
Received August 5, 2020, accepted August 18, 2020, date of publication August 24, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019226

New Branching Filters With Explicit
Negative Dependence
MICHAEL A. KOURITZIN1, ANNE MACKAY 2, AND NICOLAS VELLONE-SCOTT2
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
2Department of Mathematics, UQAM, Montreal, QC H2X 3Y7, Canada

Corresponding author: Anne MacKay (mackay.anne@uqam.ca)

This work was supported in part by the NSERC Discovery Grant 04869 and Grant 203089, and in part by the FRQNT Research Support
for New Academics under Grant 253180.

ABSTRACT Particle filters are used to solve nonlinear filtering problems.We focus on the sampling step of a
particle filter and present new algorithms that introduce explicit negative dependence between the number of
particles reassigned at each location, with the goal of improving the performance of the filtering algorithm.
We review partial and complete sampling in the context of both interacting and branching filters, that is,
when the number of particles stays constant through all steps and when it does not. In particular, we use
the quick simulation field algorithm to reproduce the variance structure induced by the minimal variance
filter and create a new filtering algorithm. A numerical example is used to assess the performance of the new
algorithms.

INDEX TERMS Nonlinear filtering, sequential Monte Carlo, Bernoulli sampling, interacting filters,
branching filters.

I. INTRODUCTION
Noisy, stochastic phenomena are ubiquitous in nature, and
attempts to understand such phenomena are diverse and span
disciplines. Yet, the task is difficult because observations
are often incomplete with abundant random noise. Nonlinear
filtering is one popular way of modeling such phenomena that
accounts for both of these factors. Often, we represent an orig-
inal signal by a sequence of random variables (Xt)t≥0, and its
observations by (Yt)t≥0, which are modeled as some function
of (Xt)t≥0, corrupted by noise: Yt = h(Xt−1) + Vt , where
Vt is a noise term. The goal is to obtain an approximation
for the best least-squares estimator, E[f (Xt) | Yt , . . . , Y1],
where f is a measurable, bounded function. Sequential Monte
Carlo (SMC) methods are an important class of algorithms
that achieve this goal, relying heavily on a sampling step in
the process. This step is the focus of the present article.

Nonlinear filtering has a number of applications in dif-
ferent domains. Since the 60’s, it has been a staple of the
defense, search and rescue, and aerospace industries. Later,
it also became an essential tool in image processing. In math-
ematical finance, it is widely used to calibrate models with
unobservable factors or variables (volatilities, credit risk,

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang Hu .

instantaneous interest rates) using only observable quantities
such as asset prices (see for example [14], [17], [18], [23]).
Nonlinear filtering also finds applications in fields as diverse
as biology [31], aeronautics [39] and epidemiology [13].

A. MOTIVATION
We adopt the treatment of nonlinear filtering in [11] and [20].
Let (�,F ,P) be a probability space. Let a non-observable
signal be represented by (Xt)t∈N : � → E , where E is
some complete, separable metric space. In this case, t could
represent discrete time steps. Typically, it is assumed that X
is a Markov process with a specified initial distribution p(x0)
and evolution equation that, given Xt , returns Xt+1 up to some
noise term. Our indirect observations of the non-observable
signal are of the form

Yt = h(Xt−1)+ Vt ,

where h : E → Rd is a known, measurable function, and the
Vt are independent, random vectors with a common, strictly
positive, bounded density g that is independent of (Xt)t≥0. For
simplicity, we also define

Yt := (Y1, . . . ,Yt),

Xt := (X1, . . . ,Xt).

157306 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8495-1983
https://orcid.org/0000-0002-9635-4297

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

Given this setting, we try to estimate, track and predict
the signal based on distorted, corrupted partial observations.
In order to recall the concepts underlying particle filtering,
both the signal and the observations will be seen as random
variables; the values of the observations will only be fixed
when algorithms serving to compute estimates are presented.
Throughout the paper, random variables are denoted by
uppercase letters, while we use lowercase letters to represent
realizations thereof.

Our goal is to develop an estimator for the conditional
probabilities P(Xt ∈ A|Yt) for all Borel sets A, or equiva-
lently, for the conditional expectations E[f (Xt)|Yt], the best
least-squares approximation of f (Xt) given all observations
thus far, for all f : E → R that are bounded, measurable
functions. Clearly, it would be convenient if we could directly
and easily sample from the posterior distribution p(Xt |Yt),
but the computational complexity of such a method is usually
too great [11].

Sequential Monte Carlo (SMC) methods comprise
an important class of algorithms that approximate the
conditional probabilities P(Xt ∈ A | Yt), or equivalently,
E[f (Xt)|Yt]. This is done by sequentially incorporating the
observations Yt in the computation of the filters via the Bayes
formula and importance sampling. The system of simulated
particles that approximates the conditional distribution of the
signal is updated with each new observation (see for example
Chapter 10 of [1] for more details on particle filters).

In our framework, the importance distribution used to gen-
erate the particle system is a probability measure Q, under
which we assume that the signal and observation process
{(Xt ,Yt), t = 0, 1, . . .} has the same distribution as the signal
and noise process {(Xt ,Vt), t = 0, 1, . . .} does under P. It fol-
lows that underQ, the importance density of the observations
is g and the observations and the signal are independent. The
information given by the observations is incorporated into the
likelihood process {Lt , t = 0, 1, . . .} defined by

Lt =
t∏
j=1

αj(Xj−1),

with

αj(x) =
g(Yj − h(x))

g(Yj)
,

for t = 1, 2, . . . and L0 = 1, so that Lt = Lt−1αt (Xt−1). The
likelihood process can be used to obtain the probability mea-
sure P from Q using Girsanov’s theorem. It follows that the
unnormalized filters of interest are given by EQ[Lt f (Xt)|Yt],
where EQ[·] denotes the expectation under the Q measure,
which is approximated using the generated particle system.

Each time step of a SMC algorithm is comprised of two
parts. The first one is the mutation step, where the particles
are evolved using the transition density under the importance
distributionQ; this allows for the computation of the approxi-
mated filter. After a new observation is incorporated, the sec-
ond step involves sampling from the empirical distribution of

the particles in order to avoid weight degeneracy, which can
negatively impact the performance of the algorithm.

The focus of this article is the aforementioned sampling
step, where low-weight particles are eliminated and replaced
by average weight ones. This step is necessary because the
variance of the weights increases over time. In practice, as the
particle system develops, there tend to be a few particles with
very high weights and a lot of particles with very lowweights.
This leads to either wasted computational power, when many
low-weight particles are propagated, or to poor estimates of
the conditional expectation.

The sampling step is an important factor in the speed
of SMC algorithms, and it can easily become performance-
limiting when it is poorly conceived. Aside from the actual
number of operations in the algorithm itself, a sampling
method can also affect performance by influencing the num-
ber of particles propagated (this is the case in so-called
branching particle filters). If the number of particles in the
system grows too large, then more operations will have to be
performed.

An ideal sampling method should even weights without
introducing excess noise nor computations. Various existing
sampling algorithms seek to strike such a balance between
variance reduction and execution speed. The new algo-
rithms introduced in this article were built with such a goal
in mind.

B. PREVIOUS WORK
The bootstrap particle filter [15] was an important step in the
development of fast SMCmethods. Numerous improvements
were made over the years to the sampling step of the boot-
strap filter. Residual sampling is introduced in [29] to reduce
sampling noise and execution time. Stratified sampling is
introduced in [19] to reduce the variance of the uniform
random variables involved in sampling. Combined sampling,
a combination of residual and stratified sampling, is discussed
in [10]. The minimal variance algorithm, which we discuss
further in this work, is presented in [4]. All these sampling
methods keep the number of particles in the system constant
throughout the time steps. In this work, we will refer to
algorithms based on such sampling methods as interacting
filters. See [5] for a survey for convergence results and [8]
for a recent exposition on interacting particle filters.

Other sampling algorithms return a random number of par-
ticles, and when they are incorporated in an SMC algorithm,
the number of particles can vary at each time step. Such
algorithms are often referred to as branching filters. Previous
work on branching particle filters includes [2], [6], [9], [20].
Contrary to beliefs about particle instability (i.e., particle
numbers either exploding or going to zero), [20] shows that
a branching particle filter can be stable if the correct normal-
izing constant is used. Still, the stability in particle numbers,
and indirectly the performance of the algorithm, is affected by
the variance of the number of branches (or offspring) assigned
to each particle in the sampling step, and by the variance of
the total number of particles at each step. Adding negative

VOLUME 8, 2020 157307

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

dependence between the number of offspring assigned to each
particle can help reduce this latter variance.

Intuitively, two random variables that are negatively depen-
dent tend to move in opposite directions; if one takes a small
value, the probability that the other one takes a large value
is increased. This idea is closely related to negative lower
orthant dependence, which occurs when two random vari-
ables X1 and X2 satisfy P(X1 ≤ x1,X2 ≤ x2) < P(X1 ≤ x1)
P(X2 ≤ x2) for all x1, x2. An imperfect but widely used mea-
sure of dependence is the coefficient of correlation, which
we use later in this article. For more details on negative
dependence, we refer the reader to Chapter 5 of [32]. In our
context, inducing negative dependence between the number
of offspring at adjacent locations ensures that the particles
are more evenly distributed among all locations. To optimize
this effect, it is desirable to maximize the negative correlation
induced between the different locations. The concept of max-
imal negative dependence is well studied in two dimensions;
a pair of countermonotonic random variable attains such a
maximum. We say that two random variables (X1,X2) are
countermonotonic if there exist a random variable Z and real
functions f and g, with f increasing and g decreasing, such
that (X1,X2) has the same distribution as (f (Z), g(Z)) (see for
example [33]). The concept of extreme negative dependence
is not clearly defined for vectors of dimension higher than 2.
In this general case, a type of extreme negative dependence
structure for random vectors is joint mixability. We say that a
random vector X = (X1, . . . ,Xd) is jointly mixable (see [38])
if P(

∑d
i=1 Xi = K) = 1 for some K ∈ R. In this article,

we exploit both concepts to identify and induce negative
dependence between the number of offspring redistributed to
each particle. In [20], negative dependence was produced by
stratification using the Yates-Fisher shuffle or partial shuffle
consisting of some exchanges.

A key step in the new algorithms presented in this work is
the generation of correlated discrete random fields. Indeed,
we wish to generate a sequence of random variables with
specified marginal probability mass functions and a given
covariance matrix. The fact that our random variables must
be discrete precludes the use of the variety of popular meth-
ods to generate Gaussian random variables (for example,
[30], [34], [35], [37]). The methods that best fulfilled our
criteria were the quick simulation fields (QSF)method of [26]
and the list sequential sampling of [3]. These sampling meth-
ods are incorporated in specific branching algorithms in order
to speed them up while keeping some control on the variance
of the total number of particles in the system.

C. UNIQUE CONTRIBUTIONS
Many of the refinements to the bootstrap algorithm involve
the use of residues, the use of negative correlation in the
sampling step or the use of partial sampling. All classes of
improvements reduce sampling noise and improve perfor-
mance. However, the best ways to implement the negative
dependence and partial sampling are unknown. In this work,
we create new sampling algorithms by considering novel

methods to induce negative dependence between the num-
ber of particles reassigned to each particle location in the
sampling step. We also show that the use of partial sampling
can be implemented in the new filters, as well as in existing
interacting and branching filters, for performance improve-
ment. This is explored in an extensive numerical experiment,
through which we also show that our branching algorithms
maintain respectable particle control.

Although our work is somewhat similar to [10] and [27],
those two works do not consider branching filters, nor QSF
and the list sequential method of [3] as ways to generate
negatively dependent particles.

The paper is divided as follows. In Section II, we com-
pare complete and partial sampling, and discuss the imple-
mentation of interacting and branching algorithms in each
context. Section III presents a review of existing methods
as further motivation for our new algorithms, which are also
outlined in this section. Numerical experiments are presented
in Section IV, and concluding remarks are in Section V.

II. COMPLETE AND PARTIAL SAMPLING
We denote by N t ∈ N the number of particles in the filter at
the end of the t-th time step, after sampling; N t may vary
across time steps, for example when branching filters are
used (this is further explained below). Let (xi,t)

N t−1
i=1 be the

collection of N t−1 independent samples from p(· | xi,t−1),
the transition density of X , generated at the beginning of the
t-th time step. At t = 0, we consider (xi,0)

N0
i=1 where each xi,0

is sampled from p0.
Each particle is assigned a likelihood `i,t that weighs the

particle based on how well it approximates the original signal
according to the observations. This likelihood is given by
`i,0 = 1 and

`i,t := αt (xi,t−1)`i,t−1

for t > 0, with

αt (xi,t−1) :=
g(yt − h(xi,t−1))

g(yt)
,

where g is the common, strictly positive, bounded
density of Vt .

The sampling step in particle filters is often necessary to
avoid weight degeneracy, that is, to avoid ending up with
a few particles having extremely high weight compared to
the rest. In most common sampling methods, all particles
are redistributed (interacting filters) or branched (branching
filters) randomly. The probability that a particle appears in
the new sample is proportional to its weight `i,t .
Remark 1: Technically, we consider one-step predic-

tor filters by incorporating the observation equation
Yt = h (Xt−1)+ Vt instead of the more commonly used track-
ing filter observation model Yt = h (Xt)+ Vt . Our setting
describes the important situation where one must estimate
the signal prior to receiving the current observation com-
pared to the usual assumption that you may use the current
observation in the signal estimate. All the algorithms and

157308 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

analysis given herein transfer seamlessly to the more common
tracking filter setting by simply replacing αt (Xt−1) with
αt (Xt) and αt (xi,t−1)with αt (xi,t) everywhere. The algorithms
would stay the same except one has to evolve the particles
prior to calculating the weights, i.e. switch steps 5 and 6
in Algorithm 1, to handle this αt argument change. There
are two reasons why the one-step predictor was considered:
i) It is a very important setting; ii) It is consistent with the
pathspace convergence and other empirical results in [21]
and [20] respectively. The pathspace convergence results
obtained in [21] would have been, at least notationally, more
difficult if the tracking observation model had been used.

In the rest of this section, we compare the situation where
all particles are resampled at each time step to the one where
only a subset of the particles is considered for sampling.

A. COMPLETE SAMPLING
We use the term complete sampling to refer to algorithms in
which all the particles are resampled. That is, the sampling set
at time t , denoted by Ct , is {1, . . . ,N t−1}. We further define
the normalized weights associated with (xi,t−1)

N t−1
i=1 by

ai,t =
`i,t∑
i∈Ct `i,t

(1)

for i ∈ Ct , so that
∑

i∈Ct ai,t = 1.
Complete sampling can be performed via interact-

ing or branching algorithms. In this work, interacting sam-
pling procedures refer to algorithms that redistribute the same
number of particles as there were in the original sample,
such as the multinomial or stratified sampling algorithms
of [10] or the minimal variance algorithm of [4]. Since the
same type of sampler is used throughout the time steps,
the number of particles used in the filter remains constant,
that is, N t = N0 for all t .

We call branching samplers the algorithms in which each
particle can be split into a random number of offspring, which
are then used as the starting point for the next time step,
without a guarantee that the number of particles remains
constant across all time steps. In complete sampling algo-
rithms, the average number of offsprings that each parti-
cle has is proportional to its normalized weight ai,t . The
main difference between interacting and branching samplers
is the constant particle requirement for interacting algo-
rithms and the flexibility in particle numbers for branching
samplers.

Filters that make use of branching samplers (herein called
branching filters) have been criticized for particle instability.
However, by forcing the expected number of particles to
be equal to the initial number of particles N0 at each time
step, the algorithms of [20] show increased particle stabil-
ity. In this work, the branching samplers we propose are
based on the same idea, but we add explicit negative depen-
dence between the branching decisions from one particle to
the other to further control the variation in the number of
particles.

B. PARTIAL SAMPLING
As stated previously, it may not be necessary to sample all
particles at every time step. Indeed, results in [20] show that it
may be advantageous to leave alone particles whose weights
are neither too big nor too small as we avoid introducing
excess sampling noise. If a weight is too small, we would
like to eliminate that particle; if the weight is large, that
particle should likely have multiple offspring. All of this must
be done without introducing bias. There are other possible
partial sampling schemes [12], but here, for simplicity, we use
the following one from [20].

We define the sampling set Ct as{
i ∈ {1 . . . ,N t−1} : `i,t /∈ (r−1 ¯̀t , r ¯̀t)

}
, (2)

for some r ≥ 1 fixed and where

¯̀t :=
1
N0

N t−1∑
i=1

`i,t .

In other words, we resample the particles whose likelihood is
smaller than r−1 ¯̀t or larger than r ¯̀t . That is, if its likelihood
falls outside of a given interval around the N0-average ¯̀t ,
it gets resampled. Using the N0-average rather than dividing
the sum of the likelihoods by N t−1 helps to keep the number
of particles stable.

Interacting and branching samplers are applied differently
to the partial sampling set Ct . Indeed, interacting samplers
use the normalized weights associated with the sampling set
as defined by (1) and randomly redistribute the number of
particles in Ct to the locations of the resampled particles.
The normalized weights are such that

∑
i∈Ct ai,t = 1, that is,

the sum of the normalized weights associated to the resam-
pled particles should sum to 1. We also observe that the
normalized weights used in interacting sampler algorithms
depend on Ct . In particular, the normalized weight ai,t for
a given particle will change if complete, rather than partial,
sampling is used (given that the sampling set is affected), or if
the parameter r is modified.
In contrast, even when only a subset of particles are

branched, branching samplers consider the weight of the
particle as a proportion of the sum of the weights of all parti-
cles, resampled or not. To each resampled particle, branching
samplers assign a number of offspring based on the ratio
`i,t/ ¯̀t . This is true whether the sampling set contains all the
particles or not; the composition of the sampling set does not
change the distribution of the number of offspring. In other
words, since

`i,t

¯̀t
=

`i,t∑N t−1
i=1 `i,t

× N0,

the number of offsprings assigned to each particle is pro-
portional to the weights normalized by the sum of all the
particles’ weights, not only those in the sampling set.

This subtle but important difference between interacting
and branching samplers affect their implementation in the
general filtering procedure. We conclude this section with

VOLUME 8, 2020 157309

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

two important remarks that summarize the differences and
similarities between the different types of algorithms.
Remark 2: In all cases, except for partial branching sam-

plers, the weights normalized over the sampling set, (ai)i∈Ct ,
are used for sampling. This is indeed also the case in complete
branching samplers; when the sampling set contains all the
particles, we observe that for all i ∈ {1, . . . ,N t−1},

`i,t

¯̀t
=

N0`i,t∑N t−1
i=1 `i,t

= N0ai,t .

This similarity between interacting and branching complete
samplers is further explained in Section III.
Remark 3: For both interacting and branching algo-

rithms, complete sampling can be seen as a special case
of partial sampling (using r = 1), so one only needs to
implement the partial sampling algorithmwhile ensuring that
setting r to 1 is possible. However, our numerical results
will show that complete sampling is rarely the best choice
so r > 1 should generally be used.

C. IMPLEMENTATION
In light of the observations above, a general partial sampling
algorithm is given by Algorithm 1 (below). The first part of
the algorithm (lines 2 to 15) describes the mutation step and
the treatment of the non-sampled particles; it is identical for
interacting or branching filters. In the algorithm, and going
forward, for a ∈ R, we denote bac = max{z ∈ Z : z ≤ a}
and {a} = a− bac.
The ‘‘if’’ statement on line 16 splits the algorithm into two.

Lines 16 to 21 refer to the use of an interacting sampler. Line
18 is intentionally left vague, as it should be replaced with a
specific sampler. In the next sections, we discuss sampling
algorithms in further details. Interacting samplers will be
presented as subroutines that take as input the particles and
their weights, (x̂i,t , ˆ̀i,t)i∈Ct and return a vector of the same
length containing the sampled values.

Lines 22 to 32 are used for branching samplers. Line 23
can be replaced by one of the branching algorithms presented
in the next section. Herein, branching samplers take as input
a vector of probabilities ({`i,t/ ¯̀t })i∈Ct corresponding to each
of the particles in Ct , and return a vector of Bernoulli random
variables (ρi,t)i∈Ct of the same length, where each ρi,t takes
the value 0 or 1, that is ρi,t ∈ {0, 1}. The number of offspring
assigned to location it (and therefore given value x̂i,t) is given
by b`i,t/ ¯̀tc + ρi,t , and the weights at these locations is reset
to the N0-average. These steps correspond to lines 26 to 29.
In the next sections, we detail the branching algorithms that
can replace line 23.

III. NEW SAMPLING ALGORITHMS
In its simplest form, the sampling part of the filtering proce-
dure consists essentially in sampling a fixed number n of inde-
pendent random variables from the categorical (empirical)
distribution obtained in the mutation step, or a subset thereof.
In this section, we focus on a single time step, so we drop the
reference to time t from the notation. We also let n denote

Algorithm 1 General SMC Algorithm
1: procedure SMC(N0, T , r)
FT ∈ N is the number of time steps
F Initialize particles

2: `i,0 = 1, xi,0 ∼ p0, for all i ∈ {1, · · · ,N0}

3: for t ∈ {1, . . . ,T } do
4: for i ∈ {1, . . . ,N t−1} do
F Calculate the weights

5: ˆ̀i,t = `i,t−1αt (xi,t−1)
F Evolve the particles

6: x̂i,t ∼ p(Xt |Xt−1 = xi,t−1)
7: end for
F Estimate the conditional expectation

8:
∑N t−1

i=1
ˆ̀i,t f (x̂i,t)/

∑N t−1
i=1
ˆ̀i,t

F Get N0-average
9: ¯̀t =

1
N0

∑N t−1
i=1
ˆ̀i,t

F Determine the sampling set
10: Ct = {i : ˆ̀i,t /∈ (1r ¯̀t , r ¯̀t)}
F Count the particles for next iteration

11: N t = 0
12: for i /∈ Ct do
F Non resampled particles

13: N t = N t + 1
14: (xN t ,t , `N t ,t) = (x̂i,t , ˆ̀i,t)
15: end for
16: if Interacting Filter then
17: Get normalized weights (ai,t)i∈Ct
18: Sample (xi,t)

N t−1
i=N t+1

from (x̂i,t)i∈Ct
19: `i,t = ¯̀t for i ∈ {N t + 1, . . . ,N t−1}

20: N t = N t−1
21: end if
22: if Branching Filter then
23: Create mean ({`i,t/ ¯̀t })i∈Ct Bernoullis

(ρi,t)i∈Ct
24: for i ∈ Ct do
25: Mi,t = b`i,t/ ¯̀tc + ρi,t
26: for j = 1, . . . ,Mi,t do
F Propagate offspring

27: xN t+j,t = x̂i,t
28: `N t+j,t =

¯̀t
29: end for
30: N t = N t +Mi,t
F Update particle number

31: end for
32: end if
33: end for
34: end procedure

the cardinality of the sampling set at the time step of interest.
The n values (xi)ni=1 have associated likelihoods (`i)

n
i=1, from

which normalized weights can be obtained as in (1), so that

ai =
`i∑n
i=1 `i

,

for i ∈ {1, . . . , n}.

157310 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

A. REVIEW OF (SOME) EXISTING ALGORITHMS
In this section, we focus on complete sampling (i.e. we
assume that the sampling set contains all the particles), since
it better highlights the common theory behind interacting
and branching samplers. A discussion on the application of
branching algorithms in partial sampling is provided at the
end of the section.

1) MULTINOMIAL BOOTSTRAP
Multinomial bootstrap (see [15]) is arguably the simplest
sampling algorithm, and refers to the simulation of n inde-
pendent random variables, each one taking the value xi with
probability ai, i = 1, . . . , n, so that each random variable
is drawn from a categorical distribution. The result of these
n independent draws can be expressed as a vector M =

(M1, . . . ,Mn), where each Mi takes a value in {0, 1, . . . , n}
and represents the number of times the value xi is drawn,
so that

∑n
i=1Mi = n.

The vectorM has a multinomial distribution with parame-
ters (n, a1, . . . , an), so the random variables M1, . . . ,Mn are
clearly not independent. Indeed, it can easily be shown that

Cov(Mi,Mj) = −naiaj

for i, j ∈ {1, . . . , n}, i 6= j. In other words, the simplest multi-
nomial bootstrap procedure results in negatively correlated
numbers of offspring at any two different locations i and j.

2) REDUCING SAMPLING NOISE
To improve the performance of the particle filter, it is desir-
able to control the variance of two quantities (among others):
• The number of particles redistributed to each each indi-
vidual site,Mi; and

• The total number of particles reassigned, N =:∑n
i=1Mi.

While reducing the variance of eachMi also reduces the vari-
ance of N , the opposite is not necessarily true. For example,
as explained above, multinomial bootstrap yields a constant
total number of offspring n, thus attaining the smallest possi-
ble variance for N , but does not control the variance of each
Mi.We remark that in this case, the random vectorM is jointly
mixable, since P

(∑n
i=1Mi = n

)
= 1. As mentioned above,

joint mixability is a type of extreme negative dependence.
Even when P(N = n) = 1, as in interacting filters,

reducing the variance of each Mi while retaining unbiased-
ness is desirable in order to improve the performance of the
filtering procedure (see [1] for more details). Many well-
known interacting algorithms, such as residual sampling [29],
stratified sampling [19], as well as combined (interacting)
sampling [10] reduce the variance of the individual number of
particles assigned to each site. Our implementation of these
algorithms is presented for reference in the appendix.

If one focuses only on decreasing the variance of the Mi’s
and relaxes the constraint that N is almost surely constant,
then one can attain the lowest possible variance for each Mi.
Indeed, in order to keep the filtering procedure free of bias,

sampling must be done so that E[Mi] = nai (interacting
samplers) or E[Mi] = `i/ ¯̀ (branching samplers) for each i.
If we define byAa the set of integer-valued random variables
with expectation a ∈ R, it can be shown (see for example
Exercise 9.1 of [1]) that the random variable Y ∈ Aa that
attains the lowest possible variance is given by

Y =

{
bac, with probability 1− {a}
bac + 1, with probability {a},

and has variance {a}(1 − {a}). We recall that bxc denotes
the floor of x, that is bxc =: max{z ∈ Z : z ≤ x}, and
{x} =: x − bxc, for x ∈ R+.
It follows that the lowest possible variance for the indi-

vidual number of offspring at each location i is given by
{nai}(1− {nai}), and can be attained by letting

Mi = bnaic + 1{Ui<{nai}}, (3)

where U1, . . . ,Un are Uniform random variables on [0, 1].
The uniform random variables do not need to be independent
to achieve this lower bound.

Branching-type procedures for sampling are based on this
idea and attain the lowest possible variance for each Mi by
allocating bnaic offspring with probability 1 − {nai}, and
bnaic + 1 offspring with probability {nai} at each location i.
If this operation is performed independently at each location
(for example using (3)), then P(N = n) 6= 1 and

Var(N) =
n∑
i=1

{nai}(1− {nai})

Unless {nai} = 0 for each i, Var(N) is strictly positive.
Remark 4: In our implementation of branching filters (see

Algorithm 1), the number of particles observed at the begin-
ning of a given step, N t may differ from the initial number
of particles N0. However, we use N0 to determine the num-
ber of offspring assigned to each particle; that is, we set
Mi = bN0 aic + 1{Ui<{N0ai}} to increase the stability of
the number of particles through time. For simplicity, in this
section, we assume N t = N0, but the discussion remains
valid in the context of Algorithm 1, since it is possible to show
that E[N t] = N0 ∀t .

If, for each i, we letMi = bnaic+ Ii, where Ii has marginal
Bernoulli distribution with mean {nai}, then the variance of
N can be reduced by adding negative dependence between
the Ii’s. This is done in [20] via stratification. The resulting
combined branching algorithm is presented for reference in
the appendix. In Section III-C, we introduce new branching
algorithms that explicitly induce negative correlation between
the Ii’s.

There exists a specific dependence structure for the vector
I = (Ii)ni=1 (or equivalently, for the M) that allows both indi-
vidual variances of eachMi and the variance of N to be mini-
mal. It stems from theminimal variance algorithm introduced
by [4] (see also [1]) and ensures that Var(Mi) = {nai}(1 −
{nai}) for each i ∈ {1, . . . , n} and that P(N = n) = 1,

VOLUME 8, 2020 157311

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

so that Var(N) = 0.1 [1] also explain that the resulting
random vectorminimizes Var

(∑n
i=jMi

)
andVar

(∑j
i=1Mi

)
for all j ∈ {1, . . . , n}, among all n-dimensional integer-valued
vectors with expectation (na1, . . . , nan).
The minimal variance algorithm keeps track of the number

of offspring left to distribute and compares it with its theoret-
ical average, in order to assign the offspring in a way that
minimizes the variance. The algorithm is implemented via
embedded ‘‘if’’ statements.
Remark 5: The minimal variance algorithm induces a vec-

tor of jointly mixable Bernoulli random variables. Indeed,∑n
i=1bnaic offspring are distributed in a deterministic man-

ner, since each location i receives bnaic offspring with proba-
bility 1. Since the algorithm ensures that N = n almost surely,
the number of offspring that are randomly re-distributed must
be equal to n −

∑n
i=1bnaic. In other words,

∑n
i=1 Ii = n −∑n

i=1bnaic a.s., and therefore the vector I is jointly mixable.
Our first algorithm, presented in Section III-B, is inspired

by the minimal variance algorithm. The use of ‘‘if’’ state-
ments is replaced with the Quick Simulation Field (QSF)
algorithm of [26], which allows quick simulation of a joint
distribution with given marginals and correlation structure.

3) SPECIAL CASE: PARTIAL SAMPLING WITH
BRANCHING ALGORITHMS
The discussion above does not apply directly to the case
where branching samplers are used for partial sampling, since
in this case, the sampling weights `i/ ¯̀ do not sum to 1.
Indeed, recall from Algorithm 1 that for i ∈ C , where C
denotes the sampling set,

Mi = b`i/ ¯̀c + ρi,

where ρi is a Bernoulli with mean {`i/ ¯̀}. It follows that the
expected value of the total number of offspring assigned to
particles in the sampling set is

E

[∑
i∈C

Mi

]
=

∑
i∈C `i

¯̀
.

Recall that ¯̀, the N0-average, is calculated using all the par-
ticles at a given time step. It follows that the expected number
of offspring is not necessarily equal to the number of particles
in the sampling set, and so partial branching samplers cannot
be included in the previous discussion. Nonetheless, branch-
ing algorithms developed using the ideas presented above
can also be applied to partial sampling; this is demonstrated
empirically in Section IV.

B. QSF-BASED MINIMAL VARIANCE ALGORITHM
The QSF algorithm (introduced in [24], see also [25], [26])
sequentially generates random variables with pre-specified
marginal probability mass functions and covariance matrix,
bymodeling the problem as the simulation of random vertices

1The pseudo-code for the specific version of the algorithmwe discuss here
is provided in the Appendix.

on a graph with given edge weights. The vertices of the graph
correspond to the random variables to simulate, while the
edge weights correspond to the covariances between a pair of
random variables/vertices. The full version of the algorithm
uses auxiliary marginal distributions in order to enlarge the
set of reproducible joint distributions. In this article, we use
a simplified version of the algorithm to generate our random
variables, which we recall here.

We consider a collection of n marginal probability mass
function with finite support denoted by πi(·), i ∈ {1, . . . , n}.
We let µi =

∑
xi∈Xi

xiπi(xi), where Xi denotes the support
of πi(·), and s2ii =

∑
xi∈Xi

(xi − µi)2πi(xi), and introduce the
following auxiliary functions:

gi(xi) =
xi − µi
s2ii

, h(i) =
∏

1≤k≤i

πk (xk).

We also denote Xi = (X1, . . . ,Xi) and xi = (x1, . . . , xi),
i ∈ {1, . . . , n}, with X = Xn. Following [26], we have that if
{s2ij, i, j ∈ {1, . . . , n}} are numbers such that the right-hand
side of

P(Xi = xi|Xi−1 = xi−1) = πi(xi)

×

1+ gi(xi)h(i)
P(Xi−1 = xi−1)

i−1∑
j=1

s2ijgj(xj)

 , (4)

is in [0, 1], then the joint distribution of the random vector X
obtained recursively using P(X1 = x1) = π1(x1), (4) and

P(X = x) =
n∏
i=1

P(Xi = xi|Xi−1 = xi−1)

has marginal distributions πi(·) and covariances
Cov(Xi,Xj) = s2ij, i, j ∈ {1, . . . , n}.

The goal of our new algorithm is to reproduce the marginal
distributions of Mi and M1:i−1 =:

∑i−1
k=1Mk , as well as

the correlations between the Mi’s induced by the minimal
variance algorithm. That is, following Section 9.2 of [1],
we want

P(Mi = mi) =

{
1− {nai}, mi = bnaic
{nai}, mi = bnaic + 1

(5)

and

P(M1:i = m1:i) =

{
1− {na1:i}, m1:i = bna1:ic
{na1:i}, m1:i = bna1:ic + 1,

(6)

where a1:i =
∑i

k=1 ak . We also want to have the same covari-
ances betweenM1:i−1 =:

∑i−1
k=1Mk andMi, i ∈ {2, . . . , n} as

those that result from the application of the minimal variance
sampling algorithm, given in the following proposition.
Proposition 1: Let Mi denote the number of offspring

assigned to the location i and denote Mi:j =
∑j

k=iMk
for i, j ∈ {1, . . . , n} with i < j. When the vector M =

(M1, . . . ,Mn) is generated with the minimal variance algo-
rithm, the covariance between M1:i−1 and Mi is given by

Cov (M1:i−1,Mi) = −(1− {nai:n}){nai}, (7)

157312 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

if {nai} + {nai+1:n} < 1, and

Cov (M1:i−1,Mi) = −{nai:n}(1− {nai}), (8)

if {nai} + {nai+1:n} ≥ 1, where ai:n =:
∑n

k=i ak for all
i ∈ {1, . . . , n}.

Proof: We let Ui = σ
(
{Mj, j = 1, . . . , i}

)
for i =

1, . . . , n − 1. From Proposition 9.3 of [1], we have that
E[Mi] = nai, E[M1:i−1] = na1:i−1 and

E[(Mi − nai)|Ui−1] = (Mi:n − nai:n)
{nai}
{nai:n}

,

if {nai} + {nai+1:n} < 1, and

E[(Mi − nai)|Ui−1] = (Mi:n − nai:n)
1− {nai}
1− {nai:n}

,

if {nai} + {nai+1:n} ≥ 1. Note that since Mi:n = n −M1:i−1,
Mi:n ∈ Ui−1. We use these results to obtain

Cov (M1:i−1,Mi)

= E[(M1:i−1 − na1:i−1)(Mi − nai)]
= E [E[(M1:i−1 − na1:i−1)(Mi − nai)|Ui−1]]
= E [(M1:i−1 − na1:i−1)E[(Mi − nai)|Ui−1]]

=

E [(M1:i−1 − na1:i−1)(Mi:n − nai:n)]

{nai}
{nai:n}

,

if {nai} + {nai+1:n} < 1

E [(M1:i−1 − na1:i−1)(Mi:n − nai:n)]
1− {nai}
1− {nai:n}

,

if {nai} + {nai+1:n} ≥ 1.

Since Mi:n has the minimal variance property, we have
Var(Mi:n) = {nai:n}(1− {nai:n}). It follows that

E [(M1:i−1 − na1:i−1)(Mi:n − nai:n)]
= E [M1:i−1Mi:n]− n2a1:i−1ai:n
= E [(n−Mi:n)Mi:n]− n2a1:i−1ai:n
= nE [Mi:n]− E

[
M2
i:n

]
− n2a1:i−1ai:n

= nE [Mi:n]− Var(Mi:n)− (E [Mi:n])2

− n2a1:i−1ai:n
= −(1− {nai:n}){nai:n},

where the last equality follows from a1:i−1 + ai:n = 1.
The result follows from considering the two cases {nai} +
{nai+1:n} < 1 and {nai} + {nai+1:n} ≥ 1.

Since {nai} + {nai+1:n} ∈ [0, 2), the covariance given in
Proposition 1 above can be re-written as

Cov (M1:i−1,Mi) = −{nai}(1− {nai:n})

+ ({nai} − {nai:n}) [{nai} + {nai+1:n}] .

When used with the marginal distributions (5), (6) and
covariances (7) and (8), (4) simplifies to

P(Mi = mi|M1:i−1 = m1:i−1)

= P(Mi = mi)

×

(
1+ Cov(M1:i−1,Mi)

(
mi − nai

{nai}(1− {nai})

)
×

(
m1:i−1 − na1:i−1

{na1:i−1}(1− {na1:i−1})

))
.

In particular, we obtain

P(Mi = bnaic + 1|M1:i−1 = m1:i−1)

= {nai} + Cov(M1:i−1,Mi)

×

(
m1:i−1 − na1:i−1

{na1:i−1}(1− {na1:i−1})

)
, (9)

with Cov(M1:i−1,Mi) given by (7) and (8). The resulting QSF
minimal variance algorithm is given by Algorithm 2. This
subroutine can be inserted on line 18 of Algorithm 1.

Algorithm 2 QSF Minimal Variance
1: procedure QSF Minimal Variance(N t , N t−1,

(x̂i,t , ai,t)i∈Ct)
FN t is the number of particles not in Ct
F Compute the number of particles in Ct

2: n = N t−1 − N t
F Initialize variables

3: g = n, h = n, h̄ = 0
4: Generate (Uk)

n−1
k=1 Uniforms(0,1).

5: for i ∈ Ct do
F Compute Cov(M1:i−1,t ,Mi,t)

6: σ = −{nai,t }(1− {g})+ ({nai,t } − {g})b{nai,t } +
{g− nai,t }c
F Number of offspring at location i

7: Mi,t = bnai,tc + 1{Ui<{nai,t }+σ h̄}
8: for k ∈ {1, · · · ,Mi,t } do
F Place offspring in new location

9: xN t−1−h+k,t = x̂i,t
10: end for
F Update average number of particles to distribute

11: g = g− nai,t
F Update number of particles to distribute

12: h = h−Mi,t
13: h̄ = g−h

{n−g}(1−{n−g})
14: end for
15: Mn = h
16: end procedure

The algorithm is built so that each Mi and M1:i, for i ∈
{1, . . . , n} have minimal variance. The next proposition con-
firms this property.
Proposition 2: Let Mi denote the number of offspring

assigned to the location i and let M1:i =
∑i

i=1Mi for i ∈
{1, . . . , n}. When the vector M = (M1, . . . ,Mn) is generated
with the QSF minimal variance algorithm, the following hold
for each i:

(a) E[Mi] = nai;
(b) E[(Mi − nai)2] = {nai}(1− {nai});
(c) E[M1:i] = na1:i;
(d) E[(M1:i − na1:i)2] = {na1:i}(1− {na1:i}).

Proof: Proposition 2 is proved by induction. First,
we observe that when i = 1, P(M1 = bna1c + 1) = {na1}.
It follows easily that E[M1] = na1 and Var(M1) = p(1−p) =
{na1}(1− {na1}).

VOLUME 8, 2020 157313

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

For the induction step, we denote Ui as in the proof of
Proposition 1 and let (Ui)ni=1 be i.i.d Uniform(0,1) random
variables. To show (a), we note by (7), (8) and (9) that

Mi = bnaic + 1{Ui<{nai}+σ h̄},

with

σ = −(1− {nai:n}){nai} (10)

if {nai} + {nai+1:n} < 1, and

σ = −{nai:n}(1− {nai}) (11)

if {nai} + {nai+1:n} ≥ 1, and

h̄ =
M1:i−1 − na1:i−1

{na1:i−1}(1− {na1:i−1})}
.

It follows that

E[Mi|Ui−1] = bnaic + {nai} + σ h̄ = nai + σ h̄,

and thus E[Mi] = nai since E[h̄] = 0 by the induction
hypothesis. To obtain (b), we first note that Mi − nai =
−{nai} + 1{Ui<{nai}+σ h̄}, so that

E[(Mi − nai)2|Ui−1]
= {nai}2 + (1− 2{nai})E[1{Ui<{nai}+σ h̄}|Ui−1]
= {nai}2 + (1− 2{nai})({nai} + σ h̄).

Since E[h̄] = 0, it follows that

E[(Mi − nai)2] = {nai} − {nai}2

= {nai}(1− {nai}).

To show (c), it suffices to observe that

E[M1:i − na1:i|Ui−1]
= E[M1:i−1 +Mi − na1:i−1 − nai|Ui−1]
= M1:i−1 − na1:i−1 + E[Mi − nai|Ui−1].

The result follows by (a) and the induction hypothesis.

To show (d), we first re-write (M1:i − na1:i)2 as

(M1:i−1 − na1:i−1)2 + (Mi − nai)2

+ 2(M1:i−1 − na1:i−1)(Mi − nai),

so that

E[(M1:i − na1:i)2|Ui−1]
= E[(M1:i−1 − na1:i−1)2|Ui−1]
+E[(Mi − nai)2|Ui−1]
2E[(M1:i−1 − na1:i−1)(Mi − nai)|Ui−1],

and thus

E[(M1:i − na1:i)2]

= {na1:i−1}(1− {na1:i−1})

+{nai}(1− {nai})+ 2Cov(M1:i−1,Mi),

where the last equality is obtained using the induction hypoth-
esis and (b). The QSF minimal variance is built so that

Cov(M1:i−1,Mi) = σ , with σ given by (10) and (11), but
this result can also easily be verified by induction. From this
result, we have

E[(M1:i − na1:i)2]

= {na1:i−1}(1− {na1:i−1})+ {nai}(1− {nai})

− 2(1− {nai:n}){nai}, (12)

if {nai} + {nai+1:n} < 1, and

E[(M1:i − na1:i)2]

= {na1:i−1}(1− {na1:i−1})+ {nai}(1− {nai})

− 2{nai:n}(1− {nai}), (13)

if {nai} + {nai+1:n} ≥ 1. We consider the first case, {nai} +
{nai+1:n} < 1, which is equivalent to

{nai} + {nai+1:n} = {nai:n}. (14)

We also observe that {na1:i−1} = 1 − {nai:n} if {nai:n} 6= 0,
so that

E[(M1:i − na1:i)2]

= {nai:n}(1− {nai:n})+ {nai}(1− {nai})

− 2(1− {nai:n}){nai}

= (1− {nai:n})({nai:n} − {nai})

+{nai}({nai:n} − {nai})

= ({nai:n} − {nai})(1− {nai:n} + {nai})

= {nai+1:n}(1− {nai+1:n})

= (1− {na1:i}){na1:i},

where the fourth equality holds by (14).
If {nai:n} = 0, then by (14), {nai} = {nai+1:n} = 0 since

both values must be non-negative. It follows from (12) and
(13) that E[(M1:i − na1:i)2] = 0. But since {nai+1:n} = 0,
then {na1:i} = 0 and (1 − {na1:i}){na1:i} = 0, so E[(M1:i −

na1:i)2] = (1− {na1:i}){na1:i} holds.
The case (13) is handled similarly: {nai} + {nai+1:n} ≥ 1

is equivalent to

{nai} + {nai+1:n} = {nai:n} + 1, (15)

which allows us to show that

E[(M1:i − na1:i)2] = {na1:i}(1− {na1:i})

when {na1:i−1} 6= 0. If {na1:i−1} = 0, then {nai:n} = 0 and it
follows easily from (12) and (13) that

E[(M1:i − na1:i)2] = {nai}(1− {nai})

= (1− {nai+1:n}){nai+1:n}

= {na1:i}(1− {na1:i}),

where the second equality holds by (15) and the last equality
is true whether {nai+1:n} is 0 or not.

157314 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

C. BRANCHING ALGORITHMS WITH
NEGATIVE DEPENDENCE
The branching algorithms that we propose in this section
ensure that the variance of the number of offspring at each
location, Mi, remain minimal for all i. However, we relax
the condition that the total number of particles remain stable
through time. Such a relaxation is considered with the goal of
reducing computational time of the sampling procedure.

1) ANTITHETIC VARIATES
The lowest possible correlation between two random vari-
ables with given marginals can only be attained if the random
variables are countermonotonic.

Here we propose to correlate the Ii’s two-by-two so that
each couple has a countermonotonic dependence structure.
We do so by simulating n/2 Uniform(0,1) random variables
(or (n+1)/2 if n is odd), and by generating two countermono-
tonic Bernoullis using each of the uniform random variables.
The pseudo-code for this method is given in Algorithm 3.

Algorithm 3 Antithetic Variates

1: procedure Antitethic(N t , N t−1, (`i,t)i∈Ct , ¯̀)
F Compute number of particles in Ct

2: n = N t−1 − N t
F m is the number of Uniforms to simulate

3: m = b n2c + 1
4: Generate (Ui)mi=1 Uniforms(0,1)
5: for i ∈ {1, · · · ,m} do
6: ρ2i−1,t = 1

{Ui<{`2i−1/ ¯̀}}
7: ρ2i,t = 1

{1−Ui<{`2i−1/ ¯̀}}
8: end for
9: end procedure

2) LIST SEQUENTIAL SAMPLING
The sampling method of [3] can be used to generate a
vector of dependent Bernoulli random variables with pre-
determined conditional correlations between each compo-
nent. It is similar to a special case of the quick simulation
fields algorithm of [26] applied to multivariate Bernoulli
random variables, but it uses conditional covariances instead
of unconditional ones.

The method stems from the experiment design and sam-
pling literature; each Bernoulli to simulate can be seen as a
unit which will either be sampled or not in the context of a
survey. The inclusion probability of each unit is proportional
to some quantity of interest and it can differ from one unit to
the other. Introducing negative correlation between inclusion
indicators can reduce the variability of the results of the
survey.

The general idea of the method is to go through each
unit one by one in a pre-specified order (so it is a type
of list sequential sampling) and to decide whether or not
this unit will be included in the sample; this is equivalent
to simulating a Bernoulli, where 1 indicates inclusion of
the unit. After each unit is sampled, the conditional laws

(or inclusion probabilities) of all the yet-to-be-sampled
units are updated, based on the value of the new simu-
lated Bernoulli (or inclusion decision) and on correlations
(or correlation-based weights) chosen by the sampler.

Therefore, for all i ∈ {1, . . . , n}, if we let p(0)i = {`i/ ¯̀}
be the unconditional Bernoulli parameter (or unconditional
inclusion probability), the updated parameters are given by

p(i)j = p(i−1)j − (ρi − p
(i−1)
i)β(i)j−i,

for j ≥ i + 1. To ensure that the updated conditional inclu-
sion probabilities p(i)j remain in [0, 1], the weights β(i)j−i must
satisfy

−min

(
1− p(i−1)j

1− p(i−1)i

,
p(i−1)j

p(i−1)i

)
≤ β

(i)
j−i

≤ min

(
p(i−1)j

1− p(i−1)i

,
1− p(i−1)j

p(i−1)i

)
. (16)

A non-zero weight creates dependence between the i
th

and the jth random variables. It is explained in [3] that
negative correlations will be obtained by choosing positive
weights β(i)j−i. Themaximal weight that can be chosen is there-
fore the upper bound in (16), given that the sum of the total
allocated weights remains smaller than or equal to 1. This list
sequential method using maximal weights is implemented in
Algorithm 4. The parameter m, to be selected by the user,
indicates the maximum number of random variables that will
be negatively correlated with each ρi.

Algorithm 4 List Sequential Sampling

1: procedure List sequential(N t , m, (`i,t)i∈Ct , ¯̀)
F Compute the initial Bernoulli parameters

2: (pi)i∈Ct = ({`i/ ¯̀})i∈Ct
3: for i ∈ Ct do
4: ρi = 1{Ui<pi}
F Record total allocated weight

5: β̄ = 0
6: for j ∈ {1, . . . ,m} do
7: βj = min

(
pi+j
1−pi

,
1−pi+j
pi

, 1− β̄
)

8: pi+j = pi+j − (ρi − pi)βj
9: β̄ = min(β̄ + βj, 1)
10: end for
11: end for
12: end procedure

IV. NUMERICAL RESULTS
A. MODEL
To assess the speed and stability of the proposed algorithms,
we test on a common model from the particle filtering litera-
ture (see for example [28]), given by

Xt =
1
2
Xt−1 +

25 Xt−1
1+ X2

t−1

+ 8 cos (1.2(t − 1))+ Ut

Yt =
X2
t−1

20
+ Vt ,

VOLUME 8, 2020 157315

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

whereUt is normally distributed with mean 0 and variance 10
and Vt is standard Cauchy distributed.

For this model, we calculate the error as

error :=

√√√√ 1
T

T∑
k=1

(πNk (f)− f (Xk))2, (17)

where f is defined as

f (x) :=

1000, x > 1000
−1000, x < −1000
x, −1000 ≤ x ≤ 1000

πNk (f) is our estimate of f (Xk).

B. METHODS
1) PROCEDURE
In all experiments, to determine an optimal value of r for
sampling, we proceed in the following manner.

We set the number of time steps to be T = 1000 and
the number of trials to be 1000. We generate 1000 random
copies of the signal, one for each trial, at the beginning of the
experiments. We use these random copies for all experiments
so as to be consistent when evaluating different algorithms
and evaluating values of r for a given algorithm. The values of
r we study range from 1 to 6. This range was chosen based on
preliminary experiments to ensure that it includes the optimal
value for each algorithm.

For each algorithm and for each value of r , we seek the
execution time of the algorithm for a fixed performance.
To do so, for each algorithm, we specify an initial number
of particles N0 = 150 and run the algorithm for 1000 trials.
At the end of each trial, we calculate the error. If the average
error over all trials is lower than the specified threshold,
we then accept that average time. If the error is above the
threshold, we increment the number of particles by 10 and
repeat the experiment.

All the algorithms are implemented according to the
pseudo-code included in this article. For the list sequential
sampling (Algorithm 4), we setm = 3 to increase the amount
of dependence between the particle locations without slowing
down the algorithm too much.

We set the error threshold to be 14. These values are based
on preliminary experiments which determined an error that
was not so high to be unachievable given our limited compu-
tational resources, but not so low as to be reached trivially by
all algorithms. All run times are recorded in milliseconds.

2) SUMMARY STATISTICS
The main summary statistics used to evaluate particle varia-
tion are standard deviation range and the average maximum
and minimum number of particles. For every trial i and over
all time steps in that trial, denote the maximum number of
particles by Nmax,i, the minimum number of particles by
Nmin,i, and the average number of particles by N i. Let Nmax
denote the average of all Nmax,i’s, Nmin the average of all

Nmin,i’s, and N the average of all N i’s. We report both Nmax
and Nmin.
For each trial, the standard deviation of the number of

particles is calculated after all T time steps, and then averaged
across all the trials. The resulting statistics is denoted σN .
We then calculate the standard deviation range. The intuition
for the standard deviation range is that we wish to know
the range of the number of particles corresponding to two
standard deviations both below and above themean. To obtain
the standard deviation range, we divide 4 times the standard
deviation σN by N :

1σ :=
4σN
N
.

3) CONFIGURATION
All simulations were coded in C++ and run in RStudio using
Rcpp on a PC with a Dual Intel Xeon Processor E5-2650
v2 and 64 GB of RAM.

C. RESULTS
1) BRANCHING PARTICLE STABILITY
An important concern about branching methods is particle
control. Here, we assess the variation in the number of parti-
cles resulting from the branching algorithms we consider.

We first observe that in all three cases,1σ increases with r .
Increasing r means that fewer particles are branched, since
increasing r widens the interval in which the particles are
left untouched. As r increases, the weights of the particles
considered for branching become either very high (and will
likely create a large number of offspring) or very low (and
will die off with a high probability). This explains the larger
variation in the number of particles when r increases.
We also observe that a higher number of initial particlesN0

contributes to stabilizing the number of particles throughout
the filter. Comparing Fig. 1a and 1b shows that the effect
becomes significant for higher values of r . This trend con-
firms similar particle stability experiments in [20]. The risk of
the number of particles exploding decreases as N0 increases.
This result might be surprising for those who believe that
branching algorithms are doomed to particle instability, but
is not so surprising once we note that, as described in [20],
the expected number of particles at time t for our branching
algorithms is always the initial number of particles N0 rather
than the previous number of particles N t−1.

For lower values of r , antithetic variates and list sequential
sampling appear to offer significantly higher particle stability
than the combined branching algorithm. This may be due
to the explicit negative dependence structure between the
number of particles at certain locations. As r increases, this
difference disappears, and combined branching offers greater
stability. We find in the next section that the optimal param-
eter r for these three algorithms fall between 2.05 and 3.50,
depending on the method. In this range, all three algorithms
perform very similarly in terms of particle stability.

157316 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

FIGURE 1. 1σ as a function of r for branching algorithms.

It should be noted that while particle stability resulting
from branching methods is exemplified here in a particular
context, previous experiments in different settings have also
lead to similar conclusions. In particular, [22] uses sequential
branching Monte Carlo to simulate asset prices in the context
of the Heston stochastic volatility model (see [16]) and show
similar particle stability. Such property was also observed
when using branching particle filters to calibrate the Heston
model in [36]. We are therefore confident that the particle
stability property we observe in the numerical example pre-
sented here translates to a variety of problems.

2) PERFORMANCE RESULTS AND DISCUSSION
Table 1 presents the results of the experiment described in
Section IV-B1. As expected, the basic bootstrap is slower
than the other algorithms and requires a higher number of
initial particles to reach a similar precision. Fig. 3 shows
that execution time of the basic bootstrap algorithm can be
reduced by partial sampling, but remains high. It is interesting
to note that the best value r for the bootstrap algorithm
is much higher at 5.65 than for all the other algorithms
(between 2.05 and 3.50). Such a high value results in much
fewer particles being sampled, which speeds up the algo-
rithm. Although 5.65 is identified as the optimal r , Fig. 3
shows that the run time of the algorithm (for the fixed per-
formance that we selected) remains around the same level for
values of r between 3.5 and 6.

FIGURE 2. Comparison of the run times for best results (Table 1). Key:
QSFMV = QSF minimal variance, AVB = antithetic variates branching,
LSS = list sequential sampling, CB = combined branching, IC = interacting
combined, MV = minimal variance, B = bootstrap.

FIGURE 3. Run time as a function of r (all algorithms).

The antithetic variates branching algorithm is fastest over-
all, both when considering the best performing r (in Table 1
and Fig. 2). Fig. 3 and 4 show that this result is robust for most
values of r considered. This result is not surprising given the
low computational complexity of the antithetic variates algo-
rithm, combined with the fact that it requires the simulation of
half as many random variables as there are particles to branch.
Nonetheless, except for the bootstrap, the other algorithms
considered are atmost 10% slower than the antithetic variates.
These run times are also not particularly sensitive to the
choice of r , although they tend to increase for high values of r .
It is important to remark that the problem considered here

is chosen from the interacting particle filter literature, and that
our results do not contradict other empirical results showing
greater outperformance by branching algorithms in prob-
lems chosen to highlight the benefits of branching (see for
example [21]).

All algorithms can be sped up by partial sampling,
as shown in Fig. 2. The time improvement is most noticeable
for the basic bootstrap algorithm. A slight U-shape can be
observed in Fig. 4 for all algorithms except the bootstrap,
indicating that values of r between 2 and 4 are optimal for
this problem, with performance worsening for r outside of
this range. We hypothesize that this observation is the result

VOLUME 8, 2020 157317

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

TABLE 1. Best performance for each algorithm.

FIGURE 4. Run time as a function of r (faster algorithms).

FIGURE 5. Comparison of initial particle numbers (N0) used to obtain
best results (Table 1). Key: QSFMV = QSF Minimal Variance,
AVB = antithetic variates branching, LSS = list sequential sampling,
CB = combined branching, IC = interacting combined, MV = minimal
variance, B = boostrap.

of two phenomenons. First, when r is close to 1, too many
particles are sampled, which introduces unnecessary noise in
the system. In other words, we are unnecessarily perturbing
particles that already accurately represent the signal. When
r is too large, not enough sampling is taking place, which
leaves low-quality particles untouched. Further insight can be
obtained from examining Fig. 6: there seems to be a tradeoff
between the value of r and the initial number of particles N0
required to reach the error threshold. When r is high, fewer
computational resources are expended sampling particles,
but more particles are needed to reach the error threshold.
When r is low, we possibly require fewer particles to reach
the error threshold, but need to sample more of them.

FIGURE 6. Initial number of particles N0 as a function of r .

The new algorithms we introduced in this article fare at
least as well as existing ones. However, it appears from Fig. 3
that the list sequential sampling algorithm may be slightly
slower overall. The negative dependence it creates between
the number of particles at different locations may be too weak
to offset the added computational complexity. In contrast,
the antithetic variates branching induces negative dependence
between particles only two-by-two. As shown in Fig. 6, this
somewhat less sophisticated negative dependence structure
seems to require a slightly higher initial number of par-
ticles N0. However, the simplicity of its implementation
makes it faster, which makes up for the increased number of
particles.

157318 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

It could also be argued that the version of the combined
branching algorithm we implemented is new, since we modi-
fied it to remove the shuffle. Our results show that the possible
bias induced by this omission does not worsen the perfor-
mance, and that the modified algorithm performs similarly
to the branching algorithms that include explicit negative
dependence.

Our new implementation of the minimal variance depen-
dence structure structure, which uses quick simulation fields
rather than embedded ‘‘if’’ statements, performs as well as
the minimal variance algorithm of [7]. When the best value
for r is considered (in Table 1), both run times are very close.
This result holds across values of r , see Fig. 4.
While minimizing the variance of the total number of par-

ticles is theoretically desirable, our results show that relaxing
this requirement and letting N vary may result in better per-
forming algorithms. The increased variance in the number of
particles can be offset by the reduction in run time, especially
when the variance of the particles at each location is kept
minimal. In the problem we consider here, the performance
of the branching algorithms is therefore not impaired by the
variation in the number of particles.

V. CONCLUDING REMARKS
We proposed new sampling algorithms that explicitly create
negative dependence between the number of particles re-
allocated to each location in the sampling step of a parti-
cle filter. One of these new algorithms establishes a novel
way to impose the so-called minimal variance dependence
structure via quick simulation fields. Our method may be
easier to understand and our numerical experiments show
that it performs at least as well as the original minimal
variance algorithm. In order to improve the performance of
the filtering procedure, all three new algorithms keep the
variance of the number of particles at each locationminimal,
but some allow for variation in the total number of particles.
Numerical results show that explicit negative dependence can
be implemented efficiently and results in high performing
algorithms.

We also recall the partial sampling scheme of [20] and
propose to implement it in a wide range of interacting and
branching procedures. In all the cases we considered, partial
sampling reduces the run time of filtering algorithms for a
fixed performance. We also show that the introduction of
partial resampling into interacting particle filters significantly
closes the gap between them and branching particle filters.

Although our numerical results are model specific, they
contribute to the growing body of literature (see [20], [22])
providing evidence that branching particle filters are stable
when they are correctly implemented. Further testing and
application of branching filters and branching Monte Carlo
methods in general is desirable to further the analysis of these
methods.

APPENDIX
This section contains some of the algorithms mentioned in
the main part of the text. They are the algorithms that are

Algorithm 5Multinomial Bootstrap
1: procedure Bootstrap(N t , N t−1, (x̂i,t , ai,t)i∈Ct)
F Compute the number of particles in Ct

2: n = N t−1 − N t
F Compute cumulative probabilities

3: pi =
∑i

k=1 ai,t for i ∈ Ct
4: Vn+1 = 1
5: j = n− 1
6: for i ∈ {n, . . . , 1} do
7: Generate Ui a Uniform(0,1)
8: Vi = (Ui)

1
i Vi+1

9: while Vi ≤ pj do
10: j = j− 1
11: end while
12: xN t+k,t = x̂j+1,t
13: end for
14: end procedure

Algorithm 6 Interacting Combined Filter
1: procedure Interacting Combined(N t , N t−1,

(x̂i,t , ai,t)i∈Ct)
F Compute the number of particles in Ct

2: n = N t−1 − N t
F Record particles assigned deterministically

3: S = 0
4: for i ∈ C do
5: k = 0
F Deterministically assign particles

6: while k < bnai,tc do
7: k = k + 1
8: xNt+S+k = x̂i,t
9: end while
10: S = S + k
11: end for
F Number of particles left to assign

12: m = n− S
13: j = 1
14: for i ∈ {1, . . . , n} do
15: pi =

∑i
k=1

{nai,t }
m

16: end for
17: for k ∈ {1, . . .m} do
F Use stratified uniforms

18: Generate Uk , a Uniform
(
k−1
m , km

)
19: while Uk ≥ pj do
20: j = j+ 1
21: end while
22: xN t+S+k,t = x̂j,t
23: end for
24: end procedure

implemented for comparison purposes in Section IV. Simi-
larly to the algorithms presented in Section III, we drop the
reference to time to simplify the algorithms.

VOLUME 8, 2020 157319

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

Algorithm 7Minimal Variance
1: procedureMinimal Variance(N t , N t−1, (x̂i,t , ai,t)i∈Ct)
F Compute the number of particles in Ct

2: n = N t−1 − N t
3: g = n, h = n
4: for i ∈ Ct do
F Deterministic number of offspring at location i.

5: Mi,t = bnai,tc
6: Generate Uniform(0, 1,) Ui
7: if {nai,t } + {g − nai,t } < 1 and Ui{g} ≤ {nai,t }

then
8: Mi,t = Mi,t + h− bgc
9: else if {nai,t }+ {g−nai,t } ≥ 1 and Ui(1−{g}) ≥
{nai,t } − {g} then

10: Mi,t = Mi,t + h− bgc
11: else if {nai,t }+ {g−nai,t } ≥ 1 and Ui(1−{g}) <
{nai,t } − {g} then

12: Mi,t = Mi,t + 1
13: end if
14: for k ∈ {1, . . . ,Mi,t } do
15: xNt−1−h+k,t = x̂i,t
16: end for
17: h = h−Mi,t
18: g = g− ai,t
19: end for
20: end procedure

Algorithm 8 Combined Branching

1: procedure Combined Branching(N t , N t−1, (li,t)i∈Ct , ¯̀)
F Compute the number of particles in Ct

2: n = N t−1 − N t
3: for i ∈ Ct do
4: Generate Ui, a Uniform

(
i−1
n ,

i
n

)
5: ρi,t = 1

{Ui≤{`i,t/ ¯̀}}
6: end for
7: end procedure

The basic multinomial bootstrap algorithm [15] is detailed
in Algorithm 5. The interacting combined sampler [10] is a
combination of the residual [29] and stratified [19] methods.
The implementation we consider is given in Algorithm 6.
The minimal variance algorithm was introduced in [4]. In
Algorithm 7, we present modified version of the one in [1],
given in [20]. Finally, a modified version of the combined
branching algorithm of [20], against which we compare our
new branching algorithms, is detailed in Algorithm 8. The
modification rests in the fact that we do not perform a
full random permutation, as in the original version of the
algorithm. Rather, we rely upon the natural particle reorder-
ings in Algorithm 1 as a result of sampling to permute the
particles.

ACKNOWLEDGMENT
The authors thank two anonymous referees for their useful
comments which helped improve the paper.

REFERENCES

[1] A. Bain and D. Crisan, Fundamentals Stochastic Filtering. New York, NY,
USA: Springer, 2009.

[2] D. J. Ballantyne, H. Y. Chan, and M. A. Kouritzin, ‘‘A branching particle
based nonlinear filter for multi-target tracking,’’ in Proc. Int. Conf. Inf.
Fusion, Montreal. Citeseer, 2001.

[3] L. Bondesson and D. Thorburn, ‘‘A list sequential sampling method
suitable for real-time sampling,’’ Scandin. J. Statist., vol. 35, no. 3,
pp. 466–483, 2008.

[4] D. Crisan, ‘‘Particle filters—A theoretical perspective,’’ in Sequential
Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, N. Gordon,
eds. New York, NY, USA: Springer, 2001. pp. 17–41

[5] D. Crisan and A. Doucet, ‘‘A survey of convergence results on particle
filtering methods for practitioners,’’ IEEE Trans. Signal Process., vol. 50,
no. 3, pp. 736–746, Mar. 2002.

[6] D. Crisan and T. Lyons, ‘‘Nonlinear filtering and measure-valued pro-
cesses,’’ Probab. Theory Rel. Fields, vol. 109, no. 2, pp. 217–244, 1997.

[7] D. Crisan and T. Lyons, ‘‘Minimal entropy approximations and optimal
algorithms for the filtering problem,’’ Monte Carlo Methods Appl., vol. 8,
no. 4, pp. 343–356, 2002.

[8] P. D. Moral and A. Doucet, ‘‘Particle methods: An introduction with
applications,’’ in ESAIM: Proceedings, vol. 44. Les Ulis, France: EDP
Sciences, Jan. 2014, pp. 1–46.

[9] P. Del Moral and L. Miclo, ‘‘Branching and interacting particle systems
approximations of Feynman-Kac formulae with applications to nonlinear
filtering,’’ in Séminaire de Probabilités XXXIV, J. Azéma, M. Ledoux,
M. Émery, and M. Yor, eds. Berlin, Germany: Springer, 2000, pp. 1–145.

[10] R. Douc, O. Cappé, and E.Moulines, ‘‘Comparison of resampling schemes
for particle filtering,’’ in Proc. 4th Int. Symp. Image Signal Process. Anal.
(ISPA), 2005, pp. 64–69.

[11] A. Doucet and A. M. Johansen, ‘‘A tutorial on particle filtering and
smoothing: Fifteen years later,’’ in The Oxford Handbook of Nonlinear
Filtering. New York, NY, USA: Oxford Univ. Press, 2009.

[12] A. Doucet, S. Godsill, and C. Andrieu, ‘‘On sequential Monte Carlo
sampling methods for Bayesian filtering,’’ Statist. Comput., vol. 10, no. 3,
pp. 197–208.

[13] M. Fasiolo, N. Pya, and S. N.Wood, ‘‘A comparison of inferential methods
for highly nonlinear state space models in ecology and epidemiology,’’
Stat. Sci., vol. 31, no. 1, pp. 96–118, Feb. 2016.

[14] R. Frey and W. Runggaldier, ‘‘Pricing credit derivatives under incomplete
information: A nonlinear-filtering approach,’’ Finance Stochastics, vol. 14,
no. 4, pp. 495–526, Dec. 2010.

[15] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, ‘‘Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,’’ IEEE Proc. F Radar
Signal Process., vol. 140, no. 2, p. 107, 1993.

[16] S. L. Heston, ‘‘A closed-form solution for options with stochastic volatility
with applications to bond and currency options,’’ Rev. Financial Stud.,
vol. 6, no. 2, pp. 327–343, Apr. 1993.

[17] A. Javaheri, Inside Volatility Filtering: Secrets Skew. Hoboken, NJ, USA:
Wiley, 2015.

[18] M. S. Johannes, N. G. Polson, and J. R. Stroud, ‘‘Optimal filtering of jump
diffusions: Extracting latent states from asset prices,’’ Rev. Financial Stud.,
vol. 22, no. 7, pp. 2759–2799, Jul. 2009.

[19] G. Kitagawa, ‘‘Monte Carlo filter and smoother for non-Gaussian nonlin-
ear state space models,’’ J. Comput. Graph. Statist., vol. 5, no. 1, pp. 1–25,
Mar. 1996.

[20] M. A. Kouritzin, ‘‘Residual and stratified branching particle filters,’’ Com-
put. Statist. Data Anal., vol. 111, pp. 145–165, Jul. 2017.

[21] M. A. Kouritzin, ‘‘Convergence rates for residual branching particle fil-
ters,’’ J. Math. Anal. Appl., vol. 449, no. 2, pp. 1053–1093, May 2017.

[22] M. A. Kouritzin and A. MacKay, ‘‘Branching particle pricers with Hes-
ton examples,’’ Int. J. Theor. Appl. Finance, vol. 23, no. 01, Feb. 2020,
Art. no. 2050003.

[23] M. A. Kouritzin and Y. Zeng, ‘‘Bayesian model selection via filtering for
a class of micro-movement models of asset price,’’ Int. J. Theor. Appl.
Finance, vol. 8, no. 1, pp. 97–121, Jan. 2005.

[24] M. A. Kouritzin, F. Newton, and B. Wu, ‘‘On random field CAPTCHA
generation,’’ IEEE Trans. Image Process., vol. 22, no. 4, pp. 1656–1666,
Apr. 2013.

157320 VOLUME 8, 2020

M. A. Kouritzin et al.: New Branching Filters With Explicit Negative Dependence

[25] M. A. Kouritzin, F. Newton, and B. Wu, ‘‘A graph theoretic approach
to simulation and classification,’’ Comput. Statist. Data Anal., vol. 70,
pp. 281–294, Feb. 2014.

[26] M.A.Kouritzin, F. Newton, andB.Wu, ‘‘Aflexible, real-time algorithm for
simulating correlated random fields and its properties,’’ J. Math. Statist.,
vol. 13, no. 3, pp. 197–208, Mar. 2017.

[27] T. Li, M. Bolic, and P. M. Djuric, ‘‘Resampling methods for particle filter-
ing: Classification, implementation, and strategies,’’ IEEE Signal Process.
Mag., vol. 32, no. 3, pp. 70–86, May 2015.

[28] T.-C. Li, G. Villarrubia, S.-D. Sun, J. M. Corchado, and J. Bajo, ‘‘Resam-
pling methods for particle filtering: Identical distribution, a new method,
and comparable study,’’ Frontiers Inf. Technol. Electron. Eng., vol. 16,
no. 11, pp. 969–984, Nov. 2015.

[29] J. S. Liu and R. Chen, ‘‘Sequential Monte Carlo methods for dynamic sys-
tems,’’ J. Amer. Stat. Assoc., vol. 93, no. 443, pp. 1032–1044, Aug. 1998.

[30] A. Mantoglou and J. L. Wilson, ‘‘The turning bands method for simulation
of randomfields using line generation by a spectral method,’’Water Resour.
Res., vol. 18, no. 5, pp. 1379–1394, Oct. 1982.

[31] V. Maroulas and A. Nebenführ, ‘‘Tracking rapid intracellular movements:
A Bayesian random set approach,’’ Ann. Appl. Statist., vol. 9, no. 2,
pp. 926–949, Jun. 2015.

[32] R. Nelsen, An Introduction to Copulas. New York, NY, USA: Springer,
2007.

[33] G. Puccetti and R. Wang, ‘‘Extremal dependence concepts,’’ Stat. Sci.,
vol. 30, no. 4, pp. 9485–9517, 2015.

[34] M. J. L. Robin, A. L. Gutjahr, E. A. Sudicky, and J. L. Wilson, ‘‘Cross-
correlated random field generation with the direct Fourier transform
method,’’Water Resour. Res., vol. 29, no. 7, pp. 2385–2397, Jul. 1993.

[35] M. Shinozuka, ‘‘Simulation of multivariate and multidimensional random
processes,’’ J. Acoust. Soc. Amer., vol. 49, no. 1B, pp. 357–368, Jan. 1971.

[36] N. Vellone-Scott, ‘‘Calibration du modèle de Heston avec filtres à particles
et ré-échantillonnage par branchement,’’ M.S. thesis, Dept. Math., UQAM,
Montreal, QC, Canada, 2020.

[37] M. Vořechovský, ‘‘Simulation of simply cross correlated random fields
by series expansion methods,’’ Struct. Saf., vol. 30, no. 4, pp. 337–363,
Jul. 2008.

[38] B. Wang and R. Wang, ‘‘Joint mixability,’’Math. Oper. Res., vol. 41, no. 3,
pp. 808–826, Aug. 2016.

[39] X. Yu, J. Li, and J. Xu, ‘‘Nonlinear filtering in unknownmeasurement noise
and target tracking system by variational Bayesian inference,’’ Aerosp. Sci.
Technol., vol. 84, pp. 37–55, Jan. 2019.

MICHAEL A. KOURITZIN was born in Vancou-
ver, Canada, in 1964. He received the B.A.Sc. and
Ph.D. degrees in electrical engineering from the
University ofWaterloo, Canada, in 1987 and 1991,
respectively.

From 1990 to 1992, he was an Assistant Pro-
fessor in electrical and computer engineering with
the University of Waterloo. He was an NSERC
and DAADSponsored Research Assistant with the
Institut für Mathematische Stochastik, University

of Freiburg, Germany, and the Department of Mathematics, Carleton Uni-
versity, Canada, in 1993 and 1994, respectively. He was a Postdoctoral
Fellow with the Institute of Mathematics and its Applications, University
of Minnesota, USA, in 1995, where he also worked with Lockheed Martin
Corporation. In 1997 and 2001, he became an Associate and a Full Professor
of mathematics and statistics with the University of Alberta. He has also
held positions at Toulouse University, France; the University of Wisconsin,
Madison, USA; HEC Montreal, Canada; The Hong Kong Polytechnic Uni-
versity, Hong Kong; the University of Copenhagen, Denmark; the University
of Beijing, China; and the South University of Science and Technology,
China. He ran the MITACS Canadian National Center of Excellence across
three universities interacting with five companies from 1998 to 2005. He has
published over 70 articles in mathematics, statistics, and engineering; and
authored five patents.

Dr. Kouritzin won the PIMS Canadian Outreach Prize in 2001.

ANNE MACKAY was born in Quebec City, QC,
Canada, in 1984. She received the B.Sc. degree in
actuarial science from Université Laval, in 2007,
the M.Sc. degree in mathematics from Concor-
dia University, in 2011, and the Ph.D. degree in
actuarial science from the University of Waterloo,
in 2014.

From 2014 to 2016, she was a Postdoctoral
Fellow at Risklab, ETH Zurich. From 2016 to
2020, she was an Assistant Professor with the

Université duQuébec àMontréal, where she has been anAssociate Professor,
since 2020. Her research interests include numerical methods in finance and
insurance, and quantitative risk management of long-term financial risk.

Dr. MacKay has been a Fellow of the Society of Actuaries since 2012 and
an Associate of the Canadian Institute of Actuaries since 2019.

NICOLAS VELLONE-SCOTT was born in Laval,
QC, Canada, in 1995. He received the B.Sc. degree
in actuarial science from the Université du Québec
à Montréal, in 2017, where he is currently pursu-
ing the M.Sc. degree in mathematics with a con-
centration in financial and actuarial mathematics,
under the supervision of Prof. Anne MacKay and
Prof. Clarence Simard.

From 2018 to 2020, he was a Teaching and a
Research Assistant with the Université du Québec

à Montréal. His research interest includes numerical methods in finance and
insurance.

Mr. Vellone-Scott’s awards and honors include scholarships from Fonds
de recherche du Québec–Nature et technologies (FRQNT) and the Canadian
Institute of Actuaries.

VOLUME 8, 2020 157321

