
Received June 8, 2020, accepted August 17, 2020, date of publication August 24, 2020, date of current version September 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019108

Towards Building Reliable and Cost-Efficient
Distributed Storage Systems
YICHUAN QI 1,2, DAN FENG1,2, (Senior Member, IEEE), AND BINBING HOU3
1Key Laboratory of Information Storage System, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
2School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
3LinkedIn Inc., Sunnyvale, CA 94085, USA

Corresponding author: Yichuan Qi (yichuan0707@hust.edu.cn)

ABSTRACT Reliability and cost are two important targets for distributed storage systems. For many years,
numerous schemes have been proposed to improve the reliability or cost of distributed storage systems,
and they can be divided into three categories: (1) data redundancy schemes; (2) data placement schemes;
and (3) data repair schemes. However, it is still unclear regarding how to build a reliable and cost-efficient
distributed storage system, because (i) insufficient considerations on the combinations of different schemes;
and (ii) insufficient considerations on failures and recoveries of different subsystems (racks, nodes, disks, and
sectors). To measure the reliability and cost caused by different schemes, we design and implement CR-SIM,
a Comprehensive Reliability SIMulator for distributed storage systems. It considers various affecting factors,
such as the system topology, the data redundancy scheme, the data placement scheme, the data repair
scheme, and the failure/recovery models of different subsystems. By using CR-SIM, we conduct various
simulation-based experiments, and the experimental results reveal several important findings, which are
helpful to build reliable and cost-efficient distributed storage systems. For public use, we have open-sourced
our source code at https://github.com/yichuan0707/CR-SIM.

INDEX TERMS Reliability, cost-efficient, distributed storage system, simulation, data redundancy scheme,
data placement scheme, data repair scheme.

I. INTRODUCTION
Today’s distributed storage systems generally consist of
thousands of commodity servers to provide storage services,
such as the Google File System (GFS) [1], the Hadoop
Distributed File System (HDFS) [2], and theOpenStack Swift
object storage (Swift) [3].

Reliability is critical for distributed storage systems.
The services provided by distributed storage systems must
guarantee a certain reliability standard. For example, cloud
storage services like Windows Azure Storage [4] and
Amazon S3 [5] aim to achieve a yearly reliability of 11
9’s, i.e., 99.999999999%. Such high reliability is often
guaranteed by massive resource consumption (cost), such as
large storage overheads or data transferring.

In current distributed storage systems, numerous schemes
have been proposed for reliability and cost purposes. And
these schemes can be divided into three categories: (i) data
redundancy schemes, such as the replication (REP) [6],

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .

Reed-Solomon (RS) codes [7], Local Repairable Codes
(LRC) [8], and Regenerating Codes [9], [10]); (ii) data
placement schemes, such as the spread placement scheme
(SSS) [11], partitioned placement scheme (PSS) [11], and
CopySet [12] for data placement on nodes, and flat data
placement (Flat) and hierarchical data placement (Hier) [13]
for data placement on racks; (iii) data repair schemes, such
as eager repair (Eager), lazy repair (Lazy) [14], risk-aware
failure identification repair (RAFI) [15], and the combination
of Lazy and RAFI (Lazy+RAFI) [15].
However, a high-reliability scheme results in a high system

cost (such as the cost of storage or network bandwidth) while
a low-cost scheme cannot satisfy the reliability requirement.
For example, more redundant data greatly improves the
reliability at the price of additional storage cost, and the
low repair cost of Lazy is based on great reliability loss.
Thus, building a reliable and cost-efficient distributed storage
system is challenging.

Although prior studies have focused on improving sys-
tem reliability and reducing system cost, they can not
provide sufficient guidelines for building reliable and

157862 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4226-7152
https://github.com/yichuan0707/CR-SIM
https://orcid.org/0000-0003-4938-9216

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

cost-efficient distributed storage systems. First, there are
insufficient considerations on combinations. A combination
(e.g., RS+SSS+Flat+Eager) is the collection of the data
redundancy scheme, data placement scheme, and data repair
scheme, which is used to indicate one system’s data
redundancy, placement, and repair. Most prior studies [8],
[10], [16] compare schemes in one category, and several
prior studies [13], [15] consider the combination of two
categories at most. Second, there are insufficient consid-
erations on failures and recoveries of subsystems (racks,
nodes, disks, and sectors). Many studies [11], [15], [17], [18]
only consider one subsystem (disk or node) for reliability
measurements. And the different repair patterns of systems
will bring different recovery models to subsystems. All
these incomplete considerations make us doubt the existing
conclusions on reliability and cost. In addition, researchers
trend to display the improvements of the new schemes they
proposed, the defects of these schemes are often habitually
hidden.

To understand the reliability and cost in depth and provide
guidance, we present a comprehensive simulation-based
quantitative study on the reliability and cost of distributed
storage systems. For this purpose, we build a comprehensive
simulator CR-SIM to measure the reliability and cost of dis-
tributed storage systems. It is designed to be comprehensive
by accounting for various factors as inputs, including the
system architecture, the data redundancy scheme, the data
placement scheme, the data repair scheme, as well as failure
and recovery models of different subsystems. It reports the
probability of data loss as the reliabilitymetric and the storage
and repair cost as cost metrics.

Using CR-SIM, we conduct plenty of experiments in terms
of combinations by adopting recovery models from HDFS
and Swift. These two systems represent two widely used
repair patterns. HDFS represents the unified repair pattern,
and Swift represents no unified repair pattern. Based on
the analysis of the experimental results, we obtain several
significant findings:
• The choice of data redundancy scheme affects both the
reliability and cost, and reliability of the combination
mainly depends on the fault tolerance of the redundancy
scheme.

• The choice of data placement scheme on nodes affects
reliability but basically does not affect the cost, PSS
achieves the highest reliability among three data place-
ment schemes on nodes.

• The choice of data placement scheme on racks
affects both reliability and cost, compared with Flat,
Hier sacrifices reliability in exchange for repair cost
reductions.

• The choice of Lazy greatly decreases reliability in
exchange for repair cost reductions when combined with
RS, but it cannot obtain repair cost reductions with
reliability loss when combined with MSR or LRC.

• The choice of RAFI also decreases reliability in
exchange for repair cost reductions.

• The effects of Lazy and RAFI will not be accumulated,
the reliability and repair cost of Lazy+RAFI are
between Lazy and RAFI (the data redundancy scheme
is RS).

• The combination achieves higher reliability under no
unified repair pattern than under the unified repair
pattern, but its repair cost under these two repair patterns
is almost the same.

• The minimum cost combination under the given reli-
ability standard is determined by the pricing model
of cost. Under the pricing models of Amazon [19],
Azure [20], and Alibaba cloud [21], the eligible
combination is MSR+PSS+Flat+Eager for HDFS and
MSR+PSS+Hier+Eager for Swift.

Our findings not only reveal the impacts of schemes
on reliability and cost, but also guide system researchers
and designers to build reliable and cost-efficient distributed
storage systems. For public use, our simulator CR-SIM
is available at https://github.com/yichuan0707/
CR-SIM.

The rest of this paper is organized as follows. Section II
introduces some background information on distributed
storage systems, data redundancy schemes, data placement
schemes, and data repair schemes. Section III presents the
design of CR-SIM. Section IV evaluates the reliability and
cost of all combinations. At last, Section V introduces the
related work and Section VI concludes.

FIGURE 1. Overview of a distributed storage system.

II. BACKGROUND
A. DISTRIBUTED STORAGE SYSTEMS
1) SYSTEM OVERVIEW
Distributed storage systems deliver storage services to clients.
Fig. 1 illustrates the overview of a distributed storage system.
The system comprises multiple racks; each rack holds several
to dozens of machines called nodes (or servers); each node

VOLUME 8, 2020 157863

https://github.com/yichuan0707/CR-SIM
https://github.com/yichuan0707/CR-SIM

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

is attached with one or multiple disks that provide storage
capacity. Nodes in the same rack are connected by a ToR
switch, different racks are connected by a network core
which refers to the abstraction of networks. Such a system
architecture inherits from previous works [13], [17].

Distributed storage systems organize data as fixed-sized
units called chunks, and multiple chunks make up a stripe.
There are millions of stripes in a distributed storage system.

2) RELIABILITY ISSUES
Reliability is a classical problem, but the reliability of
a single subsystem (rack, node, disk or sector) is quite
different from that of a distributed storage system. Reliability
studies [22]–[24] of a single subsystem analysis the failure
statistics of the subsystem to obtain its failure distribution
and recovery distribution. Root causes of failures and other
factors that may affect the distributions will be discussed.
Reliability studies [13]–[15] of the distributed storage
system adopt the failure/recovery distributions of different
subsystems as the inputs to measure the reliability of the
whole system. In this paper, we discuss the reliability of the
distributed storage system.

The reliability is measured with data loss [12], [13],
the correspondingmetric is the probability of data loss(PDL),
and PDL is defined as:

PDL =
Nlost
Ntotal

, (1)

Nlost is the number of lost chunks,Ntotal is the number of total
chunks in the system. Lower PDL means the system achieves
better reliability.

3) COST ISSUES
In this paper, the cost refers to resource consumption.
The total cost of a system can be divided into three
parts: computing cost, storage cost, and bandwidth cost.
In particular, the bandwidth cost is made up of the bandwidth
utilized by the system running in the normal mode and that
in the repair mode (i.e., using the data repair scheme to repair
failed chunks).

Prior researches [8], [14], [25] only consider storage cost
and repair cost because: (i) no matter how to build the
system, the read bandwidth cost is fixed; (ii) they aim at the
steady-state system - data is once written will not be changed,
the write bandwidth cost can be ignored; and (iii) they aim
at large file storage, and the computing cost can be treated
as fixed because it is not the bottleneck resource. In this
paper, we follow the same rules and treat the total cost as
the sum of storage cost and repair cost. The TSC is the total
storage cost during the mission time and it is measured with
PiB•month. For example, if one distributed storage system
occupies 1.5 PiB storage space for 10 years, its TSC is
1.5 PiB × 10 years = 180 PiB • month. The TRC is the
total repair cost during the mission time, and it is measured
in PiBs.

We use the price to unify TSC and TRC . Suppose the price
of storage is α per PiB per month and the price of bandwidth
is λ • α per PiB. λ is the unit price ratio between bandwidth
and storage. So, TC can be figured out through (2).

TC = (TSC + λ • TRC) • α (2)

We can obtain the values of α and λ from the pricing model
of cloud service providers [19]–[21].

B. RELIABILITY AND COST OF SCHEMES
The reliability and cost of one distributed storage system are
determined by the adopted combination. Each combination
is made up of three parts: redundancy, placement, and repair.
In the following, they will be separately introduced.

1) DATA REDUNDANCY SCHEMES
In distributed storage systems, it is essential to maintain data
redundancy. The redundant chunks are generated by a given
data redundancy scheme and they are the alternatives for
failed chunks, which is higher reliability builds upon higher
storage cost.

We introduce the concept of recovery penalty [15] to
explain data redundancy schemes. The recovery penalty is the
data transfer for recovering a stripe. And the recovery penalty
factor is the ratio between the recovery penalty and the size
of failed data.

We concentrate on four kinds of data redundancy schemes:

• Replication (REP): Replication is a popular data
redundancy scheme, it maintains n replicas for each
original data chunk. Recovering a failed chunk can be
finished by fetching another copy of it, so its fault
tolerance is n− 1 and recovery penalty factor is 1.

• Reed-Solomon (RS) codes: To relieve the n-fold
storage overheads of REP, RS codes [7], [26] have
been adopted as alternatives. There are two important
parameters in RS codes: n and k , where k < n. For
every k raw uncoded chunks, RS codes encode them
into n coded chunks, these n chunks compose a stripe
and distribute to n distinct nodes. For RS(n, k), its fault
tolerance is n − k and its recovery penalty for single
failure or multiple failures is k chunks.
But, the high recovery penalty of RS codes becomes
unbearable in large-scale distributed storage sys-
tems [27]. To relieve it, the data redundancy scheme
has been improved from two directions: (i) reduce
the number of nodes participating in the repair; (ii)
reduce the amount of data provided by each repair
participating node. The representative of the former is
Local Repairable Codes (LRC), and the representative
of the latter is regenerating codes.

• Local Repairable Codes (LRC):LRC [8], [27] exploits
locality to reduce repair cost. In this paper, we focus
on the LRC in Windows Azure Storage [8]. It divides k
original data chunks into l groups (suppose k is divisible
by l) and creates one local parity chunk in each group,

157864 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

in addition, n− k − l global parity chunks are generated
by calculations with k original chunks. In LRC(n, k, l),
recovering an original data chunk or a local parity
chunk needs to retrieve k

l available chunks from the
same group, while recovering a global parity chunk or
multiple chunks still needs to retrieve k available chunks
from the stripe, i.e., the recovery penalty for single
failure is k

l or k chunks. In general, LRC’s recovery
penalty factor is explained as its average recovery
penalty factor, e.g., LRC(10, 6, 2)’s recovery penalty
factor for single failure is k

l
•
k+l
n + k • n−k−ln = 3.6.

Similarly, LRC(n, k, l) has n− k parity chunks in total,
but it is unable to recover from all situations of n − k
failures. Its fault tolerance is defined as the average
fault tolerance, e.g., LRC(10, 6, 2) can repair all three
failures and 85.7% four failures [8], so its fault tolerance
is 3.857.

• Minimize Storage Regenerating (MSR) codes: MSR
codes [9], [10] have the same stripe layout and fault
tolerance (n−k) with RS codes, but it needs an additional
parameter d (k ≤ d < n). When recovering one
failed chunk, if the available chunks in the stripe are
no less than d , MSR codes read 1

d−k+1 part from d
available chunks (regenerating), the recovery penalty
factor is d

d−k+1 ; if the available chunks in the stripe
are less than d (but no less than k), the regenerating
is disabled, the recovery penalty factor is downgraded
to k .

Except these four data redundancy schemes, many other
data redundancy schemes will not be discussed, like RAID
codes, other regenerating codes, and hybrid schemes. Some
RAID codes (e.g., EVENODD [28] and RDP [29]) are
double-erasure correcting codes and they cannot provide
sufficient reliability for distributed storage systems. And
some RAID codes like generalized RDP [30] focus on
improving the encoding or decoding speed which is not
the key point of distributed storage systems. As for other
kinds of regenerating codes (e.g., minimize bandwidth
regenerating (MBR) codes [31], simple regenerating codes
(SRC) [32], and else), they are more complicated than
MSR codes and consume too much more storage resources.
The hybrid schemes (e.g., MICS [33]) are built based on
the aforementioned representatives, and they put too much
emphasis on performance improvement which is not the
focus of this paper. Therefore, in this paper, we adopt REP,
RS codes, LRC, andMSR codes as the representatives of data
redundancy schemes.

The trade-offs between reliability and cost are changing
with the data redundancy scheme. From REP to RS codes,
higher reliability and lower storage cost come with a much
higher repair cost [34], [35]. Compare with RS codes, LRC
declares achieving higher reliability and lower repair cost
with small additional storage cost [8]; MSR codes achieve
higher reliability and lower repair cost under the same storage
cost [10]. In general, the trade off between reliability and cost
always exists.

2) DATA PLACEMENT SCHEMES
The distributed storage system organizes data with chunks
and stripes, so the data placement scheme determines how
to place stripes and chunks to nodes and racks. In this part,
we introduce data placement schemes on nodes and racks,
respectively.

To introduce data placement schemes on nodes, a metric
scatter width (w) is defined. It represents the number of nodes
for participating single node failure repairs, i.e., one node
repair needs to fetch data from w nodes. The reliability and
cost of data placement schemes on nodes are affected by w.

In distributed storage systems, there are three data
placement schemes on nodes:

• Spread Placement Scheme (SSS): In SSS, each stripe’s
n chunks have been stored on n nodes which are
randomly selected from N nodes (suppose the system
has N storage nodes and N � n). Typically, number of
chunks in one node is greater than N , so w = N − 1.
SSS has been adopted by many systems, like QFS [36]
and RAMCloud [37].

• Partitioned Placement Scheme (PSS): PSS [11]
divides N nodes into disjoint partitions, each partition
contains n nodes, and each stripe is stored on a
designated partition, i.e., w = n − 1. PSS has been
adopted by Facebook [38].

• CopySet: CopySet [12] is the moderate data placement
scheme between SSS and PSS, it distributes stripes to
nodes on the principle of ensuring the given w(n− 1 <
w < N − 1), w = 2(n − 1) is a choice which has been
repeatedly mentioned.

The trade-offs between reliability and cost are changing
with the data placement scheme on nodes. From SSS to
CopySet to PSS, w becomes smaller and smaller, more
intensive data placement decreases the data loss frequency
but increases the losing chunks in each incident. These two
conflicting indicatorsmake the changes on reliability and cost
unclear.

For data placement schemes on racks, a metric r is defined.
It means chunks in each stripe reside in r(r ≤ n) distinct
racks. The reliability and cost of data placement schemes on
racks are determined by r .
There are two data placement schemes on racks in

distributed storage systems:

• Flat Placement Scheme (Flat): In Flat, r = n, i.e., n
chunks in each stripe have been put on n different nodes
which belong to n distinct racks (one chunk per rack).
Flat has been widely used in practical distributed storage
systems [8], [39], [40].

• Hierarchical Placement Scheme (Hier): In Hier, r <
n, i.e., the n chunks in each stripe have been put on n
different nodes which belong to r distinct racks, each of
them holds n

r chunks. Recovering any failed chunk can
get part of chunks from the same rack which stores the
failed chunk, thus reducing the repair cost. Hier has been
adopted by HDFS [2].

VOLUME 8, 2020 157865

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

The trade-offs between reliability and cost are changing
with the data placement scheme on racks. Using Flat,
reliability benefits from maximum fault tolerance against
node and rack failures. Compared with Flat, Hier reduces the
repair cost, but its reliability change is uncertain because the
reduced repair cost improves data reliability and the reduced
rack-level fault tolerance reduces data reliability.

3) DATA REPAIR SCHEMES
The data repair scheme determines when to start data
recovery, and the start time of data recovery influences both
reliability and cost.

In distributed storage systems, there are four representative
data repair schemes:
• Eager repair scheme (Eager): Eager is the default
data repair scheme in many distributed storage systems,
which is the system repairs the failed stripe as soon as it
is detected. It ensures high reliability, but the repair cost
is high.

• Lazy repair scheme (Lazy): Adopting Lazy [14],
the system will not repair the failed stripe until the
number of failures in one stripe reaches a given threshold
rth (rth < n−k). If rth = 2, stripes with one failed chunk
will not be repaired.

• Risk awareness failure identification repair scheme
(RAFI): RAFI [15] defines Ti (i = 1, 2, · · · , n − k) as
the timeout threshold for stripe which has i failures. The
more failures in the stripe, the higher lost risk it has. So,
RAFI gives a long timeout threshold to low risk stripes
to reduce repair cost and a short timeout threshold to
high risk stripes to improve reliability (Ti decreases with
i increase).

• The combination of Lazy and RAFI (Lazy+RAFI):
Lazy and RAFI can be enabled at the same time, that is
Lazy+RAFI.

The trade-offs between reliability and cost are changing
with the data repair schemes. On the basis of Eager, Lazy
obtains repair cost reductions at the expense of reliability
decrease. RAFI improves the data loss and repair cost caused
by node failures by adopting different timeout thresholds
for stripes with different risks [15], but the effects caused
by failures of other subsystems are uncertain. As for
Lazy+RAFI, its reliability and cost is also unclear.

At last, we summarize the reliability and cost of all the
above mentioned schemes in Table 1. In each category,
the first line displays the default scheme (the widely used
scheme) in the category, ‘‘–’’ means the corresponding
scheme has the same reliability or cost with the default
scheme, ↑ means increase and ↓ means decrease. Some
cells contain both ↑ and ↓, it means the consequences of
the scheme include both increase factor and decrease factor.
The final consequences should be obtained through analysis.
What’s more, the variations of reliability and cost are
unclear when consider from the perspective of combinations
(schemes from different categories work together). These two
points are the main contributions of this paper.

TABLE 1. Collections of schemes.

III. DESIGN OF CR-SIM
To measure the reliability and cost of distributed storage
systems, we build a comprehensive simulator CR-SIM.
We are free to set the data redundancy scheme, the data
placement scheme, and the data repair scheme in CR-SIM.

A. ARCHITECTURE OVERVIEW
CR-SIM has three main parts which work for data distri-
bution, event generating, and event handling. Accordingly,
CR-SIM implements three corresponding modules: data
distribution, event generator, and event handler. The data
distribution module distributes stripes to disks based on
the adopted combination. Like other simulators [13], [14],
CR-SIM uses events to represent the failures and recoveries
of subsystems. The event generator generates failure and
recovery events of all subsystems. The event handler is
responsible for handling all the events, and it outputs the final
metrics on reliability and cost (PDL, TSC , and TRC).

Fig. 2 illustrates the architecture of CR-SIM. At the top,
CR-SIM performs simulation over a fully large number of
iterations. In each iteration, CR-SIM conducts the following
three steps to get the final metrics:

1) CR-SIM takes the basic simulation settings, system
architecture, data redundancy settings, data placement
settings, and data repair settings as inputs to build the
system model and distribute chunks (1©). All these
settings are recorded in a configuration file.

2) CR-SIM generates failure and recovery events of all
subsystems (racks, nodes, disks, and sectors) based on
the corresponding models (recorded in an XML file)
until the mission time is reached (2© 3©). All generated
events are put into an event queue with chronological
order (4©).

3) CR-SIM handles all events in the event queue and
collects the information about data loss and repair cost
(5© 6©). In this process, the subsystem’s recovery event
has to be transformed into actual data recovery event
based on the repair settings and inserts into the event
queue again (7©). With simple calculations, CR-SIM
gets the reliability and cost metrics in one iteration (8©).

Finally, the final values of reliability and cost metrics are
averages of all iterations.

157866 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

FIGURE 2. Architecture of CR-SIM.

All parameters in the configuration file are divided into
five parts. Table 2 lists the symbols and definitions of all
parameters.

TABLE 2. Parameters in the configuration file.

The total chunks in the system (Ntotal) and the total storage
cost (TSC) can be figured out through these parameters,
which is (3) and (4).

Ntotal = d
230 • n • S
k • b

e (3)

TSC =
n
k
• S • T (4)

B. DATA DISTRIBUTION
Based on the parameters in the configuration file, CR-SIM
distributes chunks to subsystems. First, CR-SIM builds a tree
structure to represent the architecture of the system. The root
of the tree represents the system. And its R children are
racks; each rack’s Nr children are nodes in it; each node’s Dn
children are disks in it. Second, CR-SIM calculates the total
stripe amount (d 2

30S
kb e) and distributes chunks of all stripes to

disks. The indexes of stripes will be recorded as the children
of disks where these stripes are stored. Note that the data
distribution varies across iterations.

C. EVENT GENERATING
CR-SIM considers failure and recovery events from four
levels of subsystems: racks, nodes, disks, and sectors.
Failures can be either transient or permanent. The transient
failure means a subsystem is temporary unavailable without
actual data loss (e.g., due to network breakdown, reboots,
or node maintenance). The permanent failure means a
subsystem failure brings permanent data loss (e.g., due to disk
or node crashes). All disk and sector failures are permanent
failures. Node failures include both transient and permanent
failures. Only transient rack failures are taken into account
like previous works [13], [14]. For recoveries, CR-SIM
adopts realistic recovery models that come from practical
systems to generate recovery events. For each subsystem,
the time-to-repair (TTR) is made up with two parts: the failure
identification time (Tiden) and data transferring time (Ttran),
that is (5). For transient failures, Tiden obtains from failure
statistics, and Ttran = 0; for permanent failures, Tiden is

VOLUME 8, 2020 157867

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

determined by the failure identification time threshold of
different subsystems, Ttran can be figured out through (6),
a •B is the aggregate bandwidth. The value of a is determined
by the subsystem and the data placement scheme. For sector
repairs, whatever the data placement scheme on nodes is,
when the data placement on racks is Flat, a = k , when the
data placement scheme on racks is Hier, a = r − 1. For disk
or node repairs, when the data placement scheme on racks
is Flat, a = min(w,R); when the data placement scheme on
racks is Hier, if the data placement scheme on nodes is SSS,
a = R, if the data placement scheme on nodes is PSS or
CopySet, a = r − 1.

TTR = Tiden + Ttran (5)

Ttran =
recovery penalty

a • B
. (6)

The considerations on failures and recoveries are more
comprehensive than prior studies [8], [13], [15].

In CR-SIM, there are five event types: (i) transient
failure; (ii) permanent failure; (iii) transient failure recovery;
(iv) permanent failure recovery; and (v) actual data recovery.
And each event is made up with three attributes: (i) the event
occurrence timestamp (to); (ii) the event type (type); and
(iii) the chunks affected by the event (c_ids).
The former four event types correspond to the subsystem’s

failure or recovery, they are generated by the event generator
(4© in Fig. 2). Each subsystem’s failure event and recovery
event appear in pairs (one subsystem’s transient failure
and transient failure recovery, or its permanent failure
and permanent failure recovery). If the failure occurrence
timestamp is tFo , the corresponding recovery timestamp is
tRo = tFo + TTR. All generated events are put into the event
queue with chronological order.

The actual data recovery will be introduced in the next
section.

D. EVENT HANDLING
CR-SIM maintains the real-time states of chunks in all
stripes. Each chunk is associated with three states during the
simulation: (i) normal (chunk is accessible and no failure); (ii)
unavailable (chunk encounters transient failure); and (iii) lost
(chunk encounters permanent failure). In terms of severity,
normal is the least severe, unavailable is the middle severe,
lost is the largest severe. If one node fails, the states of
chunks on it will be updated only if the states becomes
more severe, that is, the normal or unavailable states become
lost states for a permanent node failure; or normal states
become unavailable states for a transient node failure, but the
lost states (the corresponding chunks are already hit by disk
failure or sector failure) remain unchanged.

The event is handled as follows. The event handler module
pops event (to, type, c_ids) from the event queue. If the event
type (type) is permanent failure recovery, the event will be
translated into an actual data recovery event and inserted into
the event queue again (7© in Fig. 2). The reason that promotes
us to introduce the actual data recovery event into CR-SIM is

the support of Lazy, RAFI, and Lazy+RAFI. These schemes
consciously change the start time of actual data recovery,
which make the subsystem recovery and the actual data
recovery not synchronized. If type is not permanent failure
recovery, CR-SIM handles the event as follows:

1) collects all indexes of stripes which have chunk in c_ids
(stripes affected by the event) and also collects the
corresponding chunks’ indexes (6© in Fig. 2);

2) changes the states of chunks in c_ids based on type;
3) during the handling process, if the lost chunk has

been recovered, the recovery penalty is added to TRC ,
if one stripe becomes lost (the number of lost chunks
in it exceed the stripe’s fault tolerance), the stripe’s
information will be recorded.

Based on the recorded information, CR-SIM outputs reliabil-
ity and cost metrics.

IV. EVALUATIONS
In this section, we present the reliability and cost of different
combinations. In the following, we introduce all required
parameters for simulations at first. Then, we study the
trade-offs between reliability and cost for changing each
category in the combination, which is changing the data
redundancy scheme, the data placement scheme or the data
repair scheme. At last, we discuss the reliability and cost for
systems with different repair patterns. What’s more, we point
out the minimum cost combination under the given reliability
standard for different repair patterns.

A. SIMULATION PARAMETERS
In this section, we introduce the effects of different param-
eters at first, then explain why we adopt the corresponding
parameters for simulations. When we discuss the influence
of one parameter, all other parameters remain unchanged.

1) BASIC SIMULATION SETTINGS
Larger data scale (S), longer mission time (T) or higher
number of iterations (Ni) can help us to obtain more accurate
simulation results, but all of them establish on much higher
simulation time. To obtain accurate simulation results in
an acceptable time, we give moderate values to the three
parameters, i.e., S = 1 PiB, T = 10 years, and Ni = 10, 000.
The three values have been adopted by prior study [14].

2) SYSTEM ARCHITECTURE
The reliability and cost are hard to be affected by the system
architecture. The simulation results show that higher rack
count (R) incurs higher reliability due to higher aggregate
bandwidth (see (6) and (5)), while higher nodes per rack
(Nr) or higher disks per node (Dn) cannot affect reliability
because the failure and recovery time of subsystems remain
unchanged. Besides, the reliability variation brought by the
change of R is not significant. As for the cost, it doesn’t
change with the system architecture (R, Nr or Dn) because
the total data amount (S) and the data redundancy scheme

157868 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

remain the same. Therefore, we set R = 60,Nr = 6,Dn = 3
to facilitate data distribution. Suppose each disk’s capacity is
2TB, we can figure out that C = 2 PiB. Both the bandwidth
(B) and chunk size (b) affect reliability. We get their values
from practical systems, i.e., B = 200Mbps [17] and b =
256 MiB [2].

3) DATA REDUNDANCY SETTINGS
For any data redundancy scheme, higher fault tolerance
(n− k) brings higher data reliability at the price of higher
storage cost; under the same n − k , larger k brings lower
storage cost at the price of reliability loss and higher repair
cost. Therefore, practical distributed storage systems [6],
[36], [39] adopt moderate n− k and k , i.e., k = 6 or k = 10,
and n − k between 2 and 4. In our simulations, we follow
the same principle. For replicated data redundancy scheme,
if n is not given, REP means triple replication (n = 3), which
is the default redundancy scheme for many systems [2], [6],
[12], and the Nr increases to 12 to provide enough capacity
(to ensure C > n • S). For erasure coded data redundancy
scheme, if (n, k) is not given, RS represents RS(9, 6) [36],
MSR represents MSR(9, 6, 8) (d = n− 1 the optimal choice
because it has the lowest repair cost [41]), and LRC represents
LRC(10, 6, 2) [8]. In the discussions of data redundancy
schemes, other (n, k)s will be mentioned for comparisons,
like RS(10, 6) [42], RS(14, 10) [39], MSR(14, 10, 13), and
LRC(16, 12, 2) [13].

4) DATA PLACEMENT SETTINGS
For data placement schemes, only CopySet and Hier need to
specify the parameter. For CopySet, simulation results show
that the reliability decreases with the increase of w, so we
use a low w value as the default. Specifically, if w is not
given, CopySet means CopySet(w = 2(n − 1)) [12]. For
Hier, simulation results show that reliability and repair cost
increase with the increase of r , so we use a moderate value as
the default. If r is not given, Hier means Hier(r = 3) [17].

5) DATA REPAIR SETTINGS
For Lazy, a larger recovery threshold (rth) greatly damages
the reliability in exchange for more repair cost reductions.
To guarantee reliability and rth ≤ n − k , rth = 2 [14] is the
default for Lazy, it means system launches the repair process
when one stripe has at least two failures.

For RAFI, higher Ti reduces repair cost but increases the
risk of data loss (lower reliability). Therefore, we cite the
moderate Tis from prior study [15] as the default, i.e., T1 =
1 hour,T2 = 15 minutes,Ti = 2 minutes(2 < i ≤ n − k).
It means stripe will be recovered when it has one failure and
lasts more than 1 hour, or it has two failures and lasts more
than 15 minutes, or it has more than two failures (no more
than n− k) and lasts more than 2 minutes.

6) FAILURE AND RECOVERY MODELS
The failure and recovery models of different subsystems
(contents in the XML file) come from production traces

and production systems. Table 3 summarizes all these
models. For recovery models, only Tidens are given. TTRs
for all subsystems can be figured out through (5) and (6).
Except that, it should be noted that we give Tidens of
two different systems: HDFS and Swift, which represent
two repair patterns. HDFS represents unified repair pattern,
which means it has unified knowledge of failures, so all
storage nodes periodically report its failure information to
the metadata server and the metadata server launches repair
operations. On the contrary, Swift represents no unified repair
pattern, which means it has no unified knowledge of failures,
so each storage node periodically detects and repairs the
failures of its adjacent node. Both Lazy and RAFI establish
on unified knowledge of failures, so HDFS supports all the
four data repair schemes, but Swift only supports Eager.

Failure models are distributions which are the statistical
results of traces.
• Sector failure: It has been considered that sector
failures follow a Possion process [23], [43], so we
can use Exponential distribution (mean-time-to-failure
(MTTF) of sectors is 1 year [43]) as the sector failure
model.

• Disk failure: The MTTF of disks ranges from few
years [27] to tens of years [14], [16], [17]. We use a
Weibull distribution with a characteristic life of 10 years
to model the time-to-failure of disks [13].

• Node failure: The statistics of Yahoo! cluster [44]
indicate that 0.8% nodes permanently fail each month.
Thus, we set the MTTF of permanent node failures
as 125 months. According to Google’s research [16],
the MTTF of transient node failures is about 4 months.
We set the time-to-failure of the permanent and transient
node failure as exponentially distributed with means
125 months and 4 months, respectively.

• Transient rack failure: We follow prior studies [13],
[14], [16] to set the MTTF of rack failures as 10 years
and use the corresponding Exponential distribution as
the failure model.

For recovery models, the Tidens of permanent failures and
transient failures are come from production systems and
production traces, respectively.
• Sector failure recovery: Both HDFS and Swift have
been widely deployed, so we adopt their settings
directly. That is, HDFS [2] scans all disks every 3 weeks
for sector failures, and each Swift node [3] scans disks
every 40 hours for sector failures. Due to the randomness
of sector failures, Tiden of HDFS is a random value
between 0 and 3 weeks; Tiden of Swift is a random value
between 0 and 40 hours.

• Disk failure recovery: Similarly, HDFS refreshes states
of all disks every 12 hours, and each Swift node detects
the states of disks every hour. For disk failure recovery,
Tiden ofHDFS is a randomvalue between 0 and 12 hours;
Tiden of Swift is a random value between 0 and 1 hours.

• Node failure recovery: In distributed storage systems,
communications between nodes are frequent so that

VOLUME 8, 2020 157869

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

the node failure will be detected very soon (in several
seconds). We just need a fixed unavailable time thresh-
old (i.e., 15 minutes [16], [45]) to distinguish transient
and permanent node failure. Therefore, the Tiden of
permanent node failure recovery is 15minutes. The Tiden
of transient node failure recovery follows the Weibull
distribution with a characteristic life of 0.1 hour [14].

• Transient rack failure recovery: The Tiden follow
the Weibull distribution with a characteristic life
of 24 hours [13], [14].

Simulation results are presented with the following princi-
ples.We use the log scale to displayPDL and the normal scale
to display cost metrics.We set S = 1PiB for all combinations,
so TSC is determined by n

k (see (4)) which is very clear. It will
not be specifically illustrated. And TC is represented by the
value of TC

α
.

B. EFFECTS OF SCHEMES
We study the reliability and cost trade-offs in terms of com-
binations. We use the HDFS as the system paradigm because
it supports all-round combinations. The comparisons between
HDFS and Swift are put in the next section. Combinations fol-
low the same rules will be moderately omitted. For simplicity,
the default scheme/schemes (see Table 1) in one combination
can be omitted, e.g., MSR+SSS+Flat+Lazy+RAFI can be
denoted as MSR+Lazy+RAFI. And RS+SSS+Flat+Eager
is the baseline, it can be denoted as anyone of RS, SSS, Flat,
and Eager when compares with other combinations.

1) EFFECTS OF DATA REDUNDANCY SCHEMES
First, we study the reliability and cost of combinations when
the data redundancy scheme changes. For each combination,
its data redundancy scheme indicates three important targets:
storage overheads (nk), fault tolerance (≤ n−k), and recovery
penalty factor (≤ k) (see Section II-B1). Theoretically,
the reliability and cost will be affected by all of them. Higher
fault tolerance, higher storage overheads or lower recovery
penalty factor brings higher reliability. Higher storage
overheads brings more repairs, and higher recovery penalty
factor means higher recovery penalty for each repair, so both
of them enlarge the repair cost. And higher storage overheads
mean higher storage cost. In this part, we compare plenty
of combinations which cover different data redundancy
schemes. The impacts of the three targets will be compared
and testified. The results are shown in Fig. 3.

We can testify the theoretical results on reliability and
repair cost from Fig. 3. From Fig. 3a, we can see the
PDL is mainly determined by the fault tolerance. When
the fault tolerance is increased by 1, the PDL decreases
by 2 to 3 orders of magnitude. The only exception is
LRC(16, 12, 2), its fault tolerance is close to LRC(10, 6, 2)
(3.862 for LRC(16, 12, 2), 3.857 for LRC(10, 6, 2)), but its
PDL is about 1 order ofmagnitude higher than LRC(10, 6, 2).
This is because LRC(16, 12, 2) has lower storage overheads
(1.33 for LRC(16, 12, 2), 1.67 for LRC(10, 6, 2)) and higher
recovery penalty factor (6.75 for LRC(16, 12, 2), 3.6 for

LRC(10, 6, 2)) than LRC(10, 6, 2). Both of them reduce
the reliability, so its PDL increases. Either lower recovery
penalty factor or higher storage overheads brings lower PDL,
we can observe from the comparisons of MSR(9, 6, 8) and
RS(9, 6), MSR(14, 10, 13) and RS(14, 10), and RS(14, 10)
and RS(10, 6). The experimental results are in complete
agreement with the theoretical results. However, the reli-
ability change brought by changing the storage overheads
or recovery penalty factor is much less than that brought
by changing the fault tolerance. From Fig. 3b, we can
see the TRC is strictly proportional to storage overheads
and recovery penalty factor. It is also consistent with the
theoretical results.

In summary, the choice of data redundancy scheme
in one combination affects both reliability and cost,
and reliability of the combination mainly depends on
the fault tolerance of the redundancy scheme (the fault
tolerance increases by 1, PDL decreases by 2 to 3 orders
of magnitude).

2) EFFECTS OF DATA PLACEMENT SCHEMES
Second, we discuss the reliability and cost of combinations
when the data placement scheme changes. We discuss data
placement schemes on nodes at first, then data placement
schemes on racks.

As we mentioned in Section II-B2, the data placement
scheme on nodes affects the data loss frequency and the
lost chunks in each incident, which makes its effects on
reliability and cost hazy. Fig. 4 illustrates the reliability and
cost of multiple combinations which contain different data
placement schemes on nodes (SSS, CopySet or PSS).

We can see the reliability variations for changing the data
placement scheme on nodes from Fig. 4a. To understand
the effects of the data placement scheme on nodes in depth,
we define the failed iteration. It means the iteration which
encounters data loss, no matter how many lost stripes in the
iteration. The right-Y axis of Fig. 4a shows the number of
failed iterations for each combination (CR-SIM runs Ni =
10, 000 iterations for each combination, see Section IV-A).
From SSS to CopySet to PSS,w becomes smaller and smaller.
The system contains more disjoint partitions, and multiple
failures are less likely to accumulate in one partition. It means
there are less failed iterations (see read part in Fig. 4a) but
some failed iterations contains more failures. However, SSS
has a higher PDL than CopySet and CopySet has a higher
PDL than PSS regardless works with any data redundancy
scheme, and more specifically the PDL reduces by up to
1 order of magnitude from SSS to PSS. It tells us the
reliability is mainly determined by the number of failed
iterations.

We can see the cost variations for changing the data
placement scheme on nodes from Fig. 4b. As we can see
from the figure, the gap of TRC between the three schemes
is very tiny (less than 1%). Such a tiny gap can be explained
from two aspects. First, the storage overheads and recovery
penalty factor are not affected by changing the data placement

157870 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

TABLE 3. Failure and Recovery Models.

FIGURE 3. Reliability and cost for changing the data redundancy scheme.

scheme on nodes, so TRC basically keeps steady. Second,
failure models for different combinations are the same, so the
degraded stripe amount during T is fixed. The vast majority
of of these stripes are recovered thus increasing TRC , others
are lost. From SSS to CopySet to PSS, data loss becomes
less and less, and TRC should be increased. But in fact,
the incremental on TRC which caused by reduced data loss
is too tiny (less than 0.1%) to be observed, and it is even
less than the deviations between iterations. So, we deem the
TRC of SSS, CopySet, and PSS is almost the same. The
TSC is unchanged because the storage overheads (nk) remains
unchanged.

In summary, the choice of data placement scheme on
nodes in one combination affects reliability but basically

not affect cost, PSS achieves the highest reliability among
the three data placement schemes (PDL can reduce by up
to 1 order of magnitude).

Then, we study the reliability and cost for changing the data
placement scheme on racks. From Section II-B2, we know
that Hier sacrifices tolerance against rack failures for repair
cost reductions. These two factors have opposite effects on
reliability. To figure out the results, we compare a lot of
combinations contain different data placement schemes on
racks (Flat or Hier). The results are collected by Fig. 5.

We can see the reliability results from Fig. 5a. Either
working with default schemes or other non-default schemes,
Hier can reduce PDL by up to 1 order of magnitude compared
with Flat. It means the PDL decrease brought by repair cost

VOLUME 8, 2020 157871

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

FIGURE 4. Reliability and repair cost for changing the data placement scheme on nodes.

reductions is much less than the PDL increase brought by
reduced rack-level fault tolerance.

As analyzed, we can see Hier reduces TRC from Fig. 5b.
In detail, the TRC reductions are determined by the data
redundancy scheme in the combination. When working with
MSR(n, k, d), RS(n, k), LRC(n, k, l), and REP, the number
of repair required chunks is d , k , k

l , and 1, respectively.
Among these chunks, Hier reduces n

r − 1 chunks. So,
compared with Flat, Hier reduces TRC by about 25%, 34%,
50%, and 50% for MSR, RS, LRC and REP(r = 2),
respectively. It means Hier obtains more TRC reductions
when the combination has less repair required chunks.

In summary, the choice of data placement scheme on
racks in one combination affects both reliability and
cost. Compared with Flat, Hier decreases reliability (PDL
increases by 1 order of magnitude) in exchange for repair
cost reductions (TRC decreases by about 25%∼50%), and
more repair cost reductions are brought by less repair
required chunks.

3) EFFECTS OF DATA REPAIR SCHEMES
At last, we study the reliability and cost of the combination
for changing the data repair scheme. From Section II-B3,
we know that Lazy sacrifices reliability for repair cost
reductions and RAFI [15] claims to improve reliability and
repair cost at the same time. To figure out the results,
we compare plenty of combinations which contain different
data repair schemes (Eager, Lazy, RAFI, or Lazy+RAFI),
and Fig. 6 shows the results.

We can see the reliability and repair cost for different
combinations which contain different data repair schemes
from Fig. 6a and Fig. 6b, respectively. Compared with
Eager, Lazy increases PDL by 3 orders of magnitude

and reduces TRC by 47.5%. This observation is the same
with prior study [14]. But what is not mentioned in prior
studies is that MSR(9, 6, 8)+Lazy (denotes as MSR+Lazy
in Fig. 6) has the identicalPDL and TRC with RS(9, 6)+Lazy
(denotes as Lazy in Fig. 6), and LRC(10, 6, 2)+Lazy has
the identical PDL (3.78e-8) and TRC (10.7 PiB) with
RS(10, 6)+Lazy. From these observations, we find the
advantages ofMSR/LRC and Lazy can not be simultaneously
obtained. It can be explained with their data repair process.
For Lazy, rth = 2, but MSR cannot repair two failures with
regenerating, and LRC cannot repair two failures with the
local repair. To repair two failures, RS+Lazy, MSR+Lazy,
and LRC+Lazy have to read k available chunks out of n
chunks, so they have the same PDL and TRC under the same
(n, k).
In summary, the choice of Lazy in one combination

greatly decreases reliability in exchange for repair cost
reductions when combined with RS, but it cannot obtain
repair cost reductions with reliability loss when combined
with MSR or LRC.

Compared with Eager, RAFI increases PDL by about
40%∼50% and reduces TRC by about 7%∼10%. Unlike
the conclusion in prior study [15], RAFI decreases but not
increases the reliability (PDL growth). RAFI only improves
the node failures, so it only reduces the data loss and repair
cost caused by node failures. But, the conscious delayed
node repairs bring more data loss when they encounter other
subsystem failures. The prior study [15] only considered
node failures but ignored others, so it came to a different
conclusion.

In summary, the choice of RAFI in one combination
also decreases reliability in exchange for repair cost
reductions.

157872 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

FIGURE 5. Reliability and repair cost for changing the data placement scheme on racks.

Both Lazy and RAFI sacrifice reliability in exchange for
repair cost reductions, but Lazy+RAFI is not sacrificing
more reliability to reduce more repair cost (MSR/LRC
will change the effects of Lazy, so we suppose the data
redundancy scheme is RS). On the contrary, PDL and
TRC of Lazy+RAFI are between Lazy and RAFI. In other
words, the effects of Lazy and RAFI cannot be accumulated.
Lazy+RAFI has more repair opportunity than Lazy but less
repair opportunity than RAFI, and less simultaneous repair
operations than Lazy but more than RAFI, so its PDL and
TRC are between Lazy and RAFI.

In summary, the effects of Lazy and RAFI cannot
be accumulated in one combination, the reliability and
repair cost of Lazy+RAFI are between Lazy and RAFI
(the data redundancy scheme is RS).

C. COMBINATIONS IN HDFS AND SWIFT
Next, we compare the reliability and cost of the same
combination in two different system paradigms (HDFS and
Swift) which represent two repair patterns. Through the
comparisons, we want to achieve three goals: (i) understand
the reliability and cost of combinations when the repair
pattern changes; (ii) testify the above findings (except the
findings of data repair schemes) are valid or not in Swift;
(iii) figure out the minimum cost combination under a given
reliability standard in the two repair patterns. The three
goals are accomplished by the following three subsections,
respectively.

1) EFFECTS OF REPAIR PATTERNS
At first, we compare the reliability and cost of the same
combination in HDFS and Swift, and these two systems
represent two repair patterns. Fig. 7 depicts the reliability and

repair cost in the two systems for many combinations. The
combination which contains Lazy, RAFI, or Lazy+RAFI is
excluded because they are not supported by Swift. Only part
of the remaining combinations is listed for lack of space.

We can see from Fig. 7 that one combination’s PDL is
about 1∼2 orders of magnitude lower in Swift than in HDFS,
and it basically has the identical TRC in Swift and HDFS.
From Table 3, we know that Swift has lower Tiden than HDFS
for permanent failures, so its PDL is lower. As for their nearly
identical TRC , it can be explained by the same reason as data
placement schemes on nodes. The corresponding contents
can be seen from Section IV-B2, we will not repeat it here.

Another observation is that the combination which has
lower recovery penalty factor brings more PDL reductions
from HDFS to Swift. For example, from HDFS pattern to
Swift pattern, the PDL reductions for MSR or LRC are larger
than that for RS (see Fig. 6) because MSR/LRC has a lower
recovery penalty factor than RS. And we have the same
observation between PSS+Hier and MSR+PSS+Hier.
In summary, one combination achieves higher reliability

under no unified repair pattern than under the unified
repair pattern, but its cost under these two repair patterns
is almost the same. From unified repair pattern to no
unified repair pattern, the combination which has lower
recovery penalty gets more reliability improvements.

2) FINDINGS IN SWIFT
All findings about the effects of schemes in combinations
(see Section IV-B) are established on HDFS pattern, so we
check the effects of data redundancy schemes and data
placement schemes in Swift pattern. Although the values of
PDL change, but all findings are still valid in Swift. That
means all findings remain regardless of the system repair
pattern.

VOLUME 8, 2020 157873

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

FIGURE 6. Reliability and repair cost for changing the data repair scheme.

FIGURE 7. Reliability and cost in HDFS and Swift.

3) THE MINIMUM COST COMBINATION UNDER GIVEN
RELIABILITY STANDARD
At last, we discuss the minimum cost combination under a
given reliability standard, in both HDFS and Swift. In this
paper, we adopt four data redundancy schemes, three data
placement schemes on nodes, two data placement schemes
on racks, and four data repair schemes as representatives.
In total, there are 96 combinations in HDFS and 24 com-
binations in Swift. Our goal is to find the minimum cost
combination under the given reliability standard in HDFS and
Swift.

At first, we specify a fixed reliability standard as the relia-
bility level which has to be achieved by the distributed storage
system. Given a reliability standard solves the problem of the
interaction between reliability and cost. We indicate the fixed
reliability standard as 11 9’s (i.e., PDL ≤ 1E − 11), which is

the reliability level in many cloud service providers’ service
level agreements [4], [5].

The procedure is as follows. First, for each combination,
we adjust its fault tolerance (by adding or removing the
number of its parity chunks, i.e., increase or decrease n− k)
to ensure it satisfies PDL ≤ 1E − 11 with as little
TSC as possible. Second, we select some candidates from
all combinations, these candidates have the minimum TSC
or minimum TRC . Table 4 shows the candidates for the
minimum cost combination. Third, we illustrate the TC of
these candidates with the increasing of λ, Fig. 8 shows
the results. The minimum cost combination under a given
reliability standard can be found from the figure.

The candidates in Table 4 confirm some principles which
can be proven by the simulation results from Section IV-B:
(i) PSS has the highest reliability among all the three data

157874 VOLUME 8, 2020

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

placement schemes on nodes, one combination can obtain
the benefits of PSS and other schemes at the same time;
(ii) the benefits of Lazy and MSR/LRC can not be obtained
at the same time; (iii) both Hier, Lazy, and RAFI sacrifice
reliability for repair cost reductions. Due to the first principle,
every candidate contains PSS; due to the second principle,
there are no combinations contain MSR/LRC+Lazy have
been selected as candidates; due to the third principle,
the choice of Hier, Lazy or RAFI causes the increase of TSC
sometimes (to guarantee PDL ≤ 1E − 11). Except for the
combinations in the table, the remaining combinations have
higher TSC or higher TRC or both of them. For example,
TSC of RS(11, 6)+PSS+Hier+Lazy+RAFI is the same with
candidate MSR(11, 6, 10)+PSS+Hier+RAFI, but TRC of it
is 10.56 PiB which is higher than the candidate.

TABLE 4. Candidates for the minimum cost combination under
PDL ≤ 1E − 11.

From Fig. 8, we can find the minimum cost combination
under the given reliability standard in both HDFS and
Swift. In the figure, the Y-axis is TC

α
which represents the

value of TC . The combination which has the lowest TC
is the eligible combination. In HDFS (see Fig. 8a), when
λ ≤ 6.47, MSR+PSS is the eligible combination; when
6.47 < λ ≤ 169.64, MSR+PSS+Hier+RAFI is the eligible
combination; when λ > 169.64, REP+PSS+Hier is the
eligible combination. In Swift (see Fig. 8a), when λ ≤
119.4, MSR+PSS+Hier is the eligible combination; when
λ > 119.4, REP+PSS+Hier is the eligible combination. In
total, with the increasing of λ, the combination which has a
lower recovery penalty factor becomes more and more cost-
efficient.

We also display three special values of λ, which come
from three cloud services providers: Azure, Amazon, and
Alibaba. All pricing models are collected in October, 2019.
For Azure [20], λ = 0.25(α = 41943); for Amazon [19],
λ = 0.4(α = 26214); for Ali [21], λ = 2.62(α = 44040).
InHDFS,MSR+PSS is theminimum cost combination under
the pricing model of Azure, Amazon, and Ali. While in Swift,
MSR+PSS+Hier is theminimum cost combination under the
pricing model of Azure, Amazon, and Ali.

In general, the minimum cost combination under
the given reliability standard (PDL ≤ 1E − 11) is
determined by the pricing model of cost. Under the
pricing model of Amazon, Azure, and Alibaba cloud,
the eligible combination is MSR+PSS for HDFS and
MSR+PSS+Hier for Swift.

V. RELATED WORK
We summarize the related works on the reliability and cost of
distributed storage systems.

In the early stage, the reliability and cost of storage
systems have been measured with simple models based on
permutation and combination. Weatherspoon and Kubiatow-
icz [34] show via modeling that erasure codes bring less
repair and storage cost than replication under the same
reliability. Rodrigues and Liskov [35] model the erasure
codes and replication in DHTs. They conclude the benefits
of erasure codes are less than replication in some cases.
Lin et al. [46] model the availability and reliability in
storage and communication systems. They also conclude
replication performs better when node availability is lower or
unknown. The latter two studies aim at peer-to-peer storage
systems, real-time node joining and departure are taken into
considerations, so they make different conclusions. However,
these simple models cannot finish a comprehensive reliability
study for the failures of different subsystems or combinations
of different schemes.

Recently, the Markov model has been widely used for
reliability measurements. The Markov model assumes both
TTF and TTR follow the exponential distribution. Most
studies about the reliability of data redundancy schemes have
been accomplished with the Markov model. Huang et al. [8]
use the Markov model to compare the reliability of LRC
and RS codes. Sathiamoorthy et al. [27] show via modeling
that the reliability benefits of XORBAS codes (another
construction of LRC). In addition, a lot of constructions
of MSR codes (including but not limited to FMSR [10],
PMSR [47], and Butterfly codes [9]) use Markov model to
display their reliability and cost benefits. Except the data
redundancy schemes, some studies use the Markov model
to cope with the reliability of data placement schemes.
Venkatesan and Iliadis [48] discuss the reliability of clustered
and declustered data placement. Furthermore, some studies
discuss the schemes that come from two different categories.
Hu et al. [17] analyze the reliability and repair cost of
two data placement schemes on racks. They combine Hier
and Flat with the same data redundancy scheme (RS or
MSR), and then compare their effects. Arslan [49] uses
the Markov model to study the reliability of disk arrays
under different MaximumDistance Separable (MDS) erasure
codes, different data allocations, and different repair rates.
Node and rack failures are not included because the study
is about the reliability of disk arrays but not distributed
storage systems, and no discussions about the combination of
different schemes. But, the correctness of the Markov model
for reliability analysis is questionable from two aspects [50],
[51]: (i) the disk failures fit Weibull distribution rather than
Exponential distribution - failures accord with Exponential
distribution is the fundamental assumption in Markov model;
(ii) Markov model is memory-less - all the replaced and
unreplaced disks are treated as the same.

The reliability simulator supports to generate failures
with Weibull distribution and solves the memory-less

VOLUME 8, 2020 157875

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

FIGURE 8. The minimum cost combination under PDL ≤ 1E − 11.

shortcomings of theMarkov model, so it is more accurate and
has been widely used in many studies. Green [52] implements
the High Fidelity Reliability Simulator (HFRS) for reliability
simulation on disk arrays. Zhang et al. [13] extend HFRS for
data center environments and two data placement schemes
on racks (Flat and Hier), the new simulator is named
SIMEDC. SIMEDC considers the combination of the data
redundancy scheme and data placement scheme on racks.
Silberstein et al. [14] develop a new reliability simulator
DS-SIM to display the effectiveness of Lazy in the distributed
storage system. DS-SIM discusses the combination of Lazy
and the data redundancy scheme. Fang et al. [15] develop a
new reliability simulator to show the effectiveness of RAFI
in the distributed storage system, the combination of RAFI
and the data redundancy scheme has been studied. Hall [11]
presents a simulator framework called CQSim-R, which
evaluates the reliability of the distributed storage system,
and studies the effects of data placement schemes on nodes.
Epstein et al. [42] take the available network bandwidth
into account to study the reliability of the distributed
storage system, they combine simulation and combinatorial
computations to measure the reliability.

Our work differs from previous simulators by specially
considering the combination of the data redundancy scheme,
the data placement scheme on nodes, the data placement
scheme on racks, and the data repair scheme. In addition,
we consider more complicated failure and repair patterns.

VI. CONCLUSION
In order to build a reliable and cost-efficient distributed stor-
age system, we present a comprehensive simulation analysis
to measure the reliability and cost of distributed storage
systems. Our analysis covers data redundancy schemes, data
placement schemes (on both nodes and racks), and data
repair schemes. To achieve an overall analysis, we design and
implement a comprehensive event-based reliability simulator
CR-SIM. Using CR-SIM, we conduct various simulations
under HDFS and Swift, which represent two different repair
patterns. Through the simulation results, we find several
important findings, which are useful to guide the development

of reliable and cost-efficient storage systems. The source
code of our CR-SIM is available at https://github.
com/yichuan0707/CR-SIM.

REFERENCES
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, ‘‘The Google file system,’’ in

Proc. ACM SIGOPS Oper. Syst. Rev., vol. 37, 2003, pp. 29–43.
[2] HDFS. Accessed: Mar. 2019. [Online]. Available: https://hadoop.

apache.org/
[3] Openstack Swift Object Storage System. Accessed: Mar. 2019. [Online].

Available: http://docs.openstack.org/developer/swift/
[4] (Mar. 2019). SLA for Azure Storage. [Online]. Available: https://

docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
[5] Amazon S3. Accessed: Mar. 2019. [Online]. Available: https://

www.amazonaws.cn/en/s3/
[6] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, andG.M.Voelker, ‘‘Total recall:

System support for automated availability management,’’ in Proc. USENIX
Symp. Netw. Syst. Design Implement. (NSDI), vol. 4, 2004, p. 25.

[7] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[8] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, ‘‘Erasure coding in windows azure storage,’’ in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2012, pp. 15–26.

[9] L. Pamies-Juarez, F. Blagojevic, R. Mateescu, C. Gyuot, E. E. Gad, and
Z. Bandic, ‘‘Opening the chrysalis: On the real repair performance ofMSR
codes,’’ in Proc. 14th USENIX Conf. File Storage Technol. (FAST), 2016,
pp. 81–94.

[10] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang, ‘‘NCCloud: Applying network
coding for the storage repair in a cloud-of-clouds,’’ in Proc. FAST, 2012,
p. 21.

[11] R. J. Hall, ‘‘Tools for predicting the reliability of large-scale storage
systems,’’ ACM Trans. Storage, vol. 12, no. 4, pp. 1–30, Aug. 2016.

[12] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum, ‘‘Copysets: Reducing the frequency of data loss in cloud
storage,’’ in Proc. USENIX Conf. Tech. Conf., 2013, pp. 37–48.

[13] M. Zhang, S. Han, and P. P. C. Lee, ‘‘A simulation analysis of reliability
in erasure-coded data centers,’’ in Proc. IEEE 36th Symp. Reliable Distrib.
Syst. (SRDS), Sep. 2017, pp. 144–153.

[14] M. Silberstein, L. Ganesh, Y. Wang, L. Alvizi, and M. Dahlin, ‘‘Lazy
means smart: Reducing repair bandwidth costs in erasure-coded distributed
storage,’’ in Proc. Int. Conf. Syst. Storage (SYSTOR), 2014, pp. 1–7.

[15] J. Fang, S. Wan, and X. He, ‘‘RAFI: Risk-aware failure identification to
improve the RAS in erasure-coded data centers,’’ in Proc. USENIX Annu.
Tech. Conf. (USENIXATC), 2018, pp. 495–506.

[16] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, ‘‘Availability in globally distributed storage
systems,’’ in Proc. OSDI, 2010, pp. 61–74.

[17] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou, and D. Feng,
‘‘Optimal repair layering for erasure-coded data centers: From theory to
practice,’’ ACM Trans. Storage, vol. 13, no. 4, pp. 1–24, 2017.

157876 VOLUME 8, 2020

https://github.com/yichuan0707/CR-SIM
https://github.com/yichuan0707/CR-SIM

Y. Qi et al.: Towards Building Reliable and Cost-Efficient Distributed Storage Systems

[18] C. Huang, M. Chen, and J. Li, ‘‘Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,’’ ACM Trans.
Storage, vol. 9, no. 1, p. 3, 2013.

[19] (2019). Amazon AWS. [Online]. Available: https://aws.amazon.
com/ec2/pricing/on-demand/

[20] (2019). Microsoft Azure. [Online]. Available: https://azure.
microsoft.com/en-us/pricing/details/managed-disks/

[21] (2019). Alibaba Cloud. [Online]. Available: https://www.
alibabacloud.com/product/ecs

[22] B. Schroeder and G. A. Gibson, ‘‘Understanding disk failure rates: What
does an MTTF of 1,000,000 hours mean to you?’’ Trans. Storage, vol. 3,
no. 3, p. 8, 2007.

[23] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler,
‘‘An analysis of latent sector errors in disk drives,’’ ACM SIGMETRICS
Perform. Eval. Rev., vol. 35, no. 1, pp. 289–300, 2007.

[24] B. Schroeder and G. A. Gibson, ‘‘A large-scale study of failures in
high-performance computing systems,’’ IEEE Trans. Dependable Secure
Comput., vol. 7, no. 4, pp. 337–350, Oct. 2010.

[25] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, ‘‘Network coding for distributed storage systems,’’ IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[26] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn,
‘‘A performance evaluation and examination of open-source erasure coding
libraries for storage,’’ in Proc. Fast, vol. 9, Feb. 2009, pp. 253–265.

[27] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, ‘‘XORing elephants: Novel erasure
codes for big data,’’ Very Large Data Based Endowment, vol. 6, no. 5,
pp. 325–336, Mar. 2013.

[28] M. Blaum, J. Brady, J. Bruck, and J. Menon, ‘‘EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,’’ IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, 1995.

[29] P. F. Corbett, B. English, A. Goel, T. Grcanac, S. R. Kleiman, J. Leong,
and S. Sankar, ‘‘Row-diagonal parity for double disk failure correction,’’
in Proc. 3rd USENIX Conf. File Storage Technol., 2004, pp. 1–14.

[30] Z. Huang, H. Jiang, and K. Zhou, ‘‘An improved decoding algorithm for
generalized RDP codes,’’ IEEECommun. Lett., vol. 20, no. 4, pp. 632–635,
Apr. 2016.

[31] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran, ‘‘DRESS
codes for the storage cloud: Simple randomized constructions,’’ in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2011, pp. 2338–2342.

[32] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li, ‘‘Simple
regenerating codes: Network coding for cloud storage,’’ in Proc. IEEE
INFOCOM, Mar. 2012, pp. 2801–2805.

[33] Y. Tang, J. Yin, W. Lo, Y. Li, S. Deng, K. Dong, and C. Pu, ‘‘MICS:
Mingling chained storage combining replication and erasure coding,’’
in Proc. IEEE 34th Symp. Reliable Distrib. Syst. (SRDS), Sep. 2015,
pp. 192–201.

[34] H. Weatherspoon and J. D. Kubiatowicz, ‘‘Erasure coding vs. replication:
A quantitative comparison,’’ in Proc. Int. Workshop Peer-Peer Syst. Berlin,
Germany: Springer, 2002, pp. 328–337.

[35] R. Rodrigues and B. Liskov, ‘‘High availability in DHTs: Erasure coding
vs. replication,’’ in Peer-to-Peer Systems IV. Berlin, Germany: Springer,
2005, pp. 226–239.

[36] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
‘‘The quantcast file system,’’ Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1092–1101, Aug. 2013.

[37] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum,
‘‘Fast crash recovery in RAMCloud,’’ in Proc. 23rd ACM Symp. Oper. Syst.
Princ. (SOSP), 2011, pp. 29–41.

[38] D. Borthakur, S. Rash, R. Schmidt, A. Aiyer, J. Gray, J. S. Sarma,
K. Muthukkaruppan, N. Spiegelberg, H. Kuang, K. Ranganathan,
D. Molkov, and A. Menon, ‘‘Apache Hadoop Goes realtime at facebook,’’
in Proc. Int. Conf. Manage. Data (SIGMOD), 2011, pp. 1071–1080.

[39] S.Muralidhar,W. Lloyd, S. Roy, C. Hill, E. Lin,W. Liu, S. Pan, S. Shankar,
V. Sivakumar, and L. Tang, ‘‘F4: Facebook’s warm blob storage system,’’
in Proc. 11th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2014,
pp. 383–398.

[40] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, ‘‘A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 4, pp. 331–342, 2014.

[41] S. Jiekak, A.-M. Kermarrec, N. Le Scouarnec, G. Straub, and
A. Van Kempen, ‘‘Regenerating codes: A system perspective,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 47, no. 2, pp. 23–32, 2013.

[42] A. Epstein, E. K. Kolodner, and D. Sotnikov, ‘‘Network aware reliability
analysis for distributed storage systems,’’ in Proc. IEEE 35th Symp.
Reliable Distrib. Syst. (SRDS), Sep. 2016, pp. 249–258.

[43] J. Elerath andM. Pecht, ‘‘A highly accurate method for assessing reliability
of redundant arrays of inexpensive disks (RAID),’’ IEEE Trans. Comput.,
vol. 58, no. 3, pp. 289–299, Mar. 2009.

[44] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop
distributed file system,’’ in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol., May 2010, pp. 1–10.

[45] A.-M. Kermarrec, E. L. Merrer, G. Straub, and A. V. Kempen,
‘‘Availability-based methods for distributed storage systems,’’ in Proc.
IEEE 31st Symp. Reliable Distrib. Syst., Oct. 2012, pp. 151–160.

[46] W. K. Lin, D. M. Chiu, and Y. B. Lee, ‘‘Erasure code replication revisited,’’
in Proc. 4th Int. Conf. Peer-Peer Comput., 2004, pp. 90–97.

[47] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
‘‘Having your cake and eating it too: Jointly optimal erasure codes for
i/o, storage, and network-bandwidth,’’ in Proc. 13th USENIX Conf. File
Storage Technol. (FAST), 2015, pp. 81–94.

[48] V. Venkatesan and I. Iliadis, ‘‘A general reliability model for data storage
systems,’’ inQuantitative Evaluation of Systems. Los Alamitos, CA, USA:
IEEE Computer Society, 2012, pp. 209–219.

[49] S. S. Arslan, ‘‘A reliability model for dependent and distributed MDS disk
array units,’’ IEEE Trans. Rel., vol. 68, no. 1, pp. 133–148, Mar. 2019.

[50] K. M. Greenan, J. S. Plank, and J. J. Wylie, ‘‘Mean time to meaningless:
MTTDL, Markov models, and storage system reliability,’’ in Proc.
HotStorage, 2010, pp. 1–5.

[51] P. Karmakar and K. Gopinath, ‘‘Are Markov models effective for storage
reliability modelling?’’ 2015, arXiv:1503.07931. [Online]. Available:
http://arxiv.org/abs/1503.07931

[52] K.M. Greenan, ‘‘Reliability and power-efficiency in erasure-coded storage
systems,’’ M.S. thesis, Storage Syst. Res. Center, Baskin School Eng.,
Univ. California, Santa Cruz, Santa Cruz, CA, USA, 2009.

YICHUAN QI received the B.S. degree in com-
puter science from Sichuan University, Chengdu,
China, in 2010. He is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology, Huazhong University of Science
and Technology, Wuhan, China. His work has
published in conference proceedings, such as
ICPADS. His research interests include distributed
storage systems, reliability and availability, and
cloud storage services.

DAN FENG (Senior Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in computer science
and technology from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 1991, 1994, and 1997, respectively. She is
currently a Professor and the Dean of the School
of Computer Science and Technology, HUST.
She has over 100 publications in major journals
and international conferences, including the IEEE
TC, the IEEE TPDS, ACM-TOS, FAST, USENIX

ATC, EuroSys, ICDCS, HPDC, SC, ICS, IPDPS, DAC, and DATE.
Her research interests include computer architecture, non-volatile memory
technology, distributed and parallel file systems, and massive storage
systems. She is a member of the Association for Computing Machinery
and the Chair of the Information Storage Technology Committee, Chinese
Computer Academy. She served on the program committees of multiple
international conferences, including SC, in 2011 and 2013, and MSST,
in 2012 and 2015.

BINBING HOU received the B.S. degree from the
Wuhan University of Technology, Wuhan, China,
in 2011, the M.S. degree from the Huazhong
University of Science and Technology, Wuhan,
in 2014, and the Ph.D. degree in computer science
from Louisiana State University, Baton Rouge,
LA, USA, in 2019. He is currently a Software
Engineer with LinkedIn. His work has published
in major journals, such as ACM Transactions on
Storage (TOS) and conference proceedings, such

as ICPP, MSST, and MASCOTS. His research interests include distributed
storage systems, blockchain systems, cloud services, and non-volatile
memory.

VOLUME 8, 2020 157877

