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ABSTRACT Skin segmentation plays an important role in human activity recognition, video surveillance,
hand gesture identification, face detection, human tracking and robotic surgery. The accurate segmentation
of the skin is necessary to recognize the human activity. Segmentation of skin is easy to realize in ideal
situations because of similar backgrounds. But it becomes complicated because of presence of skin-like
pixels, background illuminations, and certain changes in environment. These problems are addressed by
incorporating preprocessing stages in current studies, but this raises the total cost of the system. However,
there are some limitations associated with these methods in terms of accuracy and processing speed. In this
work, we propose a skin semantic segmentation network (SSS-Net) that is able to capture the multi-scale
contextual information and refines the segmentation results especially along object boundaries. Moreover
our network helps to reduce the cost of the preprocessing as well. We have performed experiments on the
five open datasets of human activity recognition for the segmentation of skin. Experimental results show
SSS-Net outperforms the state-of-the-art methods in skin segmentation in terms of accuracies.

INDEX TERMS Skin segmentation, semantic segmentation, low-level semantic information, deepLabv3+.

I. INTRODUCTION
Skin segmentation aims to detect the region of a human
skin in an image. It is one of the important tasks which
works as a step for pre-processing in various systems and
applications, such as hand gesture analysis, face recognition,
face tracking and detection, content based image retrieval,
etc. [1]. Skin detection is a process of identifying the pixels of
a given image that correspond to human skin. Skin detection
is also very helpful to humans while performing complex
tasks through human computer interaction. As in case of hand
gesture recognition, it provides help in recognizing certain
actions [2]. In recent years, with the advancements in deep
neural networks, the networks used for other detection tasks
have been adapted as skin detection methods as well [3], [4].

Recognition of human activity is an important area and
has received a great deal of attention due to the growing
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demands of many applications. These include, but are not
limited to identification of individual activity, interaction
between multiple persons and analysis of crowd behavior.
Recognition of human posture in single person activity helps
detect the nature of the activity. Nonetheless, these task are
inherently challenging since human poses vary enormously.
These problems get compounded when the activity of mul-
tiple subjects is involved. This is an area of active interest,
for instance crowd monitoring to detect antisocial behaviour
is being tested and deployed extensively [5]. Activity mon-
itoring is also being used in sports, for instance recogni-
tion of the actions of players during a tennis game [6].
Human activity recognition depends quite critically on accu-
rate skin segmentation [7]. This challenge is compounded by
the structural variations within a single human’s limbs and
body parts, making consistent skin segmentation difficult.
The problem becomes significantly complex with multiple
subjects in a frame. Therefore traditional machine learn-
ing algorithms fail to detect multiple features at one time
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where skin segmentation is being used. The Skin Semantic
Segmentation Network (SSS-Net) presented in this research
deals with the limitations of skin segmentation innovatively
by capturing multi-scale contextual information and refining
the segmentation results especially along object boundaries.

In this paper, SSS-Net is used for skin segmentation tasks
for the semantic labeling of pixels in a pixel-wise classifica-
tion framework. The contributions of this work are:

1) The task of skin segmentation is modeled as a seman-
tic pixel-wise segmentation problem. For this reason,
a SSS-Net with reduced tunable hyper parameters
is considered. We believe this work will help bridge
the gap between skin segmentation and semantic
segmentation;

2) Low-level semantic information is preserved and the
preservation of edge information results in robust
detection of skin information;

3) The proposed method is robust to skin detection;
4) A much smaller (in terms of tunable parameters) deep

neural network is proposed for skin segmentation that
does not require additional pre-processing steps;

5) Low computational time overhead during inference in
both train and test stages.

This paper is organized as follows; In section 2, relevant liter-
ature is discussed. The methodology is reviewed in section 3.
Section 4 presents the experimental results. This is fol-
lowed by a discussion of the proposed network in section 5.
Section 6 concludes the findings of this research.

II. RELATED WORK
Skin detection is being used extensively for a variety of
applications in image processing and visual computing.Many
studies based on skin detection use a variety of different
methods. These methods can be divided into different cate-
gories, i.e. thresholding, traditional handcrafted features and
deep neural network. To separate the skin and no-skin areas,
different image channels are used by these procedures. In [8]
skin and non-skin areas are detected by using two detectors
that are based on color channels and thresholding. Thresh-
olding and these channels are dynamically selected and are
based on agreement maximization framework. Thresholding
concentrate on selecting a certain region in color spaces, thus
if a pixel belongs to that region it will be treated as skin.
But there are several challenges involved in detecting skin
and non-skin pixels. This is primarily due to the similarity
of background objects with the color of the skin due to
various reasons, making skin detection a very challenging
and difficult task. Reference [1] proposed a method where
an eye detector has been shown to improve the accuracy of
skin detection regardless of variations in illumination and
ethnicity. In [9], a method is introduced for handling skin
like pixels in the background. Proposed method significantly
helps in reducing the error in the detection thus reducing the
false detection of skin color. Interested readers are referred
to [24] and [25] for more information for the selection and
weighting. For the detection of skin color, multi-color spaces

have been introduced for the skin color model. For instance,
[11] performed dynamic skin detection using multi-color
space instead of using the single color space. The proposed
method improves the precision rate as well as reducing the
error in skin color detection. As skin detection is an important
step at the time of pre-processing of images, [12] proposed a
method that used a clustering technique which makes clusters
of similar pixels in the image. The proposed method is able to
produce good results with effective skin detection of human
images irrespective of the ethnicity. Moreover the proposed
method performs well with the illumination changes as well.
Reference [26] proposed a network for improving the seg-
mentation results specially in terms of accuracy for the large
scale objects. The network uses several scales that enable it
to achieve the detailed information with increased sensitivity.
Reference [27] proposed an algorithm for the object detection
that is effective in detecting the small areas as well as the
occluded ones using different scales.

Skin detection plays a very important role in various med-
ical application of visual computing systems such as those
used for the detection of certain diseases related to skin.
Reference [13] proposed an approach for the detection of
skin regions in human images using the specific color space.
The proposed approach provides promising results related
to detection and shows good detection rate. Reference [14]
proposed a method for the classification of human skin pixels
under the varying illumination conditions and shows good
results. Reference [16] presents the comparative study of
the two color spaces for the detection of human skin color
and selected the specific threshold for detecting skin color
to evaluate these color spaces. The overlapping of skin and
non-skin pixels is one of the constraints in detection of
human skin. To improve the accuracy in the skin detection
process, [18] proposed a method based on color space that
includes the texture features of human skin. In the field of
biometric security, palm-prints are being used extensively
over other methods that depend on accurate skin detection.
Reference [28] presented a method for the segmentation of
palm print to achieve accurate and improved detection com-
pared to existing methods. Reference [29] solved a problem
related to technical issue involved in the non-contact palm-
print system by developing a system on personal computer.
Reference [30] also worked for developing a system for the
pre-processing of palm-print in the contact-less scenario.

In order to handle the problem due to changes in illumi-
nation causing similarity of background color to the skin
color, [19] proposed a method that used combination of
two techniques which improves skin detection performance.
To improve the skin detection a method is proposed by [31],
which uses a neural network for the detection of skin and
body. However current methods that are based on machine
learning or traditional neural networks have some limitation
regarding performance under certain illumination conditions.
To overcome this problem deep learning based methods have
been introduced. Using skin segmentation, the tasks like hand
detection is performed which may be used in interpreting
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TABLE 1. SSS-Net comparison with existing methods of skin segmentation.

the sign language. Reference [20] developed a technique
for detecting the hand in the human images with the clut-
tered environment and they performed this task by using
deep learning approaches. Reference [21] introduced the deep
learning network with reduced number of parameters for the
skin detection, and has produced good results as compared
to state of the art networks. References [7], [22], [23] have
introduced certain schemes based on deep learning to han-
dle such problems that leads to better skin detection and
segmentation while reducing the error rates. In this work,
we propose skin semantic segmentation network (SSS-Net)
for skin segmentation that eliminates the pre-processing steps
and uses a reduced number of parameters compared to exist-
ing solutions. SSS-Net is able to capture the multi-scale con-
textual information and provides results with sharper object
boundaries.

III. NETWORK ARCHITECTURE
A. DESIGNING AND LEARNING
The challenges of skin segmentation are cluttered back-
ground, objects at multiple scales and small and deformable
objects. In the work presented, we have treated skin segmen-
tation as a semantic segmentation problem due to shared chal-
lenges in both. Therefore, for skin segmentation, we adapted
the well-known DeepLabv3+ architecture which is state-of-
the-art in semantic segmentation. The inherent nature of the
DeepLabv3+ architecture is tailored to scenes with cluttered
background. The image is first subjected to residual learning

to tackle few challenges of skin segmentation including color
similarity of foreground and background, skin reflectance
variations due to illumination conditions. We start by shred-
ding off residual blocks by keeping only four residual blocks
in the proposed SSS-Net. The underlying reasons for reduced
residual blocks are two-fold: First, to preserve the details
of small that are otherwise lost in the repetitive convolution
process. Reducing the number of layers to preserve object and
semantic information for semantic segmentation is supported
by previous works [37]. Second, to reduce the number of
parameters and the computational load. In order to preserve
feature information, downscaling is not introduced in the
residual learning process. Contextual information is of utmost
importance in skin segmentation due to the deformable nature
and small extent of skin regions. Therefore, we employ atrous
spatial pyramid pooling (ASPP) to capture image context at
multiple scales. Due to its intuitive local feature processing
and subsequent fusion, ASPP has proven to be robust in
detecting objects at multiple scales as well as efficient in
mitigating background clutter in object recognition scenar-
ios [38]. Spatial pyramids have successfully been employed
for dense prediction tasks [39], [40] owing to the multi-scale
contextual information contained in them. We note that the
ASPP if not carefully designed, can miss small skin regions.
Therefore, we experimented with different dilation rates such
that our filters simultaneously cater small and large skin
regions alike. We found in our experiments that limiting the
number of residual blocks to four preserves vital semantic
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FIGURE 1. Proposed SSS-Net.

information of regions which then passed though the specif-
ically designed ASPP module do not result in loss of small
objects. Table 7 shows the valuable differences of our pro-
posed model from Deeplabv3+ architecture.

1) PROPOSED ENCODER
In Table 4 encoder details of SSS-Net are presented. SSS-Net
encoder consists of a total of 4 residual blocks, each block
consists of convolution layers in sequence followed by sep-
arate batch normalization and ReLu activation layers. Every
residual block comprises of two 3 × 3 convolutions and to
reduce the size of the image each of the block is interpo-
lated with max-pooling operation. A shortcut connection is
provided to each residual block, which combines the input
with result of residual block before applying ReLU in second
convolution of the block. This connection enables the previ-
ous layers to get the powerful gradient signal which makes
training easy for the deeper networks. Figure 10 shows a
residual block of SSS-Net.

Instead of simple convolution, the final residual block
uses atrous convolution [41]–[45] that enables the expanded
filter’s view. We used different dilation rates i.e. rate=2,
rate=4 in the last two blocks. Atrous convolution track the
resolution where we measure feature responses. In addi-
tion, atrous convolution provides a broader context with-
out increasing computational expense or the number of
parameters.

As down-sampling is not implemented at the atrous block,
atrous spatial pyramid pooling (ASPP) [46], [47] is per-
formed on the size same as feature response. In SSS-Net,
ASPP capturesmulti scale contextual information and applies
various dilation rates to a sequence of atrous convolutions.
These rates are designed to capture the longer context.
In addition, ASPP integrates image-level features to add
global context information. As shown in Figure 11, there
are 4 parallel operations in ASPP consisting of one 1 × 1
convolution and three 3 × 3 convolution performed with

dilation rates 4,12 and 16. The stride we used for the feature
maps is 16.

2) DECODER NETWORK
Decoder of SSS-Net used transposed convolution layer to up
samples the features coming from the encoder part resulting
in high resolution image from a low resolution image. This
is followed by concatenation with the resulting low-level
network features of the same resolution. On these low level
features 1× 1 convolution with 256 filters is applied in order
to lessen the number of channels, as the resultant low-level
features usually have a large number of channels and make
the training of network harder. A factor of 4 is applied after
concatenation to refine the features following another simple
bilinear upsampling. In Table 5 decoder details of SSS-Net
are presented. The diagram of a SSS-Net is shown in Figure 1.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA AND ENVIRONMENT
SSS-Net was tested for skin segmentation using five datasets
of human activity recognition that are publicly available [8].
Following are the datasets that are used for the task of skin
segmentation in this paper;

1) Augmented multi-party interaction (AMI)
2) In-house (SSG)
3) Event detection EDds)
4) UT-interaction (UT)
5) Laboratoire d’informatique en image et systèmes

d’information (LIRIS)
These five datasets contain only a few training images.

Therefore, we used data augmentation to artificially increase
the amount of training data. In Table 2, a detailed description
of these datasets is provided. Figures 2 to 6 show examples of
segmentation results that are predicted right by our network
for all the datasets. Here, the red color represents segmented
skin area. As shown in these figures, our model is able to
detect the skin area correctly in images in the datasets that
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FIGURE 2. Example Images of AMI datasets by SSS-Net that produces good segmentation results.
(a) Image (b) Ground truth (c) prediction by SSS-Net. Red color presents the segmented skin area.

includes indoor and outdoor scenes.Also, there are some rela-
tively poor examples of segmentation by our network that are
presented in Figure 7. Cases where our network does not give
good results are the skin areas near hair and beard. whereas,
Skin-like background pixels are the main reason for causing
false positive error, while some unfamiliar skin pixels leads
to false negative errors. We also performed the performance
comparison of SSS-Net with Deeplabv3+ on EdDs dataset
which is presented in Table 6, and the visual results are
presented in Figure 8. Table 3 shows the segmentation results
by our method with other methods on the five datasets. The
network was trained on the computer with Intel(R) Xeon(R)
W-2133 CPU 3.60GHz, 32 GB RAM, and Nvidia 2080TI
GPU, we did training and testing of the proposed network on
a desktop computer. We also considered the EdDs dataset for
the performance comparison of SSS-Net with Deeplabv3+.
The table for the performance comparison of Deeplabv3+
and SSS-Net are shown in Table 6

TABLE 2. Details of human activity dataset for the evaluation of SSS-Net.

B. DATA AUGMENTATION
In this paper, skin semantic segmentation network SSS-Net
is proposed. An augmentation scheme is used for the training
data that included:

1) Rotation
2) Contrast enhancement

In deep neural networks, training depends on the size of
the input data. In order to carry out effective training, a large
amount of data is needed. When the size of the training
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FIGURE 3. Example Images of SSG datasets by SSS-Net that produces good
segmentation results. (a) Image (b) Ground truth (c) prediction by SSS-Net. Red color
presents the segmented skin area.

TABLE 3. Comparison of SSS-Net with other methods on the AMI, SSG, EdDs, UT and LIRIS datasets.

data is small, the parameters are uncertain and the training
of the network is insufficient, which seriously affects the
performance of the network. One way to solve this problem

is to perform data augmentation that increases the data
size, alleviating this limitation. In this paper, we kept the
image size same as in the dataset. We used image rotation
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FIGURE 4. Example Images of EdDs datasets by SSS-Net that produces good segmentation results.
(a) Image (b) Ground truth (c) prediction by SSS-Net. Red color presents the segmented skin area.

TABLE 4. Encoder with a feature map size of the residual block. Where EConv represents the convolutional layer of the encoder. Convolutional layers
with ‘‘**’’ means that it includes Batch Normalization (BN) and ReLU aswell.

on these images to generate a composite image using the
original training image. Each image rotates 1 degree from
0 to 360. In this way, we obtained 360 rotated images for
each image, and a total of 7,200 images were obtained after
rotation. To eliminate artifacts in rotated images, we first

converted binary images into logical images, then used
bi-cubic interpolation when we rotated these images. After
rotation, we used the contrast enhancement feature and gen-
erated over 1800 images with different contrasts. There-
fore, data is synthesized by expanding from 20 images
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FIGURE 5. Example Images of UT datasets by SSS-Net that produces good segmentation results. (a) Image
(b) Ground truth (c) prediction by SSS-Net. Red color presents the segmented skin area.

TABLE 5. Decoder with a feature map size of the residual block. Where DConv represents the convolutional layer of the decoder. Convolutional layers
with ‘‘**’’ means that it includes Batch Normalization (BN) and ReLU aswell.

to 9000 images. In Table 8 data augmentation details are
presented.

C. NETWORK TRAINING
For training SSS-Net, we provided the images to net-
work without any pre-processing. Considering optimizers,
a very popular technique used with stochastic gradient
descent (SGD) is called Momentum. Momentum not only

uses the gradient of the current step to lead the search, but also
mounts up the gradient of the past step to determine the direc-
tion of progress. Whereas Adam is an adaptive learning rate
method that calculates individual learning rates for various
parameters. SGD with momemtum appears to find a flatter
minima than Adam. However, the adaptive method tends to
converge to a sharper minima relatively faster. Flatter minima
are better generalize than sharper minima. Although adaptive
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FIGURE 6. Example Images of LIRIS datasets by SSS-Net that produces good segmentation results.
(a) Image (b) Ground truth (c) prediction by SSS-Net. Red color presents the segmented skin area.

optimizers have better training performance, but this does not
mean higher accuracy for different data. Therefore, SGDwith
momentum is the most popular deep network optimizer [48].
In this study, we used the Stochastic Gradient Descent with
Momentum (SGDM) 0.9 with an initial learning rate of 1e-3.
We used L2 regularization with a weight decay of 0.0005 for
training SSS-Net skin semantic segmentation network. Our
network has been trained for 40 epoch, with a minimum batch
size of 5 images, and as the convergence rate of our network
accelerates, it shuffles after each epoch. The learning-rate
decay and mini-batch size are empirically calculated to sat-
isfy minimum loss of cross-validation and the weights and
biases of ResNet18 are employed in the initialization stage
of the proposed method. As we have also compared the
performance of SSS-Net with Deeplab V3+ on EdDs dataset,
training time on EdDs dataset was 308 minutes for 40 epochs
while testing time on CPU was 1.5 second and 300 ms

TABLE 6. Performance comparison of SSS-Net with Deeplabv3+ on EdDs
dataset.

on GPU. The details for the training stage are presented
in Table 9.

Cross-entropy loss is measured as the network training
objective function. This objective function is driven by prob-
abilities, where p stands for probability. When the obtained
estimate for a certain class deviates from the actual desired
class, p (the probability parameter) approaches to 1, whereas
the loss is stated as the combined loss of all the pixels. Inher-
ently, the ‘‘non-skin’’ pixels in each human activity image
outweigh the ‘‘skin’’ pixels for the task of skin segmentation.
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FIGURE 7. Some example Images of bad segmentation of LIRIS and SSG datasets by SSS-Net. (a) Image
(b) Ground truth (c) prediction by SSS-Net. Red color presents the segmented skin area.

FIGURE 8. Visual results comparison of SSS-Net with Deeplab V3+ on EdDs dataset. (a) Shows the visual
results of ground truth. (b) Shows the visual results of DeepLabv3+. (c) Shows the visual results of the
SSS-Net. Red color presents the segmented skin area.

This vast amount of variance in the number of pixels among
dissimilar classes may possibly lead to multiple critical prob-
lems when using the cross-entropy loss as an objective func-
tion for network training. But this problem can be overcome

by class balancing as the weights are formulated to associate
with each class in the loss function. Consequently, the classes
with high frequency have low weights and classes with low
frequency have high weights. Numerous different approaches
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FIGURE 9. The graphs of training loss and accuracies on EdDs dataset.

TABLE 7. Difference between Deeplabv3+ and SSS-Net.

TABLE 8. Data augmentation details.

to assigning these weights can be followed. In the considered
approach, the classes association weights were calculated
by using frequency balancing for the training of SSS-Net
architectures. In this respect the corresponding weights of
the classes are determined by dividing the median of the
particular class frequency over the class frequency for the
complete training set.

D. NETWORK TESTING
1) EVALUATION METRICES
For testing SSS-Net, we considered several assess-
ment metrics such as recall (R), precision (P) and

F-measure (F). The formulas for these protocols are given
below:

R = TP/(TP+ FN ) (1)

P = TP/(TP+ FP) (2)

F = 2RP/(R+ P) (3)

where TP represents true positive, FP represents false posi-
tive,and FN represents false negative. Here, FN are the pixels
in the ground truth images, which are skin pixels but predicted
from the network as non-skin pixels. In ground truth images,
FP is the wrongly predicted non-skin pixel and TP are the
correctly predicted skin pixels.
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TABLE 9. Hyper-parameter settings for deeplabv3+ and SSS-Net
architecture for training stage.

FIGURE 10. Residual block of SSS-Net.

FIGURE 11. ASPP in SSS-Net. Where BN represents Batch Normalization
and RB represents Residual Block.

V. DISCUSSION
In this paper, we proposed a skin semantic segmentation
network (SSS-Net) for the pixel wise skin segmentation of
the input images. In order to improve the network efficiency,
the number of layers have been reduced at encoder level.
As the task of skin segmentation is very important for human
activity recognition, it is important to accurately perform
skin segmentation. SSS-Net is able to capture the multi-scale
contextual information and controls the signals destruction.
In our network we employ the ResNet-18 architecture with
4 residual blocks only. For capturing multi scale contex-
tual information, ASPP (Atrous Spatial Pyramid Pooling) is
used in the model. ASPP applies various dilation rates to a
sequence of atrous convolutions. These rates are designed
to capture the longer context. In addition, ASPP integrates
image-level features to add global context information. Skin
segmentation is more challenging because of indoor and

outdoor image scenes in the datasets. In order to measure
the network efficiency, SSS-Net is evaluated on five open
datasets of human activity recognition. Our network performs
very well on the datasets and the metrics we chose for the
evaluation of our network are P, R and F. Experimental results
demonstrate the effectiveness of the techniques in our net-
work showing that our network is outperforming the state-of-
the-art methods as shown in Table 3.

VI. CONCLUSION
This paper proposed SSS-Net for skin segmentation that is
able to capture the multiscale contextual information and
provide results with refined edge boundaries. SSS-Net has
less number of layers which results in reduced number of
parameters i.e. 7.3 M which significantly lower compared
to other existing networks. Furthermore, SSS-Net does not
require any additional pre-processing steps. The uniqueness
of this network is its ability to capture the multi-scale con-
textual information. We tested SSS-Net for skin segmenta-
tion on the publically available datasets of human activity
recognition (AMI, SSG, EdDs, UT and LIRIS). Since these
datasets contains less number of images, we adopted data
augmentation techniques to increase the number of training
images. The obtained results show high-quality segmentation
results, indicating the effectiveness of SSS-Net for skin seg-
mentation.
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