b− d))+ vk−1 (17)

The formula (14) and (17) consist of the state transitionmodel
required for particle filtering together.

In real working conditions, since the life of IGBT is
counted in years, it is difficult to get historical data of the CM
parameters that span the whole life period of IGBT. There-
fore, the empirical aging model established in this article only
uses partial aging data of IGBT. The empirical model of the
state transition equation is constructed using 85% (90%, 95%
have better performance) of data from sample A, which are
used to predict the RUL of samples B, C, and sample D,
respectively.

TABLE 1. Results of parameter training of aging model.

Parameters of the model obtained from fitting sample A
with the formula (12) and (13) are shown in Table 1. In addi-
tion, the curve of original data and the fitting curve with
diverse percentage of sample A are shown in Fig.9.

FIGURE 9. The degradation trajectory V′CE(ON) and its fitting curve.

IV. PARTICLE FILTER PREDICTION
Regard one of the sample data as a known sample. The RUL
of the target sample is predicted by P.F. algorithm based on the
empirical state transition model built from the known sample.
Select the first N cycles of the target sample as measured
historical value to train the algorithm. When V ′(VCE(on),Tj)
reach 1.05 times of its initial value, the target IGBT is con-
sidered faulty.

The Input and Output algorithm are as follows:
Input: the first N cycles V ′(VCE(on),Tj) of target sample

from experimental data set
Output: RUL estimation and posterior probability density

distribution of the target IGBT sample

A. PRINCIPLE OF PARTICLE FILTER ALGORITHM
The Particle filter (P.F.) algorithm is a kind of approximate
bayesian filtering algorithm based on the Monte Carlo sim-
ulation principle, which shows good performance for track-
ing and predicting the aging of IGBT, a non-linear and
non-gaussian complex system.

Firstly, the system model, consisting of state transition
model (18) and measurement model (19), needs to be estab-
lished. At which at least one of the functions, f or h is
non-linear [20].

V ′CE(ON ),pre,n = f (V ′CE(ON ),pre,n−1)+ vn−1 (18)
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V ′CE(ON ),act,n = h(V ′CE(ON ),pre,n)+ mn (19)

where the V ′CE(ON ),pre,k is predicted V ′CE(ON ) at time k ,
V ′CE−(ON ),pre,k is measured V ′(VCE(ON ), Tj) at time k ,
and f , h are respectively the state transition function and mea-
surement function, v and m are process noise and measure-
ment noise respectively, The noise distribution is assumed
Gaussian under central limit theorem. Function f is formu-
lated from equation (14) and (17), while function h in the
paper is y=x.

In the Bayesian theory, the problem of state estimation is to
calculate the probability density function of the current state
recursively utilizing all the previous historical data. It requires
two steps of prediction and updates for recursive calculation.

p(V ′CE(ON ),pre,1:k−1|V
′

CE(ON ),act,1:k−1)

=

∫
p(V ′CE(ON ),pre,k |V

′

CE(ON ),pre,k−1)

× p(V ′CE(ON ),pre,k−1|V
′

CE(ON ),act,1:k−1)dV
′

CE(ON ),pre,k−1

(20)

The updating process uses the latest measured value
V ′CE(ON ),act,k to modify the prior probability density to obtain
the posterior probability density, as shown in equation (19).
The posterior probability here will also be substituted into the
next prediction process, forming a recurrence, (21) as shown
at the bottom of the next page.
Monte Carlo is a method of approximating the posterior

probability density distribution with a set of discrete random
sampling points (i.e., a collection of particles). Use the sam-
ple mean instead of integral operation to obtain the minimum
variance estimate of the state.

However, the specific form of the posterior probability
density is not available in an actual system, so it cannot be
directly sampled. The Bayes importance sampling method
samples from a known and easily sampled reference distribu-
tion q(V ′CE(ON ),pre,k |V

′

CE(ON ),act,1:k ). As the number of sam-
ples increases, theweighted sum approaches the real posterior
distribution p(V ′CE(ON ),pre,k |V

′

CE(ON ),act,1:k ). Carried out the
weighted average of the particles sampled from the reference
distribution:

E[f (V ′CE(ON ),pre,k )]

=

∫
f (V ′CE(ON ),pre,k )

p(V ′CE(ON ),pre,k |V
′

CE(ON ),act,1:k )

q(V ′CE(ON ),pre,k |V
′

CE(ON ),act,1:k )

×q(V ′CE(ON ),pre,k |V
′

CE(ON ),act,1:k )dV
′

CE(ON ),pre,k

=
1
N

N∑
i=1

f (V ′(i)CE(ON ),pre,k )w
(i)
k (22)

Among which

w(i)
k = w(i)

k−1

×
p(V ′CE(ON ),act,k |V

′(i)
CE(ON ),pre,k )p(V

′(i)
CE(ON ),pre,k−1)

q(V ′(i)CE(ON ),pre,k |V
′(i)
CE(ON ),pre,0:k−1,V

′(i)
CE(ON ),act,1:k )

(23)

Normalize the weights and get w̃k (x
(i)
k ), and then substitute

it into the formula to get the estimated value of the state at
time k .

E[f (V ′CE(ON ),act,k )]

=

N∑
i=1

wk (V
′(i)
CE(ON ),pre,k )f (V

′(i)
CE(ON ),pre,k ) (24)

After many times iterations, the weight of many particles
tends to zero [21], which makes a large amount of compu-
tation wasted on particles that have little effect on estimat-
ing the probability distribution of the posterior filter. That
leads to the degradation of estimation performance. What
mentioned above is the phenomenon of particle decay. The
idea of resampling is to suppress degradation by reproducing
a large number of particles with high weights and eliminating
the ones with low weights. After resampling, the number of
particles remains the same, and the weight of each particle is
equal to 1/N. The state estimation formula after resampled is
also (24), and the calculation form of the posterior probability
density is:

p(V ′CE(ON ),pre,k |V
′

CE(ON ),act,1:k )

=

N∑
i=1

w(i)
k δ(V

′

CE(ON ),pre,k − V
′(i)
CE(ON ),pre,k ) (25)

B. PREDICTION STEPS
The flow chart of P.F. algorithm is shown in Fig.10.

FIGURE 10. Flow chart of P.F. algorithm predicting IGBT RUL.

1) PF PARAMETER INITIALIZATION
Set the number of sampling particles to N. In the initial

moment k=0, generate the particle set
{
V ′(i)CE(ON ),pre,0

}N
i=1

by
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sampling from the prior distribution p(V ′CE(ON ),pre,0), and set
the weight value of each particle as w0 = 1/N.

2) IMPORTANCE SAMPLING

For i=1,. . . T, the particle set
{
V ′(i)CE(ON ),pre,k

}N
i=1

is gen-
erated by sampling from the importance density function
q(V ′CE(ON ),pre,k |V

′

CE(ON ),act,1:k ). Calculate and normalize the
weight of each particle according to equation (23).

3) IMPORTANCE RESAMPLING
Copy and eliminate the particles according to the value of the
normalized weight. Extract N particles to form a new set of

particles
{
V ′(i)CE(ON ),pre,0

}N
i=1

, reset the weight to 1/N.

4) RUL ESTIMATION AND ITS PDF CALCULATION
Use formula (24) to calculate the estimated mean value of
V ′CE(ON ),pre,k . If it exceeds 1.05p2, finish the recursion, in
which time the value of k minus the initial prediction cycles
equals to the estimated value of the RUL of IGBT. Use
equation (25) to calculate the posterior probability density.
Determine if the loop is finished. If so, output the result of
RUL and its PDF, otherwise return to step 2).

C. ANALYSIS OF THE RESULTS
1) COMPARISON BETWEEN RUL ESTIMATION USING
V′(VCE(ON), TJ) AND VCE(ON) AS CM PRECURSOR
IGBT #B failed at 112 cycle in the experiment. The critical
VCE(on) is 5% increasing frommean of initial VCE(on), so does
the critical value for V ′(VCE(on), Tj). The. simulated trajecto-
ries for different initial prediction cycle are shown for P.F.
using VCE(on) as CM precursor and P.F. using V ′(VCE(on), Tj)
as CM precursor (Hereinafter referred to as VCE(on) P.F. and
V ′(VCE(on), Tj) P.F.)in Fig.11 and Fig.12, respectively. From
that, For a 100-initial prediction cycle using V ′(VCE(on), Tj)
as CM precursor, the simulated trajectory is sufficiently close
to the actual trajectory.

As Fig.11 and Fig.12 shows, when the initial PDF of
process noise and measurement noise is N(0, 5e-3) and
N(0, 3e-6) respectively. Estimated RUL for VCE(on) P.F. were
63, 73, 84 and 98 when the training cycle was 40, 60, 80 and
100 respectively, while estimated RUL for V ′(VCE(on), Tj)
P.F. were 71, 79, 88 and 104 respectively when the training
cycle was 40, 60, 80 and 100. It demonstrates that RMS error
decreases in line with the increase of initial prediction cycle
for both VCE(on) P.F. and V ′(VCE(on), Tj) P.F.

However V ′(VCE(on), Tj) P.F. shows better performance
than VCE(on) P.F.As can be seen from the posterior proba-
bility density distribution given in Fig.13 or Fig.14, with the
increase of training cycle, the peak value of PDF distribution

FIGURE 11. RUL prediction results of VCE(on) P.F. under different initial
prediction periods.

FIGURE 12. RUL prediction results of V′(VCE(on), Tj ) P.F. under different
initial prediction periods.

shows a rising trend, and the distribution width on the hori-
zontal axis narrows for both VCE(on) P.F. and V ′(VCE(on), Tj)
P.F. It indicates that the longer the training cycle is, the higher
the accuracy of the estimated RUL will be, and the closer
the peak center will be to the actual life. In addition, com-
paring Fig.14 with Fig.13, it’s observed that peak center of
V ′(VCE(on), Tj) P.F. is closer to actual life than that of VCE(on)
P.F. under the same initial prediction cycle, which verified the
result in Fig.11 and Fig.12. In the meanwhile, the peak value
of V ′(VCE(on), Tj) P.F. is more higher than that of VCE(on)
P.F. under the same initial prediction cycle which demonstrate
that V ′(VCE(on), Tj) P.F. clearly shows improvement in RUL
estimation for IGBT than VCE(on) P.F.

2) EFFECT OF NOISE ON V′(VCE(ON), TJ)-PF-BASED
RUL ESTIMATION
Particle filtering needs both process noise and measurement
noise for its operation. Both state transition equation andmea-
surement equation loss their stochastic nature at the absence
of process noise and measurement noise, respectively.

p(V ′CE(ON ),pre,k |V
′

CE(ON ),act,1:k ) =
p(V ′CE(ON ),act,k |V

′

CE(ON ),pre,k )p(V
′

CE(ON ),pre,k |V
′

CE(ON ),act,1:k−1)

p(V ′CE(ON ),act,k |V
′

CE(ON ),act,1:k−1)
(21)

VOLUME 8, 2020 154287



Z. Rao et al.: IGBT RUL Prediction Based on PF With Fusing Precursor

FIGURE 13. RUL probability density distribution based on VCE(on) PF.

FIGURE 14. RUL probability density distribution based on V′(VCE(on), Tj )
P.F.

TABLE 2. %Error in VCE(on) PF-based RUL estimation with different
standard deviation of process noise and measurement noise.

The performance of VCE(on) P.F. and V ′(VCE(on), Tj) P.F.
is shown in Table 2 and Table 3, respectively, under dif-
ferent process noise and measurement noise when initial
prediction cycle is 80. It is observed from Table 2 and

TABLE 3. %Error in V ′(VCE(ON), Tj ) PF-based RUL estimation with
different standard deviation of process noise and measurement noise.

Table 3 that for measurement noise, % error in RUL
estimation increases obviously as process noise increases
for both methods. In the meanwhile, for process noise,
% error in RUL estimation increases slowly as measurement
noise increases for both methods as well. Table 3 shows
that RUL estimation error can go as low as 6.25% for
V ′(VCE(on), Tj) P.F. when standard deviation of measure-
ment process and process noise are less than 3e-4 V and
within 1e-5 V. This is evident that V ′(VCE(on), Tj) P.F. per-
forms better than VCE(on) P.F. under different process and
measurement noise.

V. CONCLUSION
In this article, a data-driven IGBT RUL prediction method
based on particle filter is proposed. This method constructs a
new fault precursor V′(VCE(on), Tj) by fusing Tj and VCE(on)
for IGBT condition monitoring. After the preprocessing of
the aging data, it shows that the trajectory of V′(VCE(on), Tj)
can be segmented into two regions where region 1 shows lin-
ear increasing tendency, while region 2 depicts an exponential
increase. The aging model is constructed by piecewise fitting
the aging data.

The RUL prediction results show that the proposed fusing
parameter P.F. method demonstrates superior performance
compared to single P.F. in RUL estimation, and satisfies the
rule that the longer the initial prediction period is the smaller
the prediction error will be.
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