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ABSTRACT In this paper, we present nnAudio, a new neural network-based audio processing framework
with graphics processing unit (GPU) support that leverages 1D convolutional neural networks to perform
time domain to frequency domain conversion. It allows on-the-fly spectrogram extraction due to its fast
speed, without the need to store any spectrograms on the disk. Moreover, this approach also allows
back-propagation on the waveforms-to-spectrograms transformation layer, and hence, the transformation
process can be made trainable, further optimizing the waveform-to-spectrogram transformation for the
specific task that the neural network is trained on. All spectrogram implementations scale as Big-O of
linear time with respect to the input length. nnAudio, however, leverages the compute unified device
architecture (CUDA) of 1D convolutional neural network from PyTorch, its short-time Fourier transform
(STFT), Mel spectrogram, and constant-Q transform (CQT) implementations are an order of magnitude
faster than other implementations using only the central processing unit (CPU). We tested our framework on
three different machines with NVIDIA GPUs, and our framework significantly reduces the spectrogram
extraction time from the order of seconds (using a popular python library librosa) to the order of
milliseconds, given that the audio recordings are of the same length. When applying nnAudio to variable
input audio lengths, an average of 11.5 hours are required to extract 34 spectrogram types with different
parameters from the MusicNet dataset using librosa. An average of 2.8 hours is required for nnAudio,
which is still four times faster than librosa. Our proposed framework also outperforms existing GPU
processing libraries such as Kapre and torchaudio in terms of processing speed.

INDEX TERMS Convolution, discrete Fourier transform, short time Fourier transform, spectrogram, CQT,
constant Q transform, Mel Spectrogram, signal processing, library, PyTorch, GPU.

I. INTRODUCTION
Spectrograms, as time-frequency representations of audio
signals, have been used as input for neural network
models since the 1980s [1]–[3]. Different types of
spectrograms are tailored to different applications. For
example, Mel spectrograms and Mel frequency cepstral
coefficients (MFCCs) are designed for speech-related
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applications [4], [5], and the constant-Q transformation
is best for music related applications [6], [7]. Despite
recent advances in end-to-end learning in the audio domain,
such as WaveNet [8] and SampleCNN [9], which make
model training on raw audio data possible, many recent
publications still use spectrograms as the input to their
models for various applications [10]. These applications
include speech recognition [11], [12], speech emotion
detection [13], speech-to-speech translation [14], speech
enhancement [15], voice separation [16], singing voice
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conversion [17], music tagging [18], cover detection [19],
melody extraction [20], and polyphonic music transcrip-
tion [21]. One drawback of training an end-to-end model on
raw audio data is the longer training time. As pointed out
by Lee et al. [11], a model that uses raw audio data as input
takes four times longer in terms of training time, and this
longer training time only yields slightly better performance
compared to a similar model that use spectrograms as their
input.

Using spectrograms as input, however, does not comewith-
out drawbacks. Each audio recording can be transformed into
various spectrograms using different algorithms and param-
eters. In order to find the audio transformation methods best
suited to a specific task, trial and error may be needed. The
usual way to conduct these trial and error experiments is
to convert audio clips to different frequency domain repre-
sentations and save each of the representations on the hard
disk. After that, the neural networks are trained using each of
the different representations and the best performing model
is selected. Once the best frequency domain representation
has been identified, the transformation parameters, such as
window size and number of frequency bins, can be further
fine-tuned to obtain an even better result.

Performing a parameter search to obtain the best spec-
trogram input yields two major problems. First, a consider-
able amount of hard disk space is required to store different
frequency domain representations resulting from the differ-
ent parameter settings. Given a dataset with 20GB of audio
recordings (e.g. MusicNet [22]), the resultant spectrograms
can easily occupy up to 1TB of hard disk space if one wants
to experiment with different types of spectrograms with dif-
ferent parameters. A detailed case study will be discussed
in Section V-A. Second, the audio processing step is usually
done separately from the model training. To combine the pro-
cessing step and model training into one continuous pipeline,
on-the-fly spectrogram extraction is needed. The existing
methods for time-frequency conversion of audio files, how-
ever, are too slow for on-the-fly spectrogram extraction. Most
of the above-mentioned applications use librosa [23],
a popular python audio processing library based on central
processing units (CPUs). To use librosatogether with a
neural networkmodel, the spectrograms need to be constantly
transferred from a CPU to a graphics processing unit (GPU),
since model training is done on GPUs. To make this process
more efficient, it would be better to have a library that pro-
cesses the spectrograms directly on the GPU.

There have been some attempts at implementing methods
for GPU-based spectrogram extraction. Tensorflow [24]
has a tf.signal package that performs the Fast Fourier
Transform (FFT) and Short-Time Fourier Transform (STFT)
on GPUs. There is a high-level API, called Keras, for
people who want to quickly build a neural network without
having to work with Tensorflow sessions. Kapre [25]
is the Keras version for GPU-based audio processing.
Along similar lines, PyTorch [26] has recently devel-
oped torchaudio, but this tool has not been fully

integrated into PyTorch at the time of writing this paper.
Furthermore, torchaudio requires Libsox as an extra
dependency, and the installation often requires significant
trouble-shooting [27]; for example, torchaudio is cur-
rently not compatible with Windows 10 [28]. Among the
three tools, only Kapre and torchaudio support audio
to Mel spectrogram conversion, but none of the existing
libraries support constant-Q transform (CQT). Furthermore,
onlyKapre supports neural network-based signal processing
since it is the only implementation that supports trainable
kernels for time domain to frequency domain transforma-
tions. Kapre, however, cannot be integrated with the popular
machine learning library PyTorch due to its Tensorflow
backend. Despite the GPU support and differentiability,
torchaudio and tf.signal are not neural network-
based, meaning that there is no trainable parameter which
can be learned or fine-tuned during neural network training.
Although torch-stft1 is a native PyTorch function
without any additional dependency, only STFT is available.

Therefore, to bridge this gap in the field, we introduce a
fast, differentiable, and trainable neural network-based audio
processing framework called nnAudio [29]. To ensure per-
fect integration with one of the most popular machine learn-
ing libraries, we built our spectrogram extraction method
using PyTorch. This way, our library can be used as a
PyTorch neural network layer, and all the functionalities
available in PyTorch, such as data augmentations, can
be used together with nnAudio. Moreover, our proposed
framework includes extended functionalities as compared to
other existing libraries, such as calculating Mel spectrograms
and constant-Q transforms. More specifically, we use a 1D
convolution layer to implement the transformation algorithm,
whichmakes the spectrogram extraction in nnAudio a train-
able process (see Section V-B). nnAudio is hence useful
when exploring different input representations for neural
network models [30], [31]. Since our proposed framework
is based on neural networks, the audio processing can be
integrated into the model training as shown in Figure 1(b).
That is, there is no need to do audio processing and model
training separately, as in the traditional method shown in Fig-
ure 1(b). nnAudio enables on-the-fly spectrogram extraction
and model training at the same time. In Section IV-A we dis-
cuss the improved performance of this method as compared to
traditional approaches in Figure 1(a). The library is available
online.2

A. SUMMARY OF KEY ADVANTAGES
The main contribution of this paper is the development of
a GPU-based audio processing framework that is directly
integrated into and leverages the power of neural networks.
This provides the following benefits:

1https://github.com/pseeth/torch-stft
2 Via PyPI (nnAudio), and https://github.com/KinWaiCheuk/

nnAudio
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FIGURE 1. A flowchart comparing (a): existing (slow) approach [32]–[40] and (b): our proposed (much faster as shown in Figure 11a) neural
network-based audio processing framework (nnAudio). Our proposed neural network is highlighted in yellow. Instead of pre-processing the waveforms,
we can now feed-forward waveforms to the neural network directly, and spectrograms can be generated on-the-fly during training. The red arrows
indicate how far the backpropagation ∇L may go, this allows the initialized kernels to be fine-tuned during training, resulting in specifically tailored new
representations.

1) End-to-end neural network training with an on-the-fly
time-frequency conversion layer (i.e. one can directly
use raw waveforms as the input to the neural network).

2) Significantly faster processing speed compared to
the traditional audio processing approach such as
librosa [23].

3) CQT algorithms based on neural networks that can be
run on GPUs (no neural network-based CQT algorithm
that can be run on GPU is available at the time of this
writing.)

4) Trainable Fourier, Mel and CQT kernels that can be
automatically tailored to the problem at hand.

In the following subsections, we will briefly summarize
the mathematics of the Discrete Fourier Transform (DFT).
We will then discuss how to initialize a neural network to
perform the STFT, Mel spectrogram and constant-Q trans-
form (CQT) in Section-III. In section IV, we compare the
speed and output of nnAudio versus a popular python signal
processing library, librosa. Finally, we end with potential
applications of our proposed library.

II. SIGNAL PROCESSING: A QUICK OVERVIEW
In this section, we will go over the basic transformation meth-
ods (DFT) used to convert signals from the time domain to the
frequency domain. Readers who have a solid background in

signal processing are welcome to skip this section and may
continue reading from Section III.

A. DISCRETE FOURIER TRANSFORM (DFT)
When recording audio using any computer or mobile device,
the analogue signal is converted to a digital signal before
storing the data. Therefore, the audio waveforms consist of
discrete data points. The Discrete Fourier Transform can be
used to convert this discrete signal from the time domain to
the frequency domain. Equation (1) shows the mathematical
expression for the discrete Fourier transform [41], whereX [k]
is the output in the frequency domain; and x[n] is the nth

sample of the audio input in the time domain. For real-valued
inputs, the frequency domain output X [k] for k ∈ [1,N/2] is
equal to the output X [k] for k ∈ [N/2,N−1] in reverse order,
where N is the window length (which is usually a power
of two such as 1,024 and 2,048). To discard this redundant
frequency domain information, only the first half of the fre-
quency bins in the frequency domain will be extracted, i.e.
k ∈ [0, N2 ]. We define the DFT as a split-sum of real and
complex components:

X [k] =
N−1∑
n=0

x[n] cos(2πk
n
N
)− i

N−1∑
n=0

x[n] sin(2πk
n
N
). (1)

VOLUME 8, 2020 161983



K. W. Cheuk et al.: nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox

When we use (1) to compute the DFT with a 1D convolu-
tional neural network, we can calculate the real and complex
terms separately using real-valued arithmetic.

The frequency k in the DFT is given in terms of normalized
frequency (equivalent to cycles per window). The formula to
convert the normalized frequency k to the frequency f in units
of Hertz (Hz) is given by (2),

f = k
s
N
, (2)

where s is the sample rate and N is the FFT window length.

B. DFT FOR ARBITRARY FREQUENCY RANGES
Since k is an integer ranging from zero to half of the win-
dow length, the DFT is only capable of resolving a finite
number of distinct frequencies. For example, if the sam-
pling rate is 44,100Hz, and the window length is 2,048,
then the normalized frequencies for the DFT kernel are k =
[0, 1, 2,. . . , 1024] which corresponds to a DFT kernel with
frequencies f = [0, 21.53, 43.07,. . . , 22050] Hz (using (2)).
The frequency resolution under this setting is 21.53Hz. For
comparison, the lowest two notes on a piano keyboard are
A0 = 27.5 Hz and A#0 = 29.14 Hz. With a difference of less
than 2 Hz between them, the DFT of 1,024 frequency bins
is not sufficient to resolve the correct note. The frequency
resolution1f is given by (3). This resolution can be improved
by increasing the window size N , however, increasing the
window size results in a decrease in time resolution 1t ,
as shown in (4). Therefore, we are forced to make a com-
promise between time and frequency resolution as per (5).

1f =
s/2
N/2

(3)

1t =
N
s

(4)

1f1t = 1 (5)

The vectors of the DFT transformation matrix are a basis
for the set of all complex vectors of length N. This implies
that applying the DFT followed by the inverse-DFT results
in a perfect reconstruction of the original signal. Invertibility
is important for many signal processing applications, but in
information retrieval applications such as speech recognition
and sound classification, it is not always necessary to use an
invertible time-frequency transformation. In such cases we
may want to modify the DFT in ways that no longer result
in an orthogonal set of basis vectors.

One way to modify the DFT is to change the frequencies
of the basis vectors to increase or decrease the number of
bins in certain parts of the spectrum. To achieve linear-scale
frequency with non-integer multiples of s/N in equation (2)
we can replace k with σ (k) = Ak + B, where A and B are
two constants. To find A and B, let fe and fs be the ending
and starting frequencies of the range we want to analyse, and
apply (2) to get (6), where µ ∈

[
0, N2 + 1

]
is the number of

bins chosen to be displayed in the spectrogram.

σ (k) =
(fe − fs)N

µs
k +

fsN
s

(6)

By the same token, we can generate basis vectors for a
log-frequency spectrogram by using σ (k) = BeAk , resulting

in A = fsN
s and B =

ln fe
fs
µ

as shown in (7) below.

σ (k) =
fsN
s

(
fe
fs

) k
µ

(7)

Note that we use the word ‘‘basis’’ informally here. These
formulae do not guarantee a linearly-independent set of vec-
tors, so the basis we get from this method may in fact be
rank-deficient. When using (7) or (6), (1) becomes (8). This
more general time-frequency transform permits us to focus
the resolution of our spectrogram in the frequency range
where it is most needed. For example, if our starting fre-
quency is fs = 50Hz and the ending frequency is fe =
6000Hz, the linear frequency DFT kernel would have basis
vectors with normalized frequency σ (k ∈ [0, 1024]) =
[2.32, 2.59, 2.86, . . . , 278.10, 278.36]. This corresponds to
the frequency f = [50, 55.8, 61.6, . . . , 5988, 5994]Hz. The
frequency resolution has improved from 21.53Hz to 5.8Hz
without changing the transform window size.

X [k] =
N−1∑
n=0

x[n] cos(2πσ (k)
n
N
)−i

N−1∑
n=0

x[n] sin(2πσ (k)
n
N
)

(8)

Note that this method only changes the spacing between
the centres of adjacent frequency bins without affecting the
width of the bins themselves. Because each bin represents a
range of frequencies in a fixed-width region centred around f
as given in (2), we will lose information if we space the bins
too far apart.

In the next section, we explain how the DFT in (1) and
the variable-resolution DFT in (8) is used to calculate the
short-time Fourier transform (STFT) using a convolutional
neural network. The frequency scaling factor will be inte-
grated as one of the input features in our neural network-based
framework.

III. NEURAL NETWORK-BASED FRAMEWORK
In this section, we will discuss how to calculate the short-time
Fourier transform (STFT), Mel spectrogram, and constant-Q
transform (CQT) using a 1D convolutional neural network.
These are then implemented as a library (nnAudio) in
PyTorch2. This paper assumes that the readers have a basic
understanding of convolutional neural networks. A detailed
explanation of CNNs is outside of the scope of this paper.
Readers are highly encouraged to consult these papers [42],
[43] in order to quickly obtain a grasp of the background
knowledge in this area. Readers are also highly encouraged to
visit our github page for the details of our implementations2.

A neural network-based approach means that we encode
known audio processing knowledge (the algorithms dis-
cussed above) into the neurons of the neural network, so that
the neural network behaves in the same way as the original
algorithms. The STFT is the fundamental operation for both
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Mel spectrogram calculation and CQT. To convert the STFT
spectrogram to a Mel spectrogram we simply multiply the
spectrogram by a Mel filter bank kernel. Similarly, the com-
putation of the CQT also begins with the STFT, followed
by multiplication with a CQT kernel. We begin this section
by explaining how we use a convolutional neural network to
compute the STFT.

A. SHORT-TIME FOURIER TRANSFORM (STFT)
The Short-time Fourier Transform (STFT), also called the
sliding-window DFT, refers to an application of the DFT
wherein the signal is cut into short windows before perform-
ing the transform rather than performing one large transform
on the entire signal [44]. For audio analysis applications, this
is the standard way to apply the DFT.

The STFT is usually calculated using the Cooley-tukey
Fast Fourier Transform algorithm (FFT), which is preferred
because it computes the DFT in O(N logN ) operations,
as opposed to O(N 2) for the canonical DFT implementa-
tion. However, implementations of the O(N 2) DFT often
out-perform the O(N logN ) FFT for small values of N when
the underlying platform supports fast vector multiplication.
This is especially true when the computation is done in paral-
lel on a GPU. Since neural network libraries typically include
fast GPU-optimised convolution functions, we can compute
the canonical DFT quickly on those platforms by expressing
the vector multiplication in the DFT as a one-dimensional
linear convolution operation.

Discrete linear convolution of a kernel h with a signal x is
defined as follows,

(h ∗ x)[n] =
M−1∑
m=0

x[n− m]h[m], (9)

where M is the length of the kernel h. PyTorch defines a
convolution function with a stride argument. The one dimen-
sional convolution of x with h using a stride setting of k ,
denoted by the symbol ∗k is,

(h ∗k x)[n] =
M−1∑
m=0

x[kn− m]h[m]. (10)

We can use convolution with stride to make fast GPU-based
implementations of the short time Fourier transform (STFT).
To do this, we take each basis vector of the DFT as the filter
kernel h, and compute the convolution with the input signal x
once for each basis vector.We set the stride value according to
the amount of overlap that wewant to have between eachDFT
window. For example, for zero overlap, we set the stride toN ,
the length of the DFT; and for 1/2 window overlap, we set the
stride to N/2.

Note that due to the way convolution is defined in (9)
and the way that (10) computes array indices, we need to
reverse the order of elements in the DFT basis vectors when
creating the convolution kernels. The following expressions
are the pair of convolution kernels (hre[k, n] and hi [k, n]) that

represent the real and imaginary components of the k th DFT
basis vector respectively,

hre[k, n] = cos(2πk
N − n− 1

N
), (11)

him[k, n] = sin(2πk
N − n− 1

N
). (12)

The DFT is usually computed with a function that fades the
samples at the edges of each window smoothly down to near
zero to avoid the high-frequency artefacts that are introduced
by cutting the window abruptly at the edges [45]. Typical
examples of DFTwindow functions includeHann, Hamming,
and Blackman types. In a GPU-based DFT implementation
using a convolution function with stride (10), we can imple-
ment the window smoothing efficiently by multiplying these
window function elementwise with the filter kernels hi and
hr before doing the convolution.
When calculating spectrograms, we typically use the Dis-

crete Fourier Transform of length N = 2048 or N = 4096,
but other values of N are possible. We often cut the DFT
windows so that they overlap each other by some amount
in order to improve the time resolution. In a signal with
T windows, we let Xt be the DFT of the window at index
t ∈ [0,T−1]. The time domain representation of the window
at index t will be denoted by xt .

Figure 2 shows the schematic diagram for a neural
network-based STFT. There are two main advantages of
implementing the STFT using a PyTorch 1D convolutional
neural network. First, it supports batch processing. Using a
neural network-based framework, we can convert a tensor of
audio clips to a tensor of spectrograms using tensor opera-
tions. Second, the neural network weights can be either fixed
or trainable. We will discuss how trainable STFT kernels
improve the frequency prediction accuracy in Section V-B.

nnAudio API: The STFT is implemented in nnAudio as
the function Spectrogram.STFT(), with default argu-
ments: n_fft = 2048, freq_bins = None, hop_length =
512, window = ‘hann’, freq_scale = ‘no’, center = True,
pad_mode= ‘reflect’, fmin= 50, fmax= 6000, sr= 22050,
trainable = False. This function has an optional argument
freq_scalewhich allows the user to choose either a linear
or a logarithmic frequency bin scale.

B. MEL SPECTROGRAM
The Mel frequency scale was proposed by Stevens et al.
in 1937 as an attempt to quantify pitch such that equal dif-
ferences in Mel-scale pitch correspond to equal differences
in perceived pitch, regardless of the frequency in Hertz [46].
In addition to the original Mel scale proposed by Stevens
et al., there were several other attempts to obtain a revised
version of the Mel scale [47]–[49]. Therefore, there is not
a single ‘‘right’’ formula for the Mel scale, as various dif-
ferent formulae coexist in the literature [50]. The traditional
frequency to Mel scale conversion is the one mentioned in
O’Shaughnessy’s book [51], which was implemented in the

VOLUME 8, 2020 161985



K. W. Cheuk et al.: nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox

FIGURE 2. An STFT with a sliding window can be achieved by implementing DFT and initializing the 1D convolution kernels as cosine and sine in
PyTorch. Applying logarithmic compression on the magnitude allows for a better visualization of the spectrogram.

HTK Speech Recognition toolkit [52] as (13)), shown below,

m = 2595log10

(
1+

f
700

)
(13)

We refer to this form as ‘htk’ later on. Equation (14) shows
another form that is being used in the Auditory Toolbox
for MATLAB [53] and librosa (a python audio process-
ing library) [23]. This form is quasi-logarithmic, meaning
that the frequency to Mel scale conversion is linear in the
low frequency region (usually the breaking point is set to
1,000Hz), and logarithmic in the high frequency region (after
the breaking point). The default Mel scale in librosa is in
the form of (14), but it is possible to change it to the form
defined in (13) by setting the htk argument to True.

m =


3f
200

, if 0Hz ≤ f ≤ 1000Hz

3000
200
+

27 ln (f /1000)
ln 6.4

, if f ≥ 1000Hz
(14)

Once we have the frequency to Mel scale conversion,
we can create Mel filter banks (for details on the computation
of Mel filter banks, the readers may refer to [5]) that are
multiplied to each timestep of the STFT result to obtain aMel
spectrogram [54]. An example of this conversion is shown
in Figure 3, which depicts the STFT and Mel-scale spectro-
grams of a signal that starts with five pure tones at 25Hz,
75Hz, 150Hz, 400Hz, and 450Hz (shown in region A). After
0.25 seconds, three of the tones stop, leaving only 2 tones at
75Hz and 450Hz (shown in region B). After another 0.25 sec-
onds, only the 75Hz tone remains (Region C), and finally,
it ends with a single 450Hz tone (Region D). The STFT
spectrogram is shown in the left-hand side of Figure 3. In this
example, the window size for the STFT is 128 samples, which
would generate a spectrogram with 128 frequency bins. The

FIGURE 3. Mel spectrogram obtained by combining the STFT result
(65 frequency bins) with 4 Mel filter banks.

complete spectrogram contains redundant information due to
symmetry, therefore only 65 bins are used in the final STFT
result. The hop size for STFT is 32 samples, which equals
a quarter of the window size. To obtain a Mel spectrogram
with fourMel bins, we need to have fourMel filter banks. The
basis functions of aMel filter bank are triangular in shape and
the kernel that converts the raw STFT to theMel-spectrogram
by grouping multiple STFT bins to a single Mel bin.

The exact mapping for the example in Figure 3 is shown
in Table 1. There are five frequency components in region
A, the three frequency components corresponding to 25 Hz,
75 Hz, and 150Hzwill be mapped toMel bin 0. Since theMel
filter banks are overlapping with each other, the frequency
component 150 Hz will also be mapped to Mel bin 1, while
the two high frequency components 400 Hz and 450Hz will
only be mapped to Mel bin 3. Each timestep of the STFT is
multiplied by the Mel filter banks matrix in the same way to
obtain the Mel spectrogram.

nnAudio’s implementation of the Mel spectrogram extrac-
tion from raw waveforms in PyTorch is relatively
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TABLE 1. Mapping from frequency bins to Mel bins for the example
in Figure 3. The bin indexing starts with 0.

straightforward. We obtain the STFT results using the
PyTorch 1D convolutional neural network described in
Section III-A, and then we use Mel filter banks obtained
from librosa. The values of the Mel filter banks are used
to initialize the weights of a single-layer fully-connected
neural network. Each time step of the magnitude STFT is
fed forward into this fully connected layer initialized with
Mel weights. The Mel filter banks only need to be created
once when initializing the neural network. These weights
can be set as trainable or remain fixed, much like the neural
network implementation of STFT as discussed in Section III-
A. Figure 3-B shows the schematic diagram of our PyTorch
implementation of the Mel spectrogram calculation.

nnAudio API nnAudio implements the Mel spectro-
gram layer as Spectrogram.MelSpectrogram(),
with default arguments: sr = 22050, n_fft = 2048, n_mels
= 128, hop_length = 512, window = ‘hann’, center = True,
pad_mode= ‘reflect’, htk= False, fmin= 0.0, fmax=None,
norm = 1, trainable_mel = False, trainable_STFT = False.

C. CONSTANT-Q TRANSFORM
1) A QUICK OVERVIEW OF THE CONSTANT-Q TRANSFORM
(1992 VERSION)
There is a logarithmic relationship between the frequencies
of musical pitches: The frequency of a musical pitch doubles
for every octave. In order to effectively reflect the relationship
between musical pitches on a spectrogram, it is helpful to
use a logarithmic frequency scale. One naive solution is to
modify the frequencies of the basis functions of the discrete
Fourier transform so that the centre frequencies of the bins
form a geometric series [55]. There are, however, numerous
problems with this approach.

First, it is well-known that the standard DFT basis func-
tions of length N form an orthogonal basis for the space of
all complex vectors of length N . The orthogonality of the
basis guarantees that the DFT is an energy-preserving trans-
formation. In other words, the magnitude of the transformed
output is exactly equal to the magnitude of the input. This is
important because it means that we can determine the volume
of the input signal simply by looking at the magnitude of the
DFT output. If wemodify the frequencies of the basis vectors,
they become non-orthogonal and therefore the relationship
between input and output energy becomes much more com-
plicated.

A second consequence of using unevenly spaced basis
vectors in the DFT is that at the upper end of the spectrum,
where the vectors are farthest apart, there will be wide gaps

between frequency bins. If we insist on using a set of only N
vectors as the basis, these gaps are sowide that high frequency
tones lying between bins will not be detected at all. The lack
of frequency resolution in the high end can be remedied by
increasing the number of basis vectors beyondN , but doing so
leads to an excessive density on the low frequency end of the
spectrum. Since the width of each bin is constant with respect
to frequency, this results in significant overlap between bins
in the low end. In frequency ranges with significant overlap
between bins, the energy shown in the transformed output
is exaggerated with respect to the actual energy in the input
signal.

The challenges mentioned above are the motivation for the
design of the constant-Q transform, first proposed by Brown
in 1991 as a modification of the discrete Fourier transform [6]
where the window size Nkcq scales inversely proportional to
the centre frequency of the CQT bin kcq to maintain a fixed
number of cycles for sine and cosinewithin thewindow. Since
the width of each bin is inversely proportional to the length of
its basis vector, the width of each CQT frequency bin expands
proportionally to the space between bins so that there are
no gaps between bins at the upper end of the spectrum and
no excessive overlap between bins at the lower end of the
spectrum.

In signal processing, the letter Q [56], which stands for
quality, indicates the centre frequency divided by the band-
width of a filter. There are many types of filters for which
the term bandwidth is applied and correspondingly there are
various different definitions of the bandwidth and of Q. In the
context of the CQT, Q is defined to be the number of cycles of
oscillation in each basis vector. The corresponding equation
for Q is shown in (15), where b is the number of bins per
octave. Once Q is known, we can calculate the window size
Nkcq for each bin kcq by (16). The equation for CQT is very
similar to the DFT, with the varying index k replaced by Q
and fixed window size N replaced by varying window size
Nkcq as shown in (17). Despite the fact that constant-Q trans-
form (CQT) uses a similar concept as logarithmic frequency
DFT, i.e., both of them have a logarithmic frequency scale,
they are not the same. CQT maintains a constant frequency
resolution by keeping a constant Q value while the logarith-
mic frequency STFT has a varying Q. The subtle differences
between the CQT and logarithmic frequency scale STFT can
be observed in Figure 12, and 13.

Q = (2
1
b − 1)−1 (15)

Nkcq = ceil

(
s
fkcq

)
Q (16)

X cq[kcq] =

Nkcq−1∑
n=0

x[n] · e
−2π iQ n

Nkcq (17)

2) CQT USING NEURAL NETWORKS
The naive implementation of CQT consists of looping
through all of the kernels one by one, and calculating the
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FIGURE 4. nnAudio’s neural network-based implementation for Mel spectrograms. The STFT
window size is 4,096 and the number of Mel filter banks is 64 in this example.

dot-product between the kernel e−2πQ/Nk and the input signal
x [6]. This type of implementation, however, is not fea-
sible for our 1D convolution approach. Most neural net-
work frameworks only support a fixed kernel size across
different channels for a 1D convolutional neural network.
This means that if we have 84 CQT kernels, we would
need 84 convolutional networks to include all of the
kernels.

Youngberg and Boll [57] first proposed the concept of
CQT in 1978. Brown later proposed an efficient way to
calculate CQT in 1992 [7]. The trick is to use Parseval’s
equation [45] as shown in (18), where a[n] and b[n] are
arbitrary functions in the time domain, and A[k] and B[k] are
the frequency domain versions of a[n] and b[n], respectively.
If we define X [k] and Y [k] as the DFT of input x[n] and
kernel e−2πQ/Nkcq , respectively, then this approach converts

both x[n] and e
−2π iQ n

Nkcq to X [k] and Y [k], respectively,
in the frequency domain, and subsequently multiplies them
together to get the approximated CQT as shown in (19).
It should be noted that both X [k] and Y [k] are matrices
containing complex numbers, and N is the longest win-
dow size for the CQT kernels, which is equal to the length
of the kernel with the lowest frequency. Also, Y [k] is a
sparse matrix in this case. Figure 5 shows an example of
the CQT kernels in the time domain and frequency domain
respectively. The bottom and top kernels correspond to the
musical notes A3 (220Hz) and A7 (3520Hz) respectively,
with 12 bins per octave and a sampling rate of 8000Hz.
There are 60 bins in total. Only the real components for the
kernels are shown in Figure 5, but readers should note that
y[n, kcq] is a matrix with complex numbers, and each row
of y[n, kcq] is transformed to a row of Y [k, kcq] by using
the Fast Fourier Transform (FFT). Therefore, the frequency
domain CQT are also matrices of complex numbers and
the magnitude CQT can be obtained by taking element-wise
norm.

Nk−1∑
n=0

a[n]b[n] =
1
N

N−1∑
k=0

A[k]B[k] (18)

X cq[kcq] =

Nkcq−1∑
n=0

x[n] · e
−2π iQ n

Nkcq

=
1
N

N−1∑
k=0

X [k]Y [k, kcq] (19)

Using the definition of CQT from Brown et al., the conver-
sion from the time domain input x[n] toX [k] can be donewith
a 1D convolutional neural network. The DFT basis vectors
will be the kernels for the neural network. Since there is a real
part and an imaginary part to the DFT kernels, we need two
1D convolutional neural networks, one network for the real
component of the kernels, and another network for the imag-
inary component. We can perform the DFT using the same
procedure described in Section III-A for the STFT. Next, each
time step of the STFT result X [k] is multiplied with the same
CQT kernels Y [k, kcq]. Therefore, the CQT kernels only need
to be created once as part of the initialization for the STFT 1D
convolutional nerual network. In the end we obtain a CQT
matrix X cq[kcq] with real and imaginary parts and the final
CQT ouput is calculated using the element-wise magnitude
absX cq[kcq].

Unfortunately there is a major flaw in this approach. If the
number of octaves is large and the CQT kernels start at a low
frequency, the size of CQT kernels will be huge. For example,
if we want to cover 88 notes (from A0 to C8 as the range for
a piano) with a sampling rate of 44100Hz and 24 bins per
octave, then the longest time domain CQT kernel window
size is 54,727, according to (16). When rounding this up to
the next power of 2, the window size will be 65,536, assuming
that we want the FFT length to be a power of 2. Even though
the FFT has not been implemented in nnAudio, we will
still follow these recommendations for existing CQT imple-
mentations so that we can directly compare them with our
implementation. By transforming time domain CQT kernels
to frequency domain kernels, we discard half of the kernel
length due to symmetry. Therefore, the longest frequency
domain CQT kernel has a length of 32,768. With 88 piano
keys and 24 bins per octave, the CQT kernels would have
a shape of (176, 32768). This also implies that the window
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FIGURE 5. An example of CQT kernels whereby the number of bins per octave is set to 12. The x-axis shows the time in digital samples (n). Each CQT
kernel has a frequency that corresponds to a musical pitch. Only the real components of y [n, kcq] and Y [k, kcq] are shown here.

size for the STFT would be 32,768, which is extremely long,
making this implementation inefficient for huge CQT kernels
that have a low frequency. In the following sections, we will
discuss how to implement a more efficient version of CQT by
using a downsampling method [6].

nnAudio API Despite its inefficiency, we still provide this
function for research purposes. It can be executed in nnAudio
via the function Spectrogram.CQT1992, with default
arguments: sr = 22050, hop_length = 512, fmin = 220,
fmax = None, n_bins = 84, bins_per_octave = 12, norm =
1, window = ‘hann’, center = True, pad_mode = ‘reflect’,
device = ‘‘cuda:0’’.

3) DOWNSAMPLING
Next, we will discuss how to do downsampling with a neural
network before moving on to the downsampling method used
in the computation of the CQT. In order to downsample input
audio clips by a factor of twowithout aliasing, a low pass filter
is required so that any frequencies above the downsampled
Nyquist frequency will be filtered out first, before performing

the actual downsampling. This is performed using a technique
called Finite impulse response filtering (FIR). FIR refers
to the convolution of an input signal with a filter kernel
using the same formula shown earlier in (9). This type of
filtering can be implemented efficiently using a convolutional
neural network. The definition of FIR is shown in (20),
where x[n − i] is the input signal at time step n, b_i is the
FIR filter.

To downsample, we first design the low-pass FIR filter
kernel using theWindowMethod [58], which is implemented
in SciPy as the function scipy.signal.firwin.
To achieve a steep cutoff at the Nyquist frequency we set
the passband of the filter to end at 0.4995 and the stopband
to start at 0.5005 times the Nyquist frequency. These values
were chosen so as to achieve a steep cutoff. The impulse
response and frequency response of our antialiasing filter is
shown in Figure 7. This filter is used as the kernel of the
downsampling component of our convolutional neural net-
work. An effective antialiasing filter design is important for
the CQT implementation, which we explain in the following
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FIGURE 6. nnAudio’s implementation of the 1992 version of CQT [7] using a 1D convolutional neural network.
The DFT kernels and CQT kernels only need to be initialized once and can be reused.

FIGURE 7. Impulse response and magnitude frequency response for the
antialiasing filter. This filter forms the kernel for the 1D convolutional
neural network that performs downsampling in nnAudio’s CQT
computation.

section.

y[n] =
N∑
i=0

bi · x[n− i] (20)

4) CONSTANT-Q TRANSFORM (2010 VERSION)
The constant-Q transform uses basis vectors of varying
lengths. The basis kernels for the lowest frequencies are
several orders of magnitude longer than the high frequency
kernels. Since low frequency audio signals can be accurately
represented with lower sample rates, we can compute the
lower frequency components of the CQT more efficiently by

downsampling the input and using correspondingly shorter
filter kernels. This technique is described in detail in [6],
[59]. Only one octave of CQT kernels is created using this
approach. These CQT kernels usually start from the highest
octave due to the short window size as described in (16).
By doing so, the computational complexity can be reduced.
When applying the CQT kernels (of this highest octave) to
the frequency domain input X [k], only the CQT result for
the highest octave is obtained. After that, we downsample the
input by a factor of two and apply the same CQT kernels to
this new input to obtain the CQT result for the next octave
down. The same process is repeated until the desired number
of octaves is processed. In this approach, the CQT kernels are
kept the same while the input audio is being downsampled
recursively. By referring to (16), Nkcq and Q are constant.
When we downsample the audio by a factor of 2, s is reduced
by half. In order to keep Nkcq and Q constant, fkcq must also
be reduced by half. Physically, it means the CQT output
obtained by same CQT kernels relative to a downsampled
audio with factor 2α is α octave lower than the original
audio, where α ∈ [1, 2, 3, . . .] is a positive integer. Figure 8
shows the schematic diagram for this implementation. Each
downsampled input xα[n] produces the CQT result for one
octave. The complete CQT result can then be obtained by
appending the results for each of the octaves together.

nnAudio API This algorithm can be executed in nnAudio
via the function Spectrogram.CQT2010, with default
arguments: sr = 22050, hop_length = 512, fmin = 32.70,
fmax = None, n_bins = 84, bins_per_octave = 12, norm =
True, basis_norm = 1, window = ‘hann’, pad_mode =
‘reflect’, earlydownsample = True, device = ‘cuda:0’.

5) CQT WITH TIME DOMAIN KERNELS
When Brown and Puckette [7] proposed their more efficient
algorithm in 1992, they were facing limitations in computer
memory. The time domain CQT kernels form a very large,
dense matrix. Storing a matrix like this requires a lot of
memory. When converting time domain CQT kernels into
frequency domain kernels, the dense matrix becomes a sparse
matrix. Storing this sparse matrix using either the compressed
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FIGURE 8. Schematic diagram of the 2010 version of CQT [6], [59] using the recursive downsampling method. The kernels only need to be initialized
once and can be reused over and over again.

sparse row (CSR) format or the compressed sparse col-
umn (CSC) algorithm is more memory efficient than storing
a dense matrix. Therefore, by converting the time domain
CQT kernels to the frequency domain, the same information
is retained, while requiring less memory to store it.

With modern technology, memory is no longer an issue.
Thus, it is no longer necessary to convert the time domain
CQT kernels to frequency domain kernels. By not doing this
conversion, we remove a computationally heavy step, thus
improving the CQT computation speed. Both the 1992 ver-
sion of CQT and the 2010 version of CQT can benefit from
this modification. The resulting modified implementation is
shown in Figure 9 and 10. The improvement in computa-
tional speed is reported as CQT1992v2 and CQT2010v2,
respectively, for each algorithm in Figure 11. The differences
between the existing CQT algorithm and our proposed mod-
ification based on the down-sampling approach are shown
in Figure 8 and Figure 10. For the differences between the
existing CQT algorithm and our proposed modification based
on the Brown and Puckette [7] approach, readers can refer to
Figure 6 and Figure 9.
nnAudioAPIThe improved version of CQT1992 is imple-

mented asSpectrogram.CQT1992v2()with the default
parameters: sr = 22050, hop_length = 512, fmin = 32.70,
fmax = None, n_bins = 84, bins_per_octave = 12, norm =
1, window = ‘hann’, center = True, pad_mode = ‘reflect’,
trainable = False, output_format = ‘Magnitude’, device =
‘cuda:0’.

The improved version of CQT2010 can be executed in
nnAudio via the function Spectrogram.CQT2010v2()
with default parameters: sr = 22050, hop_length = 512,
fmin = 32.70, fmax = None, n_bins = 84, bins_per_octave
= 12, norm = True, basis_norm = 1, window = ‘hann’,
pad_mode = ‘reflect’, earlydownsample = True, device =
‘cuda:0’.

IV. EXPERIMENTAL RESULTS
In this section, we analyse the speed and the accuracy of the
proposed framework, nnAudio. We compare our PyTorch

FIGURE 9. A schematic diagram showing our proposed improvement of
the CQT1992 algorithm that uses time domain CQT kernels instead of
frequency domain kernels, which requires less computational steps
compared to the original algorithm as shown in Figure 6.

FIGURE 10. A schematic diagram showing our proposed improvement of
the CQT2010 algorithm that uses only time domain CQT kernels. Note that
the output of the convolution between the audio input and the CQT
kernels is still a complex number, even though this is not shown in the
figure for simplicity.

implementation, nnAudio, with the existing audio process-
ing library librosa [23]. More specifically, our STFT
implementation is compared to librosa.stft, Mel Spec-
trogram to librosa.feature.melspectrogram, and
CQT to librosa.cqt. We also compare our proposed
framework to other existing GPU audio processing libraries
such as Kapre and torchaudio. In the first subsection,
we compare the speed required to process 1,770 audio files
in .wav format. In the second subsection, we focus on test-
ing the correctness of the resulting spectrograms. In what
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FIGURE 11. (a): Processing times to compute different types of spectrograms with nnAudio GPU, nnAudio CPU, and librosa. (b): Processing times for
different versions of CQT. (c): Processing times for different GPU processing libraries: Kapre, tensorflow, torchaudio, and nnAudio.

follows, the different implementations for CQT, namely
CQT1992v2 and CQT2010v2, will be discussed individually.
These are the implementations that directly use time domain
CQT kernels as mentioned in Section III-C5. For the sake
of easy reference, the Mel spectrogram will be referred to as
MelSpec below.

A. SPEED
1) SETUP
Weuse theMAPS dataset [60] to benchmark nnAudio. A total
of 1,770 .wav files from the AkPnBcht/UCHO/ folder were
used for the benchmark. We discard the first 20,000 sam-
ples (which is equivalent to 0.45 seconds under the 44.1kHz
sampling rate) from each audio excerpt in order to remove
the silence. Each audio excerpt is kept the same length
(80,000 samples) by removing the excessive samples in the
end. Their final length is equivalent to 1.8 seconds. The audio
excerpts are stored as an array with shape 1, 770 × 80, 000.
The goal of the speed test is to convert this array of waveforms
into an array of spectrograms while maintaining the order of
the audio excerpts. We conducted this test on three different
machines:

(A) A Windows Desktop with CPU: Intel Core i7-8700 @
3.20GHz and GeForce GTX 1070 Ti 8Gb GPU

(B) A Linux Desktop with CPU: AMD Ryzen 7 PRO
3700 and 1 GeForce RTX 2080 Ti 11Gb GPU

(C) A DGX station with CPU: Intel Xeon E5-2698 v4 @
2.20GHz and Tesla v100 32Gb GPU

During the test, we compared the speed of our proposed
nnAudio toolkit to one of the popular signal processing
libraries, librosa [23]. Although Essentia is reported
to be faster than librosa in terms of audio processing
speed [5], our experimental results show that Essentia
is slower than librosa. (It takes Essentia 30 seconds
to finish the STFT task and 180 seconds to finish the CQT
task on machine C.) One possible reason is that Essentia
only supports the versions of STFT and CQT without a
moving window. Therefore it can only produce spectrums,
not spectrograms. To obtain the spectrograms, we first need
to cut the input audio into small audio segments and then
apply the CQT or STFT on each of these segments. This
is done using extra nested for loops, which could cause
a slower speed in Essentia. On top of that, Essentia
does not supportMelSpec, making a side-by-side comparison
to nnAudio impossible. We therefore report the results for
nnAudio and librosa in Figure 11.

Because our task is to transform an array of waveforms to
an array of spectrograms (in the same order), librosa with
multi-process will not work well. The time it takes to finish
this task while maintaining the same order for the output
array as the original array using multiprocessing is longer
than when a plain sequential for loop is used. Therefore,
the speed test for librosa is performed by using a for
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loop. Furthermore, the performance for librosa can be
optimized by using caching, but this option is disabled by
default. To emulate the situation in which most people use
librosa, we run the speed test with caching disabled. Even
when caching is used, it only reduces the computation time
for CQT by around 10 seconds. As for nnAudio, despite the
fact that multiple GPUs are available on machine C, only
one GPU is used to convert the array of waveforms to the
array of spectrograms to ensure a fair comparison with other
machines. Since PyTorch can also run on a CPU, we will
also test this configuration of nnAudio. Finally, the compu-
tation time of nnAudio is compared with other GPU-based
processing libraries: Kapre and torchaudio.

2) RESULTS
Figure 11(a) shows the time taken to convert an array
of 1,770 waveforms to an array of 1,770 spectrograms using
Mel frequency scale, STFT, and CQT on three different
machines. It is clear from the figure that our newly pro-
posed method is faster than librosa regardless of which
machine it is run on. Interestingly, machine A and B (normal
desktops) are faster than machine C (DGX station) when
running the test on CPU. This is possibly due to the fact
that the CPU clock rates for machine A and B are much
higher than machine C. Nevertheless, using a GPU reduces
the time taken to finish the spectrogram extractions, whereby
the performance of the RTX 2080 Ti GPU is similar to the
high end Tesla v100 GPU. We should note that, when using
PyTorch with GPU, extra time is required to transfer the
kernels from RAM to GPU memory, which only takes a
few seconds. This process can be considered as part of the
model initialization. The time required to initialize themodels
is not included in Figure 11. Table 2 shows the time taken
to initialize each neural network model with nnAudio. This

TABLE 2. The GPU initialization time needed for the two kernels (STFT
and model-specific kernel) in each nnAudio neural network model,
together with the required memory.

time is influenced by the kernel sizes of STFT, MelSpec, and
CQT. For STFT, a longer window size (n_fft) results in larger
STFT kernels. The same goes for MelSpec and CQT. More
time is required to transfer larger kernels to GPU memory.
In our experiment, an STFT window size of 4,096 is used for
both STFT and MelSpec. For MelSpec, a total of 512 Mel
filter banks are used. For the different implementations of
CQT, the kernels start at 32.7Hz, which corresponds to the
note C1, and 24 bins per octave, covering 176 bins in total.
The neural network models used by nnAudio to calculate
MelSpec and CQT require operations with multiple kernels
(an initial DFT kernel followed by a model-specific kernel),
therefore, we break the initialization time down into two steps
(columns 2 and 3 in Table 2). Model kernels refer to the
convolution kernels specific to each spectrogram type. For
MelSpec, themodel kernels are theMel filter banks. For CQT,
they consist of both DFT and CQT kernels. The initialization
of the kernels of the network only needs to be performed
once. As we can observe from Table 2, CQT2010 has a much
faster initialization time compared to CQT1992 (5 seconds
compared to over 200 seconds). This can be explained as the
bottleneck for CQT1992 in the STFT stage. If the starting
frequency is too low, the CQT kernels become very long,
which in turn causes a huge window size (n_fft) for STFT.
In the CQT setting used for the kernel initialization speed test
(sampling rate = 44, 100Hz, minimum frequency = 32.7Hz,
bins per octaves = 24, and bins = 176), the longest CQT
kernel is 46,020, which results in a n_fft of 65,536 (rounding
up the to nearest power of two, 216). To mitigate this problem,
a Fast Fourier Transform (FFT) may be used instead of DFT,
which will be explored in future research. Another way to
prevent this problem would be to use the implementation
mentioned in III-C5. Once everything is loaded into the GPU
memory, the computation will occur at the speed as shown
in Figure 11 (a) and Figure 11 (b). Even when only a CPU is
used, nnAudio still outperforms librosa and Essentia
significantly.

As mentioned in Section III-C5, converting the time
domain CQT kernels to frequency domain CQT kernels is
not necessary if there is enough computing memory. In the
experiment, we compare the improvement in computation
speed when using the time domain CQT kernels directly.
Figure 11 (b) shows how the improved constant-Q Transform
(CQT1992v2) and the improved constant-Q Transform with
downsampling (CQT2010v2) further improve the computa-
tion speed. CQT2010v2 is faster than CQT2010 regardless
of whether the CPU or GPU is used. While CQT1992v2 is
extremely fast when GPU is used, the CPU version is
slower than the CQT2010. Therefore, CQT2010v2 should be
used in a computer without GPU, and CQT1992v2 should
be used when GPU is available. However, there are sub-
tle differences between the 1992 and 2010 implementation,
and under normal circumstances, CQT1992v2 is the best
option among all the implementations. The subtle differences
between various CQT implementations will be discussed in
detail in the following subsection. Nevertheless, to ensure
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flexibility, nnAudio provides all implementations discussed
above (CQT1992, CQT2010, CQT1992v2, CQT2010v2).

Finally, the speeds of different GPU-based audio process-
ing libraries (Kapre, tensorflow, and torchaudio) are com-
pared with nnAudio on the same task. The results are shown
in Figure 11(c). Since torchaudio does not support the Win-
dows operating system, the result is not available for machine
A. For STFT, torchaudio is marginally faster than nnAudio
on machine C, but nnAudio is always faster than torchau-
dio on machine B. nnAudio outperforms Kapre on all three
machines. For MelSpec, nnAudio is at least three times faster
than torchaudio, and at least 40 times faster than Kapre. There
is no comparison available for CQT because Kapre and
torchaudio do not have this functionality. Kapre is the
slowest among the three libraries. This is most likely due
to the fact that it directly takes a numpy array as the input
which causes slower performance than when a PyTorch
tensor is used (like in torchaudio and nnAudio). The speed
of tensorflow is slightly faster than Kapre but it is much
slower than torchaudio and nnAudio. This result makes sense
because Kapre is based on tensorflow, and both torchaudio
and nnAudio are based on PyTorch; therefore, the speed of
Kapre should be similar to tensorflow whereas the speed of
torchaudio should be similar to nnAudio. Although NVIDIA
DALI also includes GPU audio to spectrogram processing in
its recent releases (since version 0.17.0), its main purpose is
for GPU data loading [61], [62]. In other words, unlike the
libraries we compared here, NVIDIA DALI is not differen-
tiable (it does not calculate the gradient for the spectrograms).
For example, if we have waveforms generated from a neural
network, and we want to convert these synthesized wave-
forms to spectrograms and calculate the loss with respect
to ground truth spectrograms, only the libraries we included
in Figure 11 support backpropagation all the way back to the
synthesized layers. Since one of the main features of nnAudio
is to offer differentiable/trainable spectrograms, we do not
include NVIDIA DALI (a GPU data loading tool) in our
results as this feature is not supported.

B. CONVERSION OUTPUT
1) SETUP
We use librosa as our benchmark to check the correctness
of our implementation. The spectrograms produced by our
implementation are compared to the librosa output by
using the numpy function np.allclose. Four input sig-
nals, a linear sine sweep, a logarithmic sine sweep, an impulse
tone, and a chromatic scaled played on a piano, are used in
this study to determine the model output correctness. The
chromatic piano scale is recorded with a piano instrument
provided by Garritan Personal Orchestra 53 and saved as
a .wav file. Because adapting the time domain CQT ker-
nels does not change the output spectrogram, the result for
CQT1992 is the same as that for CQT1992v2, and is better

3https://www.garritan.com/products/
personal-orchestra-5/

than the results for CQT2010 and CQT2010v2. Therefore we
will only report the results for the faster and better quality
implementation (CQT1992v2) here.

2) RESULTS
The results of the accuracy test are shown in Figures 12
and 13. The output magnitudes are displayed in a logarithmic
scale so that the subtle differences can be observed easily.
When looking at the results, we notice that the STFT results
from librosa and nnAudio are very similar to each other
with an absolute tolerance of 10−2 and a relative tolerance of
10−2. The same can be said forMelSpec, for which the results
of both libraries are very similar, with an absolute tolerance
of 10−3 and a relative tolerance of 10−4. For CQT, the abso-
lute tolerance is 0.8 and the relative tolerance is 2. The
CQT output for nnAudio is smoother because we are using
the CQT1992v2 approach in our implementation for which
downsampling is not required. Figure 14 shows the compari-
son between our proposed CQT1992v2, our CQT2010v2 and
librosa’s implementation of CQT (librosa uses the
2010 downsampling algorithm). In the implementation of
both librosaand CQT2010v2, the aliasing in the figure is
due to downsampling. Although the magnitude of the aliasing
is negligible, it is still observable when we use a logarithmic
magnitude scale. Further study is required to determine the
effects of the aliasing due to downsampling in the neural
network models. The CQT1992v2 model, however, is the
fastest of all proposed GPU-based CQT implementations (see
Figure 11(b)), and its output is the best among the different
implementations. Therefore CQT1992v2 should be used, and
hence it is set as the default CQT computation algorithm for
nnAudio.

V. EXAMPLE APPLICATIONS
In this section, two potential applications of nnAudio will
be discussed. First, we will elaborate on using nnAu-
dio to explore different spectrograms as the input for a
music transcription model, and discuss how this process can
benefit from on-the-fly GPU processing. Second, we will
demonstrate that nnAudio allows the STFT kernels to
be trained/finetuned, so that a better spectrogram can be
obtained.

A. EXPLORING DIFFERENT INPUT REPRESENTATIONS
In this section, we discuss one possible application of this
work, namely music transcription [64], [65]. We will show
that with nnAudio, one can quickly explore different types
of spectrograms as the input for a neural network and eas-
ily choose the spectrogram that yields the best transcription
accuracy.

Consider the following scenario: we want to do polyphonic
music transcription, and we have picked a specific model
(fully connected neural network) to tackle this task, but
we want to know which input spectrogram representation
would yield the best results for this task [66]. In our exper-
iment, a total of four types of spectrograms are explored:
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FIGURE 12. Comparing the output of nnAudio and librosa when converting a linear and logarithmic sine sweep.

VOLUME 8, 2020 161995



K. W. Cheuk et al.: nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox

FIGURE 13. Comparing the output of nnAudio and librosa when converting an impulse tone and a chromatic piano scale.
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TABLE 3. Table 3 shows a comparison of the computing time (on the three different machines as before), together with the hard disk space needed to
store spectrograms when using traditional data pre-processing with librosaon the MusicNet dataset. Different settings for the spectrogram calculation
are explored: For CQT, the parameters are (bins, number of bins per octave, hop size); for LinSpec and LogSpec, the parameters are (n_fft, hop size); for
Mel spectrograms, the parameters are (n_fft, n_mels, hop size). Note that librosadoes not provide the spectrogram type of LogSpec, we estimate that
the time taken to calculate LogSpec is the same as its LinSpec counterpart. The size occupied by LogSpec is the same as LinSpec, as they have the same
output array size given the set parameters. Using nnAudio, we can avoid these long processing times and the huge storage requirements by calculating
the spectrograms on-the-fly. The numbers in parentheses in the final column indicate the time taken for nnAudio to finish the same task.

FIGURE 14. A visualisation of the subtle differences between librosa,
CQT2010v2 and CQT1992v2 implementations using a logarithmic scale.
CQT1992v2 yields the best result. A linear sine sweep is used as the input
signal.

linear frequency scale spectrogram (LinSpec), logarithmic
frequency scale spectrogram (LogSpec), Mel spectrogram
(MelSpec), and CQT. In addition, each of these represen-
tations will have different parameter settings that we need
to consider. For LinSpec and LogSpec, we want to explore

five different sizes of Fourier kernels. For MelSpec, we will
be exploring four different sizes of Fourier kernels, and for
each of these kernels, the number of Mel filter banks will be
varied. Finally, for CQT, ten different bins per octave will be
examined. This means that there will be a total of 34 different
input representations.

If we use MusicNet [22], [63] as our training data, the tra-
ditional approach would require the raw waveforms of this
dataset to be converted into 34 different spectrograms that
are saved to the hard disk. Then we would use a dataloader to
load different types of spectrograms into different neural net-
works to train them one by one (Figure 1(a)). This approach
is impractical, as the training set of MusicNet consists
of 20GB of waveforms. After processing these waveforms
into 34 different input representations (with varying types
of spectrograms, window size, etc.), 950.4GB of data would
be generated. As shown in Table 3, Obtaining these different
representations takes a total of 633, 445 and 983 minutes of
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FIGURE 15. Performance of the four different input representations, with
different parameters settings, when performing transcription of the audio
files in the MusicNet dataset. The dashed black line indicates the
transcription accuracy using the same linear model as reported in
MusicNet [22], [63].

processing time on machine A, B, and C, respectively (refer
to Section IV-A1 for the machine specifications). Even if
we delete the spectrograms after training the model to avoid
the storage issue, after knowing which type of spectrogram
is the best input representation, we still need to obtain that
spectrogram again. This traditional approach is tedious.

To alleviate this problem, we use our proposed nnAudio
framework to create a neural network capable of convert-
ing waveforms to spectrograms on-the-fly (See Section III
for how nnAudio works and Figure 1(b) for how nnAu-
dio is different from the traditional approach). Thanks to
the fast computation speed obtained by leveraging con-
volutional neural network on GPUs (Figure 11), we can
train 34 different models without the need of saving the
spectrograms on the hard disk first. The neural network
layer created by nnAudio directly (and quickly) extracts
the spectrograms during the model training. By doing so,
our dataloader only needs to load the raw waveforms into
the neural network. The neural network will then convert
the waveforms to spectrograms on-the-fly when training the
model (Figure 1(b)). Moreover, as nnAudio extracts spec-
trograms really fast, it significantly reduces the computa-
tion time from 983 minutes to only 99 minutes. Figure 15
shows the transcription accuracy obtained with different
input representations. The accuracy is measured by using
mir_eval.multipitch.metrics(). Because all of
these parameters affect the output shape of the spectrograms
(number of bins), the results can be plotted as transcription
accuracy versus number of frequency bins. It is clear from
the image that the input representation and its settings have a
big influence on model performance. Using nnAudio, which
enables fast comparison of different representations, results
in easier to configure and more efficient models.

Next, we want to know if and when (i.e., after how many
epochs of training), nnAudio will become slower than the
pre-processed approach where the spectrograms are already
saved on the hard disk. In this experiment, we will continue

using MusicNet as our dataset. Instead of using a simple
linear layer as our model, we use a more sophisticated model
which consists of two convolutional layers and one bidirec-
tional long short-term memory (LSTM) block. For the on-
the-fly approach, the audio files (in .wav format) are loaded,
and spectrograms are extracted on-the-fly during training. For
the pre-processed approach, the spectrograms are loaded and
fed-forward to the neural network (as shown in Figure 1(a)).
The experimental results are shown in Figure 16. Here,
we also consider the case in which we work on the dataset
for the first time. If we take the audio processing time (using
librosa) into consideration (dashed blue lines), we can see that
the on-the-fly approach using nnAudio (solid green lines) is
much faster. However, once the spectrograms are saved on
the hard disk, the pre-processed approach (solid blue lines)
is faster than nnAudio, since there is no need to repeatedly
convert the audio files to spectrograms. As we have discussed
before, nnAudio is a useful tool for people to experiment
with different spectrograms each with different parameters
quickly without any pre-processing. In this setting, nnAudio
can drastically reduce the time required for the experimental
phase (from the dashed blue lines to the solid green lines).
The order of magnitude of how much faster nnAudio can
be, compared to the pre-processed approach, depends on the
computer configuration, such as whether the CPU is fast
enough to load data from RAM to GPU so that the GPU does
not stay idle, or whether the GPU is fast enough to handle the
data fetched by the CPU. The results for other machines are
reported in the supplementary material.

To sum up, nnAudio allows us to integrate audio processing
into one of the layers of our neural network model. This layer
is responsible for the waveform to spectrogram conversion
during the feedforward process. This way, we only need to
store the audio clips in the original waveform, without saving
extra copies of the dataset for the spectrograms. In addition,
nnAudio is also useful when the dataset is so large that it takes
tens of hours to convert the data from waveforms to spec-
trograms. Once the waveforms are ready, they can be loaded
batch by batch (when using PyTorch) and fed-forward to
nnAudio, which then converts batches of waveforms into
spectrograms on-the-fly. This saves the user the trouble of
processing the original waveforms and saving them as 34 dif-
ferent sets of spectrogram on the hard disk. Yet, it still allows
us to perform the same analysis on the results 15. The full
details of this experiment are outside of the scope of this paper
and may be published in future work.

B. TRAINABLE TRANSFORMATION KERNELS
Because we implement STFT and MelSpec with a 1D con-
volutional neural network whereby the neuron weights corre-
spond to the Fourier kernels andMel filter banks, it is possible
to further finetune these kernels and filter banks together with
the model via gradient descent. This technique is available for
all transformations implemented with a neural network, but
we will only focus on discussing the STFT and MelSpec in
this subsection as an example.

161998 VOLUME 8, 2020



K. W. Cheuk et al.: nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox

FIGURE 16. Comparisons between on-the-fly audio processing and pre-processed audio in terms of computing time needed to train a neural network
model for 100 epochs using librosa(dashed blue lines) and nnAudio (green and dashed green lines). The blue lines represent model training using
spectrograms as the input; the dashed blue lines include the pre-processing time taken by librosato convert waveforms to spectrograms. The green
lines represent model training using waveforms as the input; the dashed green lines represent the model with a trainable waveforms-to-spectrograms
layer. This experiment is conducted on machine C; the results for other machines are reported in Figure S1 and Figure S2 of the supplementary material.

Consider the following task: given a pure sine wave,
we need to train a model that is able to return the frequency
of the signal. To make this task non-trival, the STFT window
size is deliberately set to a small number (64), so that the
output spectrograms have a very poor frequency resolution.
The frequencies for pure sine waves are integers ranging
from 200Hz to 22, 050Hz (the Nyquist frequency). In other
words, we have only 33 frequency bins to represent the
entire audible spectrum from 20 Hz to 20 KHz. To conduct
our experiment, we generated 10,925 pure sine waves with
different frequencies (between 200 and 22, 050Hz). For each
frequency, we generate 10 different pure sine waves with
different phases. In total, 109,250 pure sine waves are gen-
erated to form our dataset. 80% of these sine waves are used
as the training set, and the remaining 20% are used as test
set. We explore whether trainable kernels are able to improve
the model accuracy. We focus on two models for predicting
the frequency of the input sign wave: a fully connected net-
work and a 2D convolutional neural network (CNN). For the
fully connected network, we use one layer with one neuron
and sigmoid activation. The spectrogram is flattened to a
1D-vector, and used as the input to the model. For CNN, two

2D convolution layers are used, with a kernel size (4× 4) for
each layer. The final feature maps of the CNN are flattened
and fed forward to a fully connected network with one neuron
and sigmoid activation. nnAudio is used as the first layer of
these models, to convert waveforms to either standard spec-
trograms, Mel spectrograms, or CQT spectrograms. We set
this first layer to be trainable and compare the resulting loss
to the same model with this layer set as non-trainable. As can
be seen in Figure 17, a trainable transformation layer results
in a lower mean square error (MSE) for STFT, MelSpec,
and CQT layers and for both the Linear as well as the
CNN models.

In order to explain how a trainable STFT, MelSpec, and
CQT layer improves the prediction accuracy, we need to study
the trained Fourier kernels and Mel filter banks. The first
two rows in Figure 18 show the Fourier Basis when the filter
bank is k = 1, 2. Since the results for the fully connected
model are quite similar to the CNNmodel, wewill only report
the results for the CNN model here. The column on the left
visualizes the original Fourier kernels, and the column on
the right visualizes the trained Fourier kernels. Although the
overall shape of the trained Fourier kernels is similar to the
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FIGURE 17. The evolution of loss during training for trainable and
non-trainable kernels on a frequency prediction task. The models with
trainable kernels consistently outperform the models with fixed kernels.
The models were trained on 87,400 pure sine waves and evaluated on
21,850 pure sine waves.

FIGURE 18. The first two rows show the Fourier kernels before and after
training (only two of the kernels are shown here), and the third row
shows the spectrograms resulting from the original and trained kernels.

original Fourier kernels, it contains some higher frequencies
on top of the fundamental frequency for the kernels. These
extra frequencies may allowmore information to be extracted
via STFT. The trained STFT spectrogram is shown in the

FIGURE 19. The first row shows the complete set of Mel filter banks
before and after training. The resulting spectrograms are shown below.

FIGURE 20. The first row shows the complete set of CQT kernels before
and after training. Their resulting spectrograms are shown below.

last row of the same figure. It is clear from this figure that
it has more overtone-like signals around the fundamental fre-
quency, while the original STFT shows a very clean response
for the pure sine wave input. The spectrogram obtained via
the trained STFT may be able to provide clues to the neural
network about the input frequency of the input signal. The
same is true for the trained Mel filter banks and CQT kernels
as shown in Figure 19 and 20. By allowing the neural network
to further train or finetune the Mel filter banks and CQT
kernels, we allow a richer spectrogram to be obtained. This
provides the frequency prediction models, regardless of the
network architecture, with more information so as to reach a
lower MSE loss.

This subsection shows that further training or finetuning
the spectrogram transformation layer with nnAudio results
in a lower MSE loss. Despite the fact that this analysis uses
a simple, artificially generated dataset, it still provides a
good example of how a higher-performing end-to-end model
can be obtained with a trainable transformation layer. The
detailed experimental results are available on the nnAudio
github repository2.
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VI. CONCLUSION
We have presented a new framework for extracting different
types of spectrograms on-the-fly with neural networks. This
approach allows one to dynamically train the kernels (includ-
ing Fourier kernels,Mel filter banks, andCQTkernels) as part
of the larger neural network training, specifically adapted to
the problem at hand. Our approach has been implemented as
the GPU-based library, nnAudio.

Different time domain to frequency domain transformation
algorithms such as short-time Fourier transform, Mel spec-
trograms, and constant-Q transform have been implemented
in PyTorch, an open-source machine learning library.
We leverage the CUDA integration of PyTorch that enables
fast GPU based audio processing. In our experiments we
found that GPU audio processing reduces the time it takes to
convert 1,770 waveforms to spectrograms from 10.6 seconds
to only 0.001 seconds for the Short-Time Fourier Transform
(STFT); from 18.3 seconds to 0.015 seconds for the Mel
spectrogram; and from 103.4 seconds to 0.258 seconds for the
constant-Q Transform (CQT). These experiments were per-
formed on three different machines: two desktops with GTX
1070 and RTX 2080 Ti respectively, and one DGX station
with a Tesla v100 GPU. Although it takes some time (around
5 seconds) to initialize the transformation layer (transferring
Fourier kernels fromRAM toGPUmemory), once everything
is ready on the GPU memory, the processing time is in the
order of microseconds for a single spectrogram, making the
initialization time negligible in the context of training a neural
network.

Furthermore, our proposed neural network-based audio
processing framework allows for trainable and finetunable
Fourier kernels, Mel filter banks, and even CQT kernels.
An experiment discussed in Section V-B confirms that train-
able kernels result in a better final model on a frequency
prediction task compared to non-trainable kernels.

Finally, we present a neural network approach to calculate
different versions of the CQT (direct computation, down-
sampling method, and by removing the frequency domain
kernels). To our knowledge, our proposed framework is the
first neural network-based audio processing toolbox that sup-
ports CQT. When comparing the computation speed of dif-
ferent neural network-based CQT algorithms (Figure 11(b)),
we discovered (in Section III-C5) that the CQT algorithm,
which uses time domain CQT kernels, performs faster than
the commonly used CQT algorithm based on frequency
domain kernels [7], [59]. As a result, the CQT compu-
tation speed of converting 1,770 waveforms to spectro-
grams is reduced drastically in our proposed GPU neural
network-based framework from 0.258 to only 0.001. When
applying nnAudio to a real dataset, MusicNet, it significantly
reduces the computation time from 983 minutes to only
99 minutes.

To make our proposed GPU audio processing tool easy
to use for other researchers, we have combined all of the
algorithms discussed above into a user-friendly PyPI package
called nnAudio2.
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