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ABSTRACT This study proposes a job scheduling model and its heuristics for an automated container
terminal with an overhead shuttle crane (OS) to reduce the total tardiness time of flatcars and external trucks
by considering the separation of each job into a main job, and a premarshaling or remarshaling job. The
OS is busy or idle according to the fluctuations in the processing times of different pieces of equipment.
We identify the OS job sequencing problem considering job separation (OSJSPS) as a mixed-integer
programming (MIP) model, which simultaneously sequences a set of jobs and searches for their possible
separation into premarshaling and remarshaling jobs. We present a two-stage genetic algorithm (TGA) based
on two local improvement procedures: an iterative local search procedure and an opportunistic job separation
procedure. We conclude that the two-stage genetic algorithm reduces the total tardiness time of the container
terminal’s flatcars and external trucks as the number of OS jobs increases.

INDEX TERMS Automated container terminal, job sequencing, job separation, overhead shuttle crane.

I. INTRODUCTION
Increased trade volume carried by container ships has
motivated container terminal operators and engineers to
develop more sophisticated strategies and container terminal
designs [2]-[5] for improving throughput and storage capac-
ity [6]-[8]. One design concept is the rail-based automated
container terminal (RACT) [8], which comprises a quay area,
a transport area, and a storage yard area. Y
Figure 1 (a) and (b) shows the infrastructure of the Y
RACT. In the quay area, containers are transferred between a
vessel and the transporters on land by a double trolley quay e cuny rne
crane [9]. In the transport lines, containers are transferred = O et s vt e
between the quay area and the storage area by flatcars, el ﬂ / \ / \
which operate on top of a set of fixed rails. The interactions
between flatcars and the overhead shuttle crane (OS) or a
quay crane (QC) in the transport lines occur at a handover
location. In the storage yard area, containers are temporarily
stored and retrieved by the OS which interacts with a flatcar
or an external truck (ET).
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FIGURE 1. Schematic layout of RACT: (a) isometric view; (b) side view [1].

When designing a container terminal layout, the terminal
planner needs to determine the size of its storage areas and the
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number of yard cranes per area, considering investment cost
and crane capacity [10], [11], and when designing a RACT
layout, the planner wants to maximize the performance
of the single overhead shuttle, considering investment cost
of cranes and overhead rails. When a terminal includes
automatic stacking cranes (ASC), the planner wants to
maximize ASC performance [12], ASC dispatching [13],
ASC scheduling [14], etc.

In any container layout, the planner needs to ensure
that the synchronization procedure supports operating at
maximum capacity and preventing delays [15], similar to
secure communication [16] or multi-agent control [17]
procedures. In a RACT layout, the process planner sets a
due time for each piece of terminal equipment required for
the synchronization [8]. If any due time is missed, the risk
of other jobs being completed late increases. For instance,
if an OS fails to serve a flatcar by the due time, the flatcar
obstructs other flatcars sharing the same rail and may even
delay subsequent QC operations.

Fluctuations between QC processing times and flatcar
moving times are mostly influenced by containers’ locations
on the vessel [18], while fluctuations between OS processing
times and flatcar moving times are mostly influenced by
the container terminal’s flatcar routing policy and the
distance between the flatcar’s origin and destination [8].
Consequently, some jobs will be completed after their due
times during busy periods and OS utilization will decline
during idle periods. Terminal management has to account for
the inevitable fluctuations affecting the synchronization.

This article describes an OS job sequencing model
that determines which jobs should be premarshaled and
remarshaled by using the OS idle time to sequence them.
Premarshaling transports a retrieval container closer to its
expected destination location in the terminal in preparation
for the retrieval request, while remarshaling transports a
storage container from its temporary location to its final
location in preparation for the storage request (see Figure 2).
Both procedures help to reduce vehicle waiting times. The
OS job sequencing model determines which jobs should be
premarshaled or remarshaled and sequences the set of jobs in
the OS. Finally, the OS job sequencing with premarshaled and
remarshaled jobs minimizes the total delay time of vehicles.

This article contributes to the published literature as fol-
lows. (1) We formulate an OS job sequencing mixed-integer
programming (MIP) model that selectively combines premar-
shaled and remarshaled jobs for a RACT. The proposed model
smooths the synchronization procedure by determining
whether a requested job should be separated, or not, from
the main job and auxiliary job under the premarshaling and
remarshaling allowance. (2) We develop a two-stage genetic
algorithm based on an iterative local search procedure and
an opportunistic job separation procedure. The two-stage
genetic algorithm reduces the total tardiness time of vehicles.

The remainder of this article is structured as follows.
Section II reviews the relevant literature. Section III
describes the OS job sequencing problem in greater detail.
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Section IV describes the mathematical model of the OS
job sequencing problem, considering premarshaling and
remarshaling. Section V describes the two-stage genetic
algorithm. Section VI discusses the results of the heuristics
for reducing average job tardiness time, and the simulations
and case study used to validate it. Chapter VII concludes and
suggests future research.

II. LITERATURE REVIEW

A. MANAGEMENT OF YARD CRANE AND TRANSPORTER
To operate a container terminal at maximum capacity, several
studies propose an integrated approach [19]-[21]. Lau and
Zhao [22] develop an integrated model to manage the
transporter, QC, and yard crane and to shorten container
processing times. Cao et al. [23] propose an integrated yard
crane and transporter problem to improve loading. Homay-
ouni et al. [24] address the integrated scheduling of multiple
pieces of equipment in an automated container terminal that
uses a split-platform storage/retrieval system. He ef al. [25]
focus on the trade-off between equipment efficiency and
energy consumption by integrating the management of the
QC, transporter, and yard crane. Due to the direct relationship
between the storage location and the routing path of a
straddle carrier, Dkhil et al. [26] study an integrated space
allocation and vehicle dispatching problem. Kress er al. [27]
present a partitioning min-max weighted matching problem
to model the temporary storage allocation problem and the
job-to-equipment assignment problem. Chen ez al. [28], who
propose a scheduling model, considering the cooperation
between vehicles and cranes, use a network flow with space
and time windows, and emphasize that cranes and vehicles
are synchronized.

Other studies focus on managing transporters indepen-
dently [29], [30]. Briskorn et al. [31] approach the automated
guided vehicle (AGV) dispatching problem from the view-
point of inventory management. Grunow et al. [32] study the
assignment of jobs considering the multi-load capability of
AGVs. Kim et al. [33] develop an algorithm to detect and
prevent deadlock between AGVs, where the AGV travel area
is partitioned into grid blocks. Nguyen and Kim [34] propose
a heuristic algorithm to dispatch automated lifting vehicles
(ALVs) considering the buffer space for the containers in the
apron and yard areas.

B. YARD CRANE JOB SEQUENCING

The management of yard cranes and jobs has been rig-
orously examined [35]-[38]. Chen and Langevin [39] use
a metaheuristic to minimize the makespan of rubber-tired
gantry crane (RTGC) jobs. Gharehgozli et al. [40] focus on
the makespan minimization of single rail-mounted gantry
crane (RMGC) jobs. Later, Gharehgozli et al. [41] propose
an adaptive large neighborhood search algorithm to minimize
the makespan of twin yard cranes’ jobs considering job
precedence. Vis and Carlo [42] and Nossack et al. [43]
aim to minimize the makespan of crossover cranes’ jobs.
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FIGURE 2. OS operation type: (a) storage job without remarshaling (b) storage job with remarshaling (c) retrieval job without

premarshaling (d) retrieval job with premarshaling.

Park et al. [44] develop a heuristic and a simulated
annealing algorithm to minimize the waiting times of the
internal and external vehicles by scheduling twin RMGCs.
Choe et al. [45] incorporate the possibilities of remarshaling
jobs into scheduling twin RMGCs considering the minimiza-
tion of penalties for the remarshaling jobs, makespan, and the
transporters’ waiting times. Galle et al. [46] incorporate the
selection of container slots into the job sequencing problem
to minimize makespan and the chance of future relocation.

Guo et al. [47] address the job sequencing problem
involving a single yard crane to minimize external and
internal vehicle delays. Ng and Mak [48] develop a heuristic
to sequence yard crane jobs to minimize vehicle waiting
times. Similarly, Li et al. [49] propose a heuristic to sequence
yard crane jobs by minimizing the earliness and tardiness of
each job. Huang and Li [50] present three proxies for the
job sequencing problem: the first considers the minimization
of weighted vessel loading time, the second considers the
minimization of weighted vehicle tardiness, and the third
considers the minimization of makespan.

C. YARD CRANE JOB SCHEDULING
When the major decisions also include the time in which
each job must be performed, the job sequencing problem
becomes a job scheduling problem that must consider
the interference between multiple cranes sharing the same
track. Cao et al. [51] discuss the job scheduling problem
for cross-over cranes to minimize makespan. Dorndorf and
Schneider [52] study a container terminal that utilizes triple
crossover stacking cranes. Han et al. [53] attempt to mitigate
interferences between cranes to minimize the makespan
when input/output points are available for immediate ASC
operations.

The job scheduling problem can also include measuring
crane productivity according to the number of productive
moves per hour. Lee et al. [54] propose a heuristic to
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minimize the loading time of yard cranes by determining
which crane should perform a job at a specific time.
Li et al. [55] develop a discrete-time model and propose a
heuristic coupled with a rolling horizon approach to minimize
the earliness and tardiness of each job. Zheng et al. [56]
incorporate reshuffling jobs and yard cranes’ interference into
a twin yard cranes scheduling problem. He et al. [57] address
a yard crane scheduling problem with uncertainty and reduce
the completion time.

Some studies propose scheduling yard crane jobs by limit-
ing the job sequence alteration. Briskorn and Angeloudis [58]
present a graphical optimization problem to minimize
makespan by scheduling the movement of crossover cranes
or twin cranes with a fixed job sequence. Briskorn et al. [59]
include intermediate slot locations for containers being
transferred from the quay area to ETs at both ends of the
storage area. Their model allows job sequence alteration.
Jaehn and Kress [60] and Kress et al. [61] schedule twin
yard cranes by altering only the sequence of landside jobs.
Carlo and Martinez-Acevedo [62] strictly fix the job sequence
to find the best priority rule that minimizes the interference
between twin yard cranes.

D. RELATIONSHIP BETWEEN OUR PAPER AND OTHER
STUDIES

Two published studies relate closely to our research.
Park et al. [44] develop a twin RMGC scheduling model and
consider the option for a RMGC to conduct premarshaling
for existing jobs, and Choe et al. [45] consider premarshaling
for future jobs. Unlike these two studies, we consider
premarshaling and remarshaling as well as the realistic
restrictions on the time when the OS can start or complete
a job based on the job type. We develop a two-stage genetic
algorithm for OS job sequencing, considering the benefit by
the job separation. To our best knowledge, our study is the
first to consider these aspects of OS job sequencing.
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FIGURE 3. The areas covered by an overhead rail in a RACT.

lIl. PROBLEM DEFINITION
We define a job sequencing problem for an OS to reduce
the total tardiness time of flatcars and ETs in a RACT.
We define the OS operations, classify them, and introduce
a job separation procedure.

A. OS OPERATIONS IN A RACT

We consider a single OS working on an overhead rail covering
a part of the transport area and the entire storage yard area as
shown in Figure 3. The storage yard area is partitioned into
three smaller storage areas each containing a set of container
slots. The handover point (HP) is the location where the OS
picks up and drops off containers from/to waiting vehicles
(flatcars and ETs). Since an OS can interact with a vehicle
positioned exactly under the OS rail, the line for the flatcar
and the road for the ET also serve as the HP.

The container terminal’s OS manager sequences OS jobs
to ensure that each OS can serve any vehicle within a
certain time window. The process manager regulates the time
windows and provides the OS manager with a due time for
each OS job to promote synchronization. The flatcar manager
provides the OS manager with the expected locations of the
interactions between flatcars and the OS, and the expected
earliest times of the interactions (earliest arrival time) [8].
In particular, the storage job’s earliest time denotes when
the OS arrives to pick a container from a vehicle and the
retrieval job’s earliest time denotes when the OS arrives to
drop a container onto a vehicle. Synchronizing the OS and
other equipment, considering both of these earliest times,
remains challenging due to the inevitable fluctuations in QC
and flatcar operations that cause irregularity in the number of
OS jobs over time.

B. OS JOB CLASSIFICATION

The OS handles three types of jobs distinguished by their
origins and destination locations: retrieval, storage, and
auxiliary. For the retrieval job, the origin location is the
storage area and the destination location is the HP. The OS

VOLUME 8, 2020

Vehi
ehlc\le Retrieval job completes
leaves
VchiclcT
arrives 1 Storage yard area
L.
ol 00 [
[_1
Retrieval
job starts
Location (row)
(a)
OS picking/dropping
. container
Storagejob e OS travelling
completes "
=== OS waiting
Vehicle] Q| = e
leaves £ "
aves | =
Vehicle Storage |
arrives Jjob starts
1
Storage yard area 1

Location (row)

(b)

Premarshaling/remarshaling
job completes

Time

Premarshaling/
remarshaling
Jjob starts

Storage yard area

Location (row)
©

FIGURE 4. Time-space diagrams for three OS jobs: (a) a retrieval job; (b) a
storage job; (c) an auxiliary job.

only completes a retrieval job after the corresponding vehicle
arrives at the HP location (see Figure 4 (a)). For the storage
job, the origin location is the HP and the destination location
is the RACT’s storage area. The OS only starts a storage job
after the corresponding vehicle arrives at the HP location (see
Figure 4 (b)).

For the auxiliary jobs, the origin and destination locations
are any storage area. Each auxiliary job must have a
corresponding main job. The main job must be completed
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FIGURE 5. Time-space diagram of OS completing three retrieval jobs and block diagram of OS job sequence, before

separation of job 3 (a); and after separation of job 3 (b).

before, or can only be started, after the related auxiliary job
is completed, i.e., the job having a precedence relationship
with the related auxiliary job. Note that the auxiliary job
is classified as premarshaling and remarshaling based on
the purpose of the job. The OS may start or complete any
auxiliary job when the container is in the storage yard area
(see Figure 4 (c)).

C. OS JOB SEPARATION
The job separation procedure separates an original job into
a main job and an auxiliary job, where the total travel
time of an OS when transporting a container (loaded travel
time) from the main job and the auxiliary job equals the
loaded travel time of the original job. The OS can reduce its
workload during busy periods at the expense of adding more
workload during idle periods. For instance, Figure 5 shows
how premarshaling job 3 in the idle period prevents flatcar
3 from waiting. When the job separation is applied to a
retrieval job, the resulting jobs are a retrieval job with shorter
loaded travel time as the main job, and a premarshaling job.
When the job separation is applied to a storage job, the
resulting jobs are a storage job with shorter loaded travel time
as the main job, and a remarshaling job. When separating a
job does not aid the OS in reducing tardiness, the resulting
main and auxiliary jobs are merged back into the original job.
We begin by separating all jobs that can be separable. A job
that is eligible for separation has a temporary slot located
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between the job’s origin location and destination location.
We assume that the temporary slot is fixed to simplify storage
space management. For instance, the origin and destination
location of job 3 in Figure 6 encloses the temporary location
Lp and therefore, job 3 is separable job. The resulting storage
job or retrieval job inherits the arrival time and due time
of the original job. We set the arrival time and due time
of the resulting premarshaling job or remarshaling job as
0 and M, respectively, with M as a positive large number.
We also enforce a precedence relationship for the resulting
retrieval job or remarshaling job so that the OS completes the
premarshaling job before starting the separated retrieval job,
or the storage job before starting the separated remarshaling
job. After sequencing all jobs, we merge any separated jobs,
whose main and auxiliary jobs are sequenced next to one
another in the sequence, back into the original job.

IV. OS JOB SEQUENCING PROBLEM CONSIDERING JOB
SEPARATION (OSJSPS)

We formulate the OS job sequencing problem considering
job separation (OSJSPS) as an MIP model. Given a set of
OS jobs J with N+1 jobs, where J = {0,1,2,..., N}, the
problem is how to sequence all the jobs in J so that the
total tardiness time of all jobs is minimized, with a dummy
job j = 0 denoting the beginning of the sequence. We also
incorporate decision variable w; to eliminate any subtour in
the job sequence [63].

VOLUME 8, 2020



H. Y. Fibrianto et al.: Job Sequencing Problem of an OS Crane in a Rail-Based Automated Container Terminal

IEEE Access

Separable Job Origin Destination
Original job 3 L, Lc
Job Origin Destination
Main job 3 Ly Ly
Auxiliary job 3 Ly L
(@)
Le Ly Ly — OS picking/dropping container
"""""" OS traveling
T 77 OS waiting

IOriginTI job 3 is complete

Time

... Start of original job 3

[Jobz is complete

Start of olJI 2
i
1
Storage yard area
Location (row)

(®)

FIGURE 6. (a) Identification of separable job; (b) Time-space diagram of
OS jobs.

Additionally, we assume that the OS moves at a constant
speed and handles containers with a constant picking time
regardless of container position in a container slot or vehicle.
The sets, parameters, decision variables, and formulation are
as follows.

Sets and indexes

J,i,j The set of jobs J and its indexes i, j € J
S The set of storage jobs S
R The set of retrieval jobs R
G,{i,j} The set of main jobs and auxiliary jobs G
and its indexes {i, j} € G
Parameters

N The number of jobs
MT; Empty travel time to the origin location
of job j from the last location after processing
job i plus the container handling time for
picking the container up at the origin
location of job j
LT;  Loaded travel time while processing job j
plus the container handling time for dropping the
container at the destination location of job j
DT;  The due time of the vehicle corresponding to job j
AT;  The arrival time of the vehicle corresponding

to job j
PT Pick-up or drop-off time
M Positive large number

Decision variables

CR;  The completion time of the pick-up operation of
job j at the origin location

CD; The completion time of the drop-off operation of
job j at the destination location
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D;  The tardiness time of job j

X 1, if OS processes job j after job i
J 0, otherwise

w;  Arbitrary real number, j € {0, ..., N}

(0s18PS) min (3 D)) M
subject to
2o = 1Y € I\0) @
ZJEJ\{O} Xj=1, Viel, 3)
Xj=0, Vieljel,i=}, 4)
wi—wj+N-X;; <N-—1,
Vi € J\{0}, j € J\{0}, i #J, o)
CD; + MT;j — M - (1 — X;j) — PT - X
CR, > ifli.jteG
CD; + MT;j — M - (1 — X;))
otherwise
Vi e J\{0}, j € J\{0}, i £, (©)
CR;+LT;—PT -X;; if {i,j}eG
CDi = CR; + LT; otherwise,
Vi e J\{0}, j € J\{O}, i #J, 7
CR; > CD;, V{i,jl €G, iR, 3)
CR; > CD;, V{i,jleG, i€S, ©)
CR; > ATj+ PT, Vj€S, (10)
CD; > AT;+ PT, VYj€R, (11
Dj > CR; — DTj, Vje€S, (12)
D; > CD; — DTj, Vje€R, (13)
CR;, CD; =0, je {0}, (14)
D;,CR;,CD; >0, VjeJ\{0}. (15)

The objective is to minimize the sum of all jobs’ tardiness
times (1). Constraints (2) and (3) ensure that each job is
sequenced once. Constraints (4) and (5) restrict the sequence
to a single closed loop tour for completing the jobs. Constraint
(6) updates the completion time for picking a container at the
origin location for the job j, and constraint (7) updates the
completion time for dropping it at the destination location
for the job i. Note that the additional pick-up or drop-off
time required by the OS to perform an auxiliary job is
negated when the auxiliary job is sequenced before/after
its corresponding main job because the resulting main and
auxiliary jobs are merged into the original job. Constraint
(8) ensures that premarshaling must be completed prior
to starting its corresponding retrieval job, and constraint
(9) ensures that the remarshaling operation can only be
performed after completing its corresponding storage job.
Constraint (10) ensures that an OS can only pick a container
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from a vehicle after the vehicle arrives, and Constraint (11)
ensures that an OS can only drop a container onto a vehicle
after the vehicle arrives. Constraints (12) and (13) calculate
the tardiness times of all storage and retrieval jobs. Constraint
(14) sets job j as the dummy job where the sequence begins.
Constraint (15) ensures that all decision variables relating to
time must be greater than zero. We validated the OSJSPS
model in comparison with its solution and a full-enumeration
model (see Appendix A for the details).

V. A TWO-STAGE GENETIC ALGORITHM FOR OSJSPS

A genetic algorithm is a metaheuristic that evolves chro-
mosomes and solves optimization problems based on the
principle of natural selection [64]. In scheduling problems,
the genetic algorithm changes job sequences as chromosomes
of a population. In general, the genetic algorithm generates
initial population, evaluates the fitness of each chromosome
by the objective function, provides inheritance from parent
chromosomes, and decides to terminate if there is no
improvement of the best chromosome or the number of
repeated steps reaches a maximum iteration [65].

We develop a two-stage genetic algorithm (TGA) based on
an iterative local search procedure (iLS) and an opportunistic
job separation procedure (OSJSPS). The OSJSPS involves
two sequencing problems for main jobs and auxiliary jobs,
respectively. We connect the two sequencing problems
and use a two-stage algorithm from..Defersha er al. [66]
and.Tsai and Li [67]. The first stage searches the candidate
sequences among the main jobs, and second stage searches
the best sequence including auxiliary jobs, given the main job
sequence and considering the precedence relationships.

We incorporate local search procedures into the two-stage
genetic algorithm because a traditional GA-only algorithm
may not guarantee convergence of a global optimal. The GA
with the local improvement procedures accelerates searching
local optima. We incorporate iLS into the first stage of TGA
and an opportunity job separation procedure into the second
stage of TGA. The local improvement procedures enable
the stages to take advantage of iLS and the opportunistic
job separation procedure, thereby improving the initial
population the TGA generates. Figure 7 shows the flowchart
of TGA.

Section V, part A, describes an initialization of the
population based on the iL.S and opportunistic job separation
procedures. Section V, part B, gives the details of the
genetic operators, selection, and crossover. Since the OSJSPS
resembles the traveling salesman problem (TSP), it follows
the complexity of the TSP which is NP-hard [68].

A. INITIALIZATION OF THE POPULATION

The initial population of the first stage consists of an elite
sequence from an iLS and random sequences satisfying a
condition that the random sequences should not exceed the
maximum makespan from EAT. The initial population in
the second stage consists of an elite sequence from the job
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FIGURE 7. Flowchart of TGA.

separation procedure and random sequences from random
numbers.

1) ITERATIVE LOCAL SEARCH PROCEDURE

The iLS starts with a sequence obtained from the earliest-
arrival-time procedure (EAT), a common default job sequenc-
ing procedure (Ng, 2005) that sequences a set of jobs by
sorting them according to job arrival time in non-decreasing
order. The iLS iteratively updates the job sequence by using
local search sub-procedures. The local search sub-procedures
scramble m consecutive jobs in a given sequence starting
from the s-th job. For each scramble, the iLS produces a
list of m! unique combinations of sequence, selects the best
combination that minimizes the total tardiness time of all
jobs, and updates the job sequence according to the best
combination. An iL.S with a larger m value yields better, or at
least the same solution as an iLS with a smaller m value,
but at exponentially longer computation time. The iterative
local search sub-procedure starts with s = 1 until 5 =
N — m with an interval of 1 job per iteration. Therefore, the
complexity of iLS is approximately O(N — m + 1) - m!).
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Algorithm 1 summarizes the iLS procedure and Figure 8
illustrates the steps.

Algorithm 1 Iterative Local Search Procedure

Step 1. Apply EAT to a given set of jobs J.

Step 2. Start the iteration of the local search.

Step 2.1 | Setsas 1.

Step 2.2 | Create a job set V representing the permuta-
tions of the s-th job to (s +m — 1)-th jobin J.

Step 2.3 | Calculate the total tardiness of each job setin V.

Step 2.4 | Replace job set J with the job set with the
lowest total tardiness in V, and delete V.

Step 2.5 | If s 4+ m is smaller than N, set s as s + 1 and go
to Step 2.2; otherwise, continue to Step 3.

Step 3. Return J.

2) OPPORTUNISTIC JOB SEPARATION PROCEDURE

The opportunistic job separation procedure aims to reduce
the total tardiness of all jobs by simultaneously selecting
which job should be separated and determining when the OS
processes the resulting auxiliary job. The procedure begins
by identifying all separable jobs and time slots. Then the
procedure assigns each of the resulting auxiliary jobs from
the selected separable job to a time slot that minimizes the
total tardiness of all jobs. We define a time slot as the period
when the OS is idle. All separable jobs (original job) j are
identified based on the criterion described in Section III, part
B. We use index j 4+ N for the resulting main job and j + 2N
for the resulting auxiliary job. At this point, we have three
sets of jobs: a set of original jobs J < {l,...,N}, a set of
main jobs K € {N + 1,...,2N}, and a set of auxiliary jobs
L € {2N + 1, ...,3N}, where the separation of job j results
in the main job j+ N and an auxiliary job j+2N. We consider
the elements with indexes between N + 1 to 2N as separable
jobs.

Identifying the time slot requires the job sequence infor-
mation and an executable OSJSPS model. Figure 9 shows
the OSJSPS model execution, in which we can track the OS
status over time, and identify any time slot (constraint (6) and
constraint (7)). The procedure only considers time slots with
durations longer than the total duration for the OS to pick
and drop a container. The procedure marks each time slot
with the job index that succeeds in the corresponding time
slot (constraint (8) and constraint (9)). For instance, if there
is a time slot before the OS completes job j, the time slot is

VOLUME 8, 2020

Job 1] {Job 5| +{Job 3| -{Job 4/ {Job 2| {Job 6| Job 7|

s=2 ‘ Local search

| Job 1 {Job 5 | +{Job 3| {Job 6| {Job 2| {Job 4|+ Job 7|

IOriginal job 3 is complete
______ I Start of original job 3
J0b2 is complete
.................................... OS picking/dropping container
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FIGURE 9. Identification of a time slot.

identified as time slot j. This example suggests that the OS
can process an auxiliary job before it starts job j. Preliminary
simulations showed that most of the time slots had short
durations, so we set 1 as the number of auxiliary jobs that
can be conducted during a time slot.

We define a unique time slot for each auxiliary job that
can only be taken by and serves as the default time slot for,
the corresponding auxiliary job. We set the default time slot
immediately before or after the respective storage or retrieval
job, depending on the precedence relationship. Therefore,
when job separation brings no benefit, the auxiliary job will
take the default time slot and it is merged back into the
original job.

After identifying all time slots and all separable jobs,
the procedure replaces all separable jobs j (original job) with
the resulting storage or retrieval job (main job) j + N and
an auxiliary job j + 2N. To guide the assignment of each
auxiliary job to a time slot, the procedure iteratively selects
the best time slot for each auxiliary job, which reduces the
total tardiness time. In the case of equivalent total tardiness
times, the procedure selects the auxiliary job that requires
the longest loaded travel time. In the case of yet another
equivalent loaded travel time, the procedure randomly selects
from the pairs.
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Step 1|cost; =0 cost, =0 cost; =5 cost,=3

Set initial job sequence Job 1 Job 2 Job 3 Job 4

—_— : . T - T -  Step 2

| ——=—= total cost=8

Time slot 2 M Separable jobs
¥ Tardiness
Step 4
Identify any time slot Step 3 i 3 Ao ihs
and separable job _ TmT sljots Main job 3+N Aux_ job 3+2N
lime slot 2 Main job 4+N Aux. job 4+2N
Step 5 Step 6

Construct all possible pairs Pairs of aux. job and time slot List of total cost
of aux. job and time slot and (Aux. job 3+2N . Time slot 3) total_costyay 3= 8
evaluate the total tardiness (Aux. job 4+2N . Time slot 4) total costy..y .= 8 Step 7

time given the pair

[ (Aux. job 3+2N, Time slot 2) |

’mtal COStyioy 2= B%best pair
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Remove the used time slot from
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available time slots Time slots = — .
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Step 9 If there is any available time slot and any auxiliar}lf job, got to Step 6; otherwise, continue to Step 10

Step 10 Return the final job sequence and its total tardiness time

Final job sequence; total_cost=3

FIGURE 10. Numerical example of the opportunistic job separation procedure.

The procedure maintains the sequence of original jobs
and main jobs, and only changes when it inserts an
auxiliary job between the original job and the main jobs.
Obviously, the sequence of the given set of jobs J influences
the procedure’s effectiveness. Algorithm 2 summarizes the
procedure and Figure 10 illustrates a numerical example.

Algorithm 2 also shows that the procedure has a complex-
ity of ON?+(N—1)>+...4+12) = O(N-(N+1)(2N +1)/6))
for the most complex case, i.e., all jobs are separable and there
is a one slot between each job.

B. SELECTION AND CROSSOVER OPERATORS

We introduce selection and crossover operators for the job
scheduling problem. The genetic operators select parents and
generate new offspring. We use two selection and crossover
operators for the main jobs and auxiliary jobs. The genetic
operators repeat until each termination criterion is satisfied,
i.e., the fitness becomes zero or the number of iterations
reaches the maximum iteration.

1) LINEAR ORDER CROSSOVER

We adopt the popular crossover operator, linear order
crossover (LOX) mentioned in.Pinedo [69] for searching
main job sequences. It generates offspring from two random
crossover points which can be applied to a single machine
scheduling problem. The numbers in Figure 11 denote the
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FIGURE 11. Crossover procedure for first stage (modified from Pinedo,
2011).

IDs of main jobs with their sequences. A gene represents a
job ID with its order and a chromosome represents the set
of genes. The genes between two random crossover points
are inherited from the first parent and other genes are copied
from the second parent.

2) TWO-POINT CROSSOVER

We also adopt the two-point crossover operator in
Murata et al. [70] for auxiliary job sequences. We define the
feasible solution space because the auxiliary job correspond-
ing to a storage job should be placed before (forward) the
main job, i.e., the auxiliary job to a retrieval job should
be placed after (backward) the main job. The numbers
in Figure 12 denote the offsets from a random number, where
the number of steps the auxiliary job are located forward
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Algorithm 2 Opportunistic Job Separation Procedure
Step 1.

Given a set of sequenced jobs J, calculate cost;
as the tardiness of each jobj € J.

Calculate rotal_cost as the total tardiness time,
given a set of sequenced jobs J.

Identify and list any time slot z into a set of time
slots Z.

Identify any separable job j € J, and list its
corresponding main job j + N to K and its
corresponding auxiliary job j + 2N to L.
Construct all possible pairs of auxiliary jobs j+
2N € L and time slots z € Z.

Calculate the total_costj oy, for each pair of
auxiliary job j+ 2N and time slot z, as the total
tardiness time of all jobs in J, except that job j
is replaced by main job j+ N and auxiliary job
J + 2N is included in time slot z.

If there is a fotal costjion , with smaller value
than fotal_cost, select the pair of auxiliary job
Jj + 2N and time slot z with the minimum
total_costj 1,y z; if more than one pair has an
equal minimum value, select the one with the
longest loaded travel time, if there are still pairs
with equal solutions, then select randomly,
then continue to Step 8; otherwise, go to Step
10.

Update J by replacing the selected job j with
J + N and putting j 4+ 2N into time slot z, and
then remove j+ N from K, j+ 2N from L, and
z from Z.

If there is any auxiliary job in L and any time
slot z in Z, go to Step 6; otherwise, continue to
Step 10.

Calculate the total_cost as the total tardiness of
J, and return J and the total_cost.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

[T T BT « [ 5 1] e
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FIGURE 12. Crossover procedure for second stage (modified from Murata,
1996).

or backward within a range of the feasible solution space.
If more than one auxiliary job is assigned to the same position,
the auxiliary jobs are re-sequenced randomly.

VI. COMPUTATIONAL EXPERIMENT
In this section we evaluate the proposed heuristics under
three scenarios where job separation is possible. We modify
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data from a real container terminal to conduct a case study,
considering the inter-arrival times of flatcars and external
trucks. We compare the results obtained by the proposed
heuristics and by the optimal approach.

A. EXPERIMENT DESIGN

We design an experiment to evaluate the effectiveness of the
proposed heuristics for reducing total tardiness time and the
effects of different scenarios on each heuristic, and to measure
the computation required by each heuristic. Table 1 lists the
parameters in the experiment.

The real-size terminal has a single OS serving a partial area
of 260.5 meters in length in a bay (shaded area in Figure 13).
To enable job separation, we consider five temporary slots
adjacent to each other, and randomly choose each slot during
job separation. We set the length of the bay and OS moving
times based on the simulation in [1]. We assume a constant
OS speed of 4 m/s and a constant pick-up/drop-off time of 1
minute regardless of container location in a slot or vehicle.
This assumption is reasonable for the fast-vertical speed of
the OS, so we represent the speed by an average. Given
the OS speed and moving times and the job’s origin and
destination locations, we calculate the empty travel timetable
and loaded travel time before starting the job sequencing
procedure.

The parameters, which represent common practical situ-
ations, are the numbers of jobs typically considered during
a job sequencing period, the job compositions, and the dis-
tribution of flatcar inter-arrival times. The job compositions
parameter represents different stages of QC activities in
handling a vessel. For example, when QCs unload containers
from a vessel, storage jobs from flatcars predominate, and
when QCs load containers to a vessel, retrieval jobs predom-
inate. The distribution flatcar inter-arrival time represents the
workload distribution for a given vessel across multiple bays.
For example, when a vessel’s workload is concentrated in a
bay, the frequency of arriving flatcars increases, and when
the workload is sparsely distributed, the frequency of arriving
flatcars decreases.

In Table 1 the numbers in bold represent the default
setting. Typically, a bay handles 5 to 8 jobs per hour. For
larger-scale problems, we consider up to 25 jobs during a
single sequencing procedure. The flatcar inter-arrival time
is represented by the minimum and maximum values of the
inter-arrival times between the flatcars and they follow a
uniform distribution. The ET inter-arrival time is represented
by the uniform distribution with a minimum value of 0 and
a maximum value of the last ET’s arrival time. The job
composition assumes a fixed percentage (10%) of the storage
job and retrieval job to/from the ET. Our assumption of no
rehandling is reasonable since 80% of the real jobs relate
to vessels where rehandling can be prevented by careful
planning. We assume the same priority between a flatcar and
an external truck to prevent obtaining biased tardiness times
by vehicle types. See Appendix B for the details.
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TABLE 1. Summary of parameters in the experiment.

Parameters Parameters
Algorithms EAT, EAT-S, iLS, iLS-S, TGA, OPT
Number of jobs 10, 15, 20, 25

Flatcar inter-arrival time [min, max]

Job composition in percentage [Storage from flatcar (S), Retrieval from flatcar (R)]

[30, 3601, [30, 420], [30, 480]
[70, 10], [40, 40], [10, 70]

5 temporary slots

n L} L
| | || | Til 1k [
. I ; ) —— —— X g —— . J
8 flatcar tracks 37 container slots 2 Inter-bay 37 container slots 2 External 37 container slots 2 External
2 External
flatcar truck track truck track
truck track
track

FIGURE 13. Schematic layout of a bay [1].

We test five heuristics (earliest-arrival-time heuristic
(EAT), earliest-arrival time with opportunistic job separation
heuristic (EAT-S), iterative local search heuristic (iLS),
iterative local search with opportunistic job separation
heuristic (iLS-S), two-stage genetic algorithm (TGA), and an
optimal algorithm (OPT). Only the EAT and the iLS apply
the job sequencing procedure without any job separation
procedure. The EAT-S uses an earliest-arrival time procedure
to sequence the jobs and then uses the opportunistic job
separation procedure for the resulting sequence. The iLS-
S uses the iLS procedure combined with the job separation
procedure to search for the sequence that minimizes total
tardiness time. The TGA may search for further improvement
from the local optima and obtain the global optimal. We also
use an MIP solver to obtain the OPT solutions from the
formulations.

Since we apply the opportunistic job separation procedure
after finding the best job sequence, we compute the total
tardiness time of each job sequence during the iterations
without considering the improvement by job separation. For
the iLS-based heuristic, we use the sub-procedures scramble
m = 5. Totest TGA, we use the genetic parameters and set the
first stage population and sub-population sizes as 5 times the
number of jobs. We set the maximum iterations for the first
stage and second stage as a fixed number 25 after preliminary
experiments.

We measure the total tardiness time obtained by each
heuristic and the required CPU time. We compare the
solutions obtained by the heuristics to the optimal solution
using small-scale problems.

We use Siemens Tecnomatix Plant Simulation version
12 as our simulation platform and SimTalk, the built-in
programming language of the Plant Simulation software,
to implement the heuristics. We use Visual Studio 2017 to
construct the model and IBM ILOG CPlex version 12.6 C++
Callable library to solve it optimally. We perform 20 trials
for each parameter setting. We run the experiment on a PC
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equipped with Windows 10 Pro and Intel Core i5-7600L
@3.80 GHz and 16GB RAM.

B. EXPERIMENTAL RESULTS

Table 2 compares OSJSP, which allows no job separation,
to OSJSPS using OPT. The job separation allowance in
OSJSPS reduces total tardiness time by 39.09% on aver-
age. Job separation increases both computation time and
complexity.

TABLE 2. Comparison between OSJSP and OSJSPS.

Number Total tardiness time (s) CPU Time (s)

of jobs | OSJSP  OSJSPS  Gap(%) | OSISP  OSJSPS
6 14.93 10.28 45.16 0.03 0.05
7 19.06 12.99 46.71 0.03 0.07
8 21.76 15.69 38.67 0.04 0.09
9 35.70 25.22 41.55 0.04 0.18
10 55.68 43.21 28.84 0.07 1.06
11 59.88 45.55 31.46 0.09 1.51
12 63.56 47.37 34.18 0.11 1.76
13 73.54 54.41 35.14 0.14 4.70
14 79.47 54.76 45.11 0.15 7.32
15 102.21 70.93 44.09 0.17 917.08

Table 3 summarizes the experimental results for the small
problem sizes. The TGA outperforms the other heuristics
which are still trapped at local optimal solutions. When
the number of jobs is small enough, e.g., 6 to 8, the TGA
obtains optimal solutions. When the number of jobs is large
enough, e.g., 9 to 15, the TGA’s optimality gap is between
5.90% and 9.74%. The CPlex solver is unable to solve
problems with 15 or more jobs within the time allowance of
28800 seconds.

Figure 14 illustrates the effectiveness of the heuristics
algorithms relative to the EAT rule. On average, EAT-S and
iLS-S improve 11.06% and 56.56%, respectively, and TGA
and OPT improve 66.24% and 68.37% in total tardiness time,
respectively.
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TABLE 3. Experimental results for small problem sizes.

Number Total tardiness time (s) CPU Time (s)
of Jobs EAT EAT-S iLS iLS-S TGA OPT EAT EAT-S iLS iLS-S TGA OPT
6 24.02 21.85 9.61 9.61 3.26 3.26 0.00 0.00 0.07 0.07 0.13 0.04
7 27.97 24.97 11.21 11.21 4.39 4.39 0.00 0.00 0.15 0.15 0.31 0.07
8 42.56 39.56 21.32 20.09 12.78 12.78 0.00 0.00 0.25 0.25 0.61 0.09
9 97.84 94.84 46.50 45.28 40.57 36.97 0.00 0.00 0.36 0.37 0.86 0.22
10 130.86 121.86 66.48 64.23 60.25 54.96 0.00 0.00 0.51 0.51 1.23 1.12
11 144.72 127.10 73.92 67.69 62.44 57.30 0.00 0.01 0.66 0.66 1.59 1.60
12 151.92 128.80 74.89 66.44 64.24 59.12 0.00 0.01 0.84 0.84 2.39 2.29
13 193.85 162.71 91.98 78.50 71.23 66.18 0.00 0.01 1.04 1.05 3.97 5.78
14 214.01 180.99 98.37 81.33 70.46 66.53 0.00 0.01 1.25 1.27 9.21 8.80
15 247.34 210.35 124.45 105.52 88.32 82.70 0.00 0.01 1.48 1.51 12.18 919.20
TABLE 4. Experimental results for various job compositions.
Number J ob' ) Total tardiness time (s) CPU Time (s)
of Jobs Cg,j?)pfsmﬁ‘)]n EAT  EAT-S iLS iLS-S TGA | EAT  EATS LS iLS-S TGA
10 [70, 10] 98.82 89.81 55.68 53.43 48.50 0.00 0.00 0.45 0.46 1.06
[40, 40] 123.89 108.84 67.58 60.90 52.86 0.00 0.00 0.46 0.46 1.68
[10,70] 225.74 183.70 147.98 114.55 111.81 0.00 0.00 0.47 0.47 3.83
15 [70, 10] 185.00 150.37 102.21 85.64 76.56 0.00 0.01 1.36 1.36 11.26
[40, 40] 284.47 206.78 147.82 99.14 91.41 0.00 0.01 1.37 1.38 13.52
[10,70] 521.00 409.17 327.49 251.52 243.26 0.00 0.01 1.39 1.40 19.77
20 [70, 10] 318.30 268.47 215.57 188.23 170.73 0.00 0.03 2.78 2.80 52.02
[40, 40] 470.10 368.46 258.17 191.11 179.29 0.00 0.03 2.81 2.83 78.12
[10,70] 769.58 598.88 505.42 407.82 399.61 0.00 0.02 2.84 2.86 85.41
25 [70, 10] 373.93 303.66 263.44 22223 213.50 0.00 0.07 4.79 4.85 116.57
[40, 40] 579.44 435.67 320.47 238.25 226.03 0.00 0.07 4.84 4.90 159.21
[10, 70] 936.28 742.46 578.57 472.49 469.76 0.00 0.05 4.90 4.96 148.81
TABLE 5. Experimental results for various flatcar inter-arrival times.
Number Flatcar Inter- Total tardiness time (s) CPU Time (s)
arrival Time ; - - .
of Job (¢ rmin, max] | EAT  EAT-S iLS iLS-S  TGA | EAT  EAT-S iLS  iLS-S TGA
10 [30, 360] 130.56 121.88 76.83 72.36 59.90 0.00 0.00 0.46 0.46 2.26
[30, 420] 98.82 89.81 55.68 53.43 48.50 0.00 0.00 0.46 0.46 1.05
[30, 480] 77.90 72.93 40.23 38.24 36.64 0.00 0.00 0.46 0.46 0.60
15 [30, 360] 316.20 272.88 192.44 176.97 143.38 0.00 0.01 1.35 1.35 15.42
[30, 420] 185.00 150.37 102.21 85.64 76.56 0.00 0.01 1.35 1.36 11.08
[30, 480] 134.41 109.27 70.58 63.33 58.14 0.00 0.01 1.36 1.37 5.13
20 [30, 360] 544.05 487.15 363.68 343.66 304.68 0.00 0.02 2.75 2.76 69.01
[30, 420] 318.30 268.47 215.57 188.23 170.73 0.00 0.03 2.76 2.78 51.09
[30, 480] 221.64 179.22 146.55 122.57 116.17 0.00 0.04 2.77 2.80 44.32
25 [30, 360] 699.02 603.77 469.30 429.33 396.98 0.00 0.05 4.71 4.77 169.32
[30, 420] 373.93 303.66 263.44 222.23 213.50 0.00 0.08 4.75 4.82 114.51
[30, 480] 266.98 213.46 183.75 153.12 148.84 0.00 0.09 4.76 4.86 93.49

Table 4 lists the results for the various job compositions.
The job separation procedure contributes to the reduction of
total tardiness time as indicated by the relative improvement
by EAT-S, ranging from 9.11% to 27.31%, the relative
improvement by iLS-S, ranging from 29.55% to 65.15%,
and the relative improvement by TGA, ranging from 42.90%
to 67.86%. The reductions in total tardiness time by job
separation persist throughout all job composition settings.
Job separation particularly achieves high improvement when
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there is a balanced ratio between storage and retrieval jobs
to/from flatcars; the average improvement for the iLS-S and
TGA is 51.66% and 54.26%, respectively.

Table 5 lists the results for the various distributions of the
flatcar arrival time periods. We note that the job separation
procedure is only effective if the average flatcar inter-arrival
time is at least longer than or equal to 195 seconds. After
a certain point where the average flatcar inter-arrival time
period increases, the improvement by job separation on iLS
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TABLE 6. Experimental results of a case study*.

Number Total tardiness time (s) CPU Time (s)

of Jobs EAT EAT-S iLS iLS-S TGA OPT EAT EAT-S iLS iLS-S TGA OPT
6 249.58 242.92 195.31 192.34 166.90  139.20 0.00 0.00 0.06 0.06 0.88 0.68
7 411.07 396.06 321.23 313.27 262.66  231.05 0.00 0.00 0.13 0.13 2.66 35.69
8 582.01 565.98 428.69 422.62 353.11  326.75 0.00 0.00 0.23 0.23 421 1522.43
9 775.27 758.16 588.71 580.19 496.08 0.00 0.00 0.33 0.34 6.33 -
10 1058.97 1036.79  799.02 782.55 678.78 0.00 0.00 0.46 0.46 8.79 -
11 1329.94  1300.59  998.90 976.17 847.95 0.00 0.01 0.60 0.60 10.44 -
12 1610.29  1550.52  1253.74 1211.88 1067.88 0.00 0.01 0.76 0.76 14.17 -
13 201146  1941.51 1567.66  1526.69 1367.88 0.00 0.01 0.95 0.95 17.87 -
14 2268.54 2189.31 1693.16 1651.30 1511.26 0.00 0.01 1.15 1.15 20.51 -
15 2592.79  2520.77 194933 189697 1736.32 0.00 0.01 1.36 1.37 24.36 -

‘-> OSJSPS fails to generate a solution within 28800s.
* The datasets are available from the authors upon request.

——EAT-S ===ilS —&—ilS-S —#=TGA —¢—OPT
100

»
£

ES
2

by hueristics from EAT (%)
N
5

W
2

The percentage of improvment

6 7 8 9 10 11 12 13 14 15
The number of jobs

FIGURE 14. The percentage of improvement of heuristics in total
tardiness time to EAT for small problem sizes.

and TGA heuristics starts to decrease. Ultimately, when the
flatcar inter-arrival time is long enough so that each flatcar
experiences no tardiness, job separation becomes obsolete.
We note that the computation time required by TGA is heavily
influenced by the average flatcar inter-arrival time. As the
average of flatcar inter-arrival time becomes longer, the TGA
quickly converges to the local or global optimal. When the
number of jobs increases in iLS-S and EAT-S, computation
times also increase, e.g., 5 to 8 jobs arrive every hour in a real
bay of a RACT.

The experimental results show that the proposed heuristics
reduce the total tardiness time of vehicles under circum-
stances representing the QC’s different stages: handling
vessels or vehicles, and bay workloads. The iterative local
search within the iLS-S limits the search space of the possible
job sequence enough to obtain a local optimum within a
short time. The TGA reduces the total tardiness time of
the local search procedures in most scenarios in the experi-
ments. Overall, iLS-based heuristics outperform EAT-based
heuristics under any circumstances, partly because when
iLS-based heuristics re-sequence a subset of neighboring
jobs, the total tardiness time of a series of jobs decreases, but
at the expense of a slight increase in the tardiness time of one
job.

156374

C. CASE STUDY

We consider a case study with the inter-arrival time of flatcars
and external trucks modified for the RACT configuration
from real data. We assume that the due time of vehicles
follows a lognormal distribution from the vehicle inter-arrival
time data. Table 6 reports that the TGA outperforms the
algorithms that are trapped in local optimal solutions.
Figure 15 shows the relative improvement by TGA, ranging
from 32.01% to 39.33%.

=——EAT-S ===ilS -—#&—ilS-S —#=TGA ~——OPT

40

by hueristics from EAT (%)

The percentage of improvment

6 7 8 9 10 11 12 13 14 15
The number of jobs

FIGURE 15. The percentage of improvement of heuristics in total
tardiness time to EAT in the case study.

VIi. CONCLUSION

This article presented a job sequencing problem, considering
job separation, and developed a two-stage genetic algorithm
based on an iterative local search procedure and an oppor-
tunistic job separation procedure for sequencing a set of OS
jobs in a RACT with a single OS traveling on a rail in
a bay. The proposed algorithms enhanced the flexibility of
OS operations and smoothed the synchronization procedure
between yard storage and vehicles in the RACT.

The iterative local search procedure was developed based
on the notion that an efficient sequence is obtainable by
scrambling only a small subset of jobs with similar arrival
times. The opportunistic job separation procedure improved
the sequence by exploiting OS idle time. The two-stage
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genetic algorithm incorporated local search procedures
to further improve total tardiness time within reasonable
calculation time.

The four heuristics, EAT-S, iLLS, iLS-S, and TGA, include
the iterative local search procedure, or opportunistic job
separation procedure, or both. The EAT-S heuristic applies
the opportunistic job separation procedure after the jobs
are sequenced. The iLS uses the iterative search procedure
without job separation. The iLS-S, an extension of the iLS,
adds the opportunistic job separation procedure after the
jobs are sequenced. The TGA applies an opportunistic job
separation procedure during iterative local search procedures.

Future research should address the rehandling job problem
when the requested containers are not at the top of the con-
tainer stack. The impacts of decisions about temporary slot
locations on the four heuristics deserve more examination.
Future research should also consider integrating the flatcar
routing problem into the OS job sequencing problem to
obtain smoother synchronization, by modifying the proposed
heuristics to address the different equipment configurations
in RACTs. The proposed algorithm and procedures could
also be modified to obtain smoother synchronization between
yard cranes and waiting vehicles in vertical terminals
with transport locations and yard cranes under Chebyshev
movement.

APPENDIX

A. THE OSJSPS VALIDATION

We validate the OSJSPS model in comparison a with full-
enumeration model (Solution) The full-enumeration model
uses 30 instances. We enumerate full cases and obtain an
optimal solution, which means the OSJSPS model works
correctly.

TABLE 7. Experiment results for a comparison with 0SJSPS and
full-enumeration.

Instance The total tardiness Fime Instance The total tardiness Fime
OSJSPS Solution OSJSPS Solution

1 48.90 48.90 16 9.40 9.40

2 13.70 13.70 17 14.79 14.79
3 4.23 423 18 4.14 4.14

4 45.57 45.57 19 52.89 52.89
5 211.00 211.00 20 10.16 10.16
6 23.13 23.13 21 12.52 12.52
7 18.46 18.46 22 289.78 289.78
8 69.97 69.97 23 152.06 152.06
9 25.60 25.60 24 13.28 13.28
10 34.44 34.44 25 1.76 1.76

11 164.94 164.94 26 17.48 17.48
12 140.80 140.80 27 63.99 63.99
13 17.29 17.29 28 36.49 36.49
14 63.22 63.22 29 172.35 172.35
15 10.82 10.82 30 80.01 80.01

B. EXPERIMENTAL RESULTS FROM WEIGHTS BETWEEN A
FLATCAR AND EXTERNAL TRUCK

We conduct sensitivity analysis over weights by vehicle
type. Table 8 reports that the weights modulate the tardiness
of flatcars, external trucks, and the total sum of tardiness.
In general, the weight [50, 50] are balanced.

VOLUME 8, 2020

TABLE 8. Experimental results for various priorities by vehicle type.

Trucl‘<_ Total tardiness time (s)
Composition Truck
[Flatcar, External weight Flatcar External Total
truck] truck
[80, 20] [10,90] 73.19 8.06 81.25
[30, 70] 50.53 10.94 61.47
[50, 50] 49.75 10.94 60.69
[70, 30] 19.08 40.48 59.56
[90, 10] 6.23 93.28 99.51
[50, 50] [10,90] 672.65 113.82 786.47
[30, 70] 521.19 137.77 658.96
[50, 50] 317.99 289.31 607.30
[70, 30] 107.02 660.26 767.27
[90, 10] 37.27 918.81 956.09
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