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ABSTRACT Almost all successful nodule detectors rely heavily on a fixed set of anchor boxes. In this
paper, inspired by the success of the keypoint estimation method in natural image detection, we propose
an anchor-free framework for accurate pulmonary nodule detection. We first present a novel representation
for detecting nodules, in terms of their 3D center locations, which reduces the number of hyper-parameters
and the corresponding computation related to anchors, thus making the nodule detection pipeline much
simpler. Then, an effective two-stream network is introduced to reduce the false positive nodule candidates,
by aggregating information from the image stream and motion-history stream. Experiments show that the
proposed approach achieves a sensitivity of 96.1%,with 8 false positives per scan, and a CPM score of 90.6%,
on the publicly available LUNA16 dataset, which outperforms other state-of-the-art methods. By testing
on the SPIE-AAPM dataset with models pre-trained on the LUNA16, our proposed method yields 92.8%
sensitivity with 8 false positives per scan. This demonstrates the effectiveness and generalization ability of
our method.

INDEX TERMS Lung nodule detection, 3D convolution neural network, keypoint estimation.

I. INTRODUCTION
Lung cancer accounts for the vast majority of cancer-related
deathworldwide [1], [2]. However, most of these deaths could
have been avoided, if lung cancer could have been diagnosed
at an early stage. Therefore, the research on lung cancer
diagnosis is extremely essential and urgent. Computed-aided
diagnosis (CAD) systems have been widely used to assist
radiologists in accelerating diagnosing process and therapy
planning [3], [4].

Many algorithms [5]–[10] have been proposed for lung
nodule detection on low-dose computed tomography (CT)
scans, by using powerful deep convolutional neural net-
works (CNNs) with either 2D or 3D detection frameworks.
2D CNNs [11], [12] process each slice of the scan separately,
without taking the inter-slice relations into account. On the
other hand, most of the 3D CNNs [5], [13], [14] simply gen-
eralize the recent deep 2D CNN-based detection models in
computer vision, such as Faster RCNN [15]. These methods
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take 3D patches (in general, the patch size is 96 × 96 × 96)
as input, and exhaustively and inefficiently iterate through
the entire CT volume in a sliding window manner, to output
probability maps over the patches.

All current mainstream nodule detectors [5], [11], [14],
[16] rely heavily on a fixed set of anchor boxes to achieve high
sensitivity (recall rate), where each anchor box is sampled
uniformly over the spatial positions with a pre-defined set of
scales and aspect ratios. Despite the great success achieved by
anchor-based nodule detectors, it is worth emphasizing that
they suffer from some shortcomings. (1) These approaches
require a large number of anchor boxes placed on each posi-
tion of the input images (up to 100K) to ensure a high sen-
sitivity, which results in high computational cost especially
when the model adopts a heavy classifier during candidate
generation. (2) A large number of anchor boxes will cause a
significant imbalance between positive and negative samples
becausemost of the anchors are assignedwith negative labels.
(3) The scales and aspect ratios of these anchor boxes have to
be manually designed for different problems, and an incorrect
setting of these parametersmay greatly impair the accuracy of
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FIGURE 1. We model a nodule as a center point, in terms of its 3D spatial position, and regress the size of the
nodule with the feature maps at the center. Note that nodules and corresponding centers are three-dimensional,
of which we only show central slices of nodules in 2D images for better visualization. Best viewed in color. The
images are randomly sampled from LUNA16.

the detector. (4) Even with careful design, fixed anchors may
hardly cope with nodules with a wide range of variations in
shape and size.

Another challenge we may face for accurate nodule
detection is the similar appearance between normal tissues
and nodules. This may make the detector incapable of dis-
tinguishing them correctly, i.e., wrongly detecting normal
tissues as nodules, thus resulting in high false positive rates.
Therefore, it is very essential to devise an approach that can
differentiate between tissues and nodules, to reduce false
positives for the nodule detection pipeline.

A natural question is: Can we detect nodules in a simpler
formulation, e.g., using keypoint estimation, and bypasses the
need for fixed anchor boxes? In this paper, we demonstrate
that the answer is affirmative. Furthermore, it is showed that
the much simpler center-point-based nodule detector even
achieves higher performance than the anchor-based coun-
terparts. More specifically, we first present a novel frame-
work for lung nodule detection. This framework detects
the center point of each potential nodule and, regresses the
size of each detected nodule using image features from the
center location (see Fig. 1). Therefore, nodule detection is
transferred into a three-dimension keypoint estimation prob-
lem [17], [18]. Furthermore, a two-stream network for false
positive reduction is proposed, which integrates the infor-
mation from the image stream and motion-history stream.
The proposed two-stream network reduces the false positive
nodule candidates considerably, while still achieving high
sensitivity.

The main contributions of this paper are summarized as
follows:
1. We propose a novel framework for nodule detection,

termed 3D-CenterNet, which represents nodules in a
much simpler manner, in terms of their 3D spatial center
locations.

2. We propose an anchor-free nodule detector without
requiring any anchor boxes, which reduces the num-
ber of hyper-parameters that need heuristic tuning to
achieve good performance, thus making it much simpler
in training and inference.

3. We propose a two-stream network for false positive
reduction, which reduces the false positives considerably
(more than 90%), while still obtaining high sensitivity.

4. Comprehensive experiments conducted on the LUNA16
dataset demonstrate the effectiveness of our proposed
network, which achieves state-of-the-art performance
compared to other lung nodule detection methods.

In Section II, we review the related work of keypoint
estimation methods in 2D object detection and that of nod-
ule detection in the medical image. Section III describes
the details of our proposed method, and in Section IV,
we describe the experimental setup and analyse the exper-
imental results. Finally, we make a brief conclusion of our
proposed method in Section V.

II. RELATED WORK
A. OBJECT DETECTION USING KEYPOINT ESTIMATION
Before recently proposed anchor-free keypoint estimation
object detection methods [19], [21]–[23], 2D object detection
has been dominated by generating pre-defined anchors in
a sliding window manner, e.g., [15], [24], [25]. CornerNet
[21] is the pioneering work that tries to adopt the keypoint
estimation method for detecting objects. It first detects a
pair of corners of an object. Then, the detected corners
are grouped using distances in embedding space to produce
the final detected bounding box. Discovering that Corner-
Net generates some incorrect bounding boxes due to wrong
grouping of corners, Duan et al. [22] employ additional
center locations of objects to filter out those false posi-
tives, i.e., detecting objects using keypoint triplets. Besides,
Zhou et al. [23] detect four extreme points and one center
point, and group the five keypoints into a bounding box
using the geometric method. Moreover, Zhou et al. [19]
further simplify the formulation, by representing objects as
their center locations of the 2D bounding boxes, and regress-
ing object size using image features from the center loca-
tion directly. The design of our work for nodule detection
shares the same spirits with Zhou et al. [19], detecting the
3D spatial center locations of nodules and predicting cor-
responding nodule size using the features at each center
location.

B. NODULE DETECTION IN 3D MEDICAL IMAGES
The hand-craft features, e.g., spherical filter and local binary
feature [26], are adopted by earlier lung nodule detectors
[27]–[31], which achieve inferior performance compared
with deep learning-based methods [5], [8], [11], [32].
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FIGURE 2. The overall architecture of the proposed 3D-CenterNet. The backbone network is first adopted to encode the 3D CT scan. Then, we employ
feature aggregation module (FAM) to aggregate representations from multi-level feature maps, following a detection head to predict center locations and
sizes of potential nodules, along with corresponding offsets. Notably, we just show three stages with three parallel subnetworks of the backbone for
simplicity. ‘Transition layers’ are adopted to add lower resolution subnetworks between different stages.

TABLE 1. Comparison between anchor-based nodule detectors and our proposed center-point-based framework. Our algorithm removes the
computation and all hyper-parameters related to anchors during training.

Ding et al. [11] employ a 2D Faster R-CNN as a nodule
detector and use 3D CNN for false positive reduction, which
achieves 89.1% average sensitivity. Zhu et al. [5] devise a
3D Faster R-CNN to detect nodules, which can effectively
learn rich features by combining 3D dual-path blocks and a
U-net-like encoder-decoder structure. Li and Fan [14] pro-
pose using a 3D region proposal network (RPN) for nodule
detection, which uses an encoder-decoder structure and, a
squeeze-and-excitation structure to further enhance the per-
formance. Khosravan and Bagci [8] design a 3D CNN
with dense connection and propose adopting max-pooling
throughout the network to achieve better performance.
Another line of research [7], [10], [13], [32], [33] investigate
multi-scale feature maps either in image or feature pyramid to
cope with the variance of nodule size. All mentioned nodule
detectors use anchors sampled uniformly over the spatial
position as candidate nodules and classify each anchor to be
a nodule or not as well as adjust their locations. The anchor-
ing scheme introduces excessively many hyper-parameters
that need to be carefully tuned across various problems
(see Table 1). In this work, we show that even without
pre-defined anchors, the much simpler nodule detector can
still achieve better performance.

III. METHODOLOGY
In this section, we will describe the proposed 3D-CenterNet
and the two-stream network for false positive reduction in
detailed. As shown in Fig.2, there are two major components
for 3D-CenterNet.

Backbone Network we employ HRNet [34], a highly
efficient feature extractor, to obtain high-level semantic but
also spatially finer features to facilitate the subsequent detec-
tion task. Moreover, we make some modifications to extract
features from 3D images, which form the feature extractor
of 3D-CenterNet.

Detection Head The detection head aims to predict the
center locations of nodules along with size corresponding
to each center. Furthermore, to generate more precise center
locations, the detection head also predicts offset to slightly
adjust the location of each center position.

A. BACKBONE NETWOK
1) 3D-HRNet
We adopt HRNet [34] as the backbone network and make
some adjustments to extract features from the input 3D
images. HRNet was originally proposed for the 2D human
pose estimation task. A high-resolution subnetwork is used
as its first stage. Then, the lower resolution subnetworks are
added in series, which form the other stages of HRNet. Unlike
other methods that first downsample the input data and then
restore the high-resolution representation, HRNet maintains
high-resolution representation throughout the entire network.
Moreover, it introduces exchange blocks for efficient infor-
mation exchange across different resolutions, enabling the
network to gather richer semantic and spatial information.
Therefore, HRNet is a preferred choice for 3D-CenterNet.
The middle part of Fig. 2 shows an illustration of the
architecture of HRNet.

Here we show an example of two exchange blocks in 3th
stage, which is given as follows,

C131 ↘ ↗ C231 ↘

C132 → U1
3 → C232 → U2

3

C133 ↗ ↘ C233 ↗

, (1)

where Cbsr is the convolution unit of resolution r (the
resolution is 1/2r−1 of the first subnetwork) in bth exchange
block, in the sth stage. Ub

s represents the corresponding
exchange unit.
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FIGURE 3. The overall framework of the proposed two-stream network for false positive reduction.

TABLE 2. Comparison between CenterNet [19] and our proposed 3D-CenterNet. Our model takes 3D volume as input and, employs 3D-HRNet as the
backbone network. Besides, we aggregate multi-level features from the backbone for the subsequent detection task (see Fig. 2). Moreover, instead of
applying L1 loss for object size regression, we propose using a version that is irrelevant to the object scale (see Eq. 6), to achieve more accurate 3D
bounding boxes.

The exchage unit takes s feature maps in sth stage as input,
denoted as X = {X1,X2, . . . ,Xs}. The subscript r is showed
only, for description simplicity. After multi-scale feature
fusion, the exchange unit outputs s feature maps, represented
as Y = {Y1,Y2, . . . ,Ys}, where the output dimensions are
exactly the same as that of input. We obtain each output Yj
by aggregating input feature maps, Yj =

∑s
i=1 f (Xi, j), where

f (Xi, j) is downsampling or upsampling operation of Xi from
resolution i to resolution j. If i = j, f (Xi, j) is just an identity
mapping.

Our backbone network is composed of four stages, and
a total of four parallel subnetworks. 2D convolution ker-
nels are all replaced by corresponding 3D kernels. The res-
olution of the subnetworks is gradually downsampled by
2×, while doubling the number of channels accordingly. The
first stage contains two residual units, which are formed
by a bottleneck [35] with 64 channels. Then a 3 × 3 × 3
convolution reduces feature maps to 18 channels. There are 1,
4, and 3 exchange blocks in the 2nd, 3rd, and 4th stages,
respectively. Specifically, one exchange block contains two
residual convolution units for each of the resolution and one
exchange unit across resolutions. Combining all stages gives
rise to our backbone network, termed 3D-HRNet. The overall
architecture of the backbone network is tabulated in Table 3.

2) FEATURE AGGREGATION MODULE
Due to the significant variation in nodule scale (from 3mm to
30mm), it is crucial to aggregate information frommulti-level
features, to provide more powerful representation for the
subsequent detection task. Therefore, we propose a feature
aggregation module (FAM) to integrate features from vari-
ous resolutions. Specifically, the output of 4th stage in the

TABLE 3. Detailed network architecture of 3D-HRNet. Input size for stem
layer is 512 × 512 × 16. Output size is in w × h × l format. ‘#Subnet’
represents the number of parallel subnetworks in each layer.

backbone network contains four different resolutions of fea-
ture maps, denoted as O = {xl}4l=1, where xl represents the
feature maps at level l, whose resolution is 1/2l+1 of the input
CT volume, and the depth is 1/2l of the input.
For the feature maps at level l, we first use trilinear

interpolation operation to resize xl , with a scale of 2l−1. Then,
the resized feature maps are concatenated in the channel
dimension. Finally, a convolution operation with a kernel size
of 1 × 1 × 1 is further applied to the concatenated features,
to reduce the channels to 64.

With our proposed feature aggregation module, the
information from different resolutions are aggregated, which
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provides a richer representation for the following detection
task.

B. DETECTION HEAD
1) DETECTING NODULE AS POINTS
Inspired by recently proposed keypoint-based approach [19],
[21], [22] for 2D object detection, especially the work of
Zhou et al. [19], we present a novel formulation for detect-
ing nodules, regarding the nodule detection problem as
the estimation of corresponding center locations. Moreover,
we regress the nodule size based on the local features at the
centers. The differences between the work of Zhou et al. [19]
and our 3D-CenterNet are highlighted in Table 2.
For each 3D CT scan I ∈ RD×H×W , we predict a binary

keypoint heatmap P̂ ∈ R(D/rd )×(H/rs)×(W/rs) to represent the
likeliness of the center location of nodules, where rd and rs
are the output stride in depth and in the 2D spatial directions,
respectively. We set rd = 2 and rs = 4. A prediction P̂xyz = 1
means that a nodule is present at the current position, while
P̂xyz = 0 represents the background.
For each center location c ∈ R3, we first map it to the

output space, according to the given stride. Then, we obtain
c̃ = (bcx/rsc, bcy/rsc, bcz/rdc), where cx , cy and cz rep-
resent the corresponding coordinates along the x, y and z
axis. With the center point c, the ground-truth heatmap P ∈
[0, 1](D/rd )×(H/rs)×(W/rs) can be computed using a Gaussian
kernel, as follows:

P̃c = exp

(
−
(x − c̃x)2 + (y− c̃y)2 + (z− c̃z)2

2σ 2
c

)
(2)

where (x, y, z) is a point in the heatmap, and σc is the standard
deviation of the Gaussian function, which is adjusted auto-
matically according to the nodule’s size [21], determining the
amount of penalty reduction to a negative point, i.e., not a
center point. The keypoint-estimation objective is a variant
of the focal loss [36], as follows:

Lc =
−1
N

D∑
i=1

H∑
j=1

W∑
k=1


(1− P̂ijk )αlog(P̂ijk ), if Pijk = 1
(1− Pijk )β (P̂ijk )α

·log(1− P̂ijk )
, otherwise

(3)

where N is the number of nodules in a CT scan I , and α and
β are the parameters of the focal loss. We set α to 2 and β to
4 in all our experiments. With the (1 − Pijk ) term computed
by the 3D Gaussian kernel function, false positives around a
ground truth are greatly suppressed.

We quantify the coordinates of the center locations, during
the mapping operation from the input space to the output
feature space, with a given downsampling stride. This may
cause some precision loss, which will affect the accuracy of
the predicted center location, especially for small nodules.
To address this issue and recover the quantization error,
we predict the offsets for each center point, to slightly adjust
its location. Furthermore, we apply the L1 loss to train the
offsets. Note that only the offsets at the ground-truth center

locations contribute to the loss during training, while all the
other locations are ignored.

ε = (
cx
rs
−

⌊
cx
rs

⌋
,
cy
rs
−

⌊
cy
rs

⌋
,
cz
rd
−

⌊
cz
rd

⌋
) (4)

Loff =
1
N

∑
c

∣∣ε − ε̂∣∣ (5)

where ε and ε̂ are the ground-truth and predicted offsets,
respectively. In addition, our proposed model also regresses
nodule size using the features at the center. Let dn be the
diameter of nth nodule. Then the loss function for nodule size
regression can be formulated as follows:

Lsize =
1
N

N∑
n=1

L1(1−min(
dn
d̂n
,
d̂n
dn

)) (6)

where L1 is smooth L1 loss, as follows:

L1(t) =

{
0.5t2 if |t| < 1
|t| − 0.5 otherwise

(7)

We train Lsize with the raw voxel coordinates and do not
normalize the nodule diameter. The overall training objective
is given as follows:

L = λcLc + λoff Loff + λsizeLsize (8)

Unless otherwise specified, we set λc = 1, λoff = 1 and
λsize = 0.1 in all our experiments. The center heatmap P̂,
predicted sizes Ŝ and offsets Ê can be inferred with a single
network. Furthermore, all the outputs share the same convolu-
tional backbone network. Oncewe obtain the features from an
input CT scan through the backbone network, the features are
used to predict each of the modalities with the detection head.

2) FROM POINTS TO 3D BOUNDING BOXES
Generating 3D boxes from network predictions is straight-
forward. Let Ĉ = {(x̂m, ŷm, ẑm)}Mm=1 be the set ofM detected
center points. Each center location is equipped with an offset
and size property, denoted as Ê = {(1x̂m,1ŷm,1ẑm)}Mm=1
and Ŝ = {d̂m}Mm=1, respectively. Then, the mth 3D box can be
obtained as follows:

Bm = (x̂m +1x̂m−
d̂m
2
, ŷm +1ŷm −

d̂m
2
, ẑm +1ẑm −

d̂m
2
,

x̂m +1x̂m +
d̂m
2
, ŷm +1ŷm +

d̂m
2
, ẑm +1ẑm +

d̂m
2
)

(9)

C. TWO-STREAM NETWORK FOR FALSE POSITIVE
REDCUTION
As shown in Table 4, we analyze the detection results gener-
ated by our proposed model and, observe that only 1.66% of
the predicted candidates are true positives, however, 91.04%
of them are false positives. Moreover, we visualize some
of the real nodules and tissues from the LUNA16 dataset.
As shown in Fig. 4, nodules and tissues are very similar
in appearance, which causes the 3D-CenterNet incapable
of distinguishing them correctly. Consequently, the model
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TABLE 4. Statistic analysis of the detection results. TPs means true
positives, FPs the false positives, ICs the ignore candidates, and DoD the
double detection.

FIGURE 4. True positives (nodules) and false positives (e.g., tissue) are
very similar in appearance.

produces a large number of false positives, which affect the
final performance considerably.

Therefore, it is crucial to design an effective method
to filter out these false positives. We propose a novel
two-stream network for false positive reduction (TSN-FPR),
which integrates the information from the image stream and
the motion-history stream (MHS), enhancing the discrimi-
nation between real nodules and false positives. The overall
framework of the TSN-FPR is showed in Fig. 3.
Specifically, the idea of the motion-history stream is

inspired by the work of [37]. The intensity value of MHS
M (s, y, x) within (1, τ ) slice can be computed given the pixel
position (x, y) on slice s. The detailed process of computing
MHS is illustrated in Alg. 1. As shown in Fig. 5, the pat-
terns between real nodules and tissues in the motion-history
stream are different, which can act as an additional cue to
differentiate between normal tissues and nodules.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DATASETS
To evaluate the performance of the proposed 3D-CenterNet,
we employ two publicly available datasets: LUNA16 and
SPIE-AAPM. LUNA16 dataset is used for training and
testing, and due to the limited data size of SPIE-AAPM,
it is employed for evaluation only. The details of these two
datasets are summarized in Table 5.
LUNA16 Dataset: LUNA16 challenge dataset is the most

widely used dataset when developing nodule detection algo-
rithms. It contains 888 CT scans and a total of 1186 lung
nodules, with the nodule locations and diameters accepted by
at least 3 out of 4 experienced radiologists. Nodules that are
less than 3mm in diameter and annotated by only 1 or 2 radi-
ologists are ignored during training. Formally, LUNA16 is
divided into 10 subsets for cross-validation, alternately apply-
ing nine subsets as training and one subset as testing, and the
average performance is reported.

Algorithm 1 Process of Computing Motion-History Stream

Input: Threshold ε, duration τ , CT scan I ∈ RS×H×W

Output: The motion history image streamM ∈ RS×H×W

1: initializeM ← 0
DS×H×W ← 0 // variation between slices
9S×H×W

← 0. // update function
2: for each s in [1, S] do
3: for each position (x, y) in I (s) do
4: D(s, y, x)← |I (s, y, x)− I (s− 1, y, x)|
5: if D(s, y, x) ≥ ε then
6: 9(s, y, x)← 1
7: end if
8: if 9(s, y, x) = 1 then
9: M (s, y, x)← τ

10: else
11: M (s, y, x)← max(0,M (s− 1, y, x)− 1)
12: end if
13: end for
14: end for
15: return M

FIGURE 5. The patterns between nodules and tissues are different in the
motion-history image stream. Specifically, nodules typically have a
specific region, e.g., circular, with either a brighter or darker center.
However, the motion history images of tissues present an irregular
appearance and, tend to extend in a specific direction.

TABLE 5. Detailed information of the datasets.

SPIE-AAPMDataset: Collected for the ‘GrandChallenge’,
SPIE-AAPM dataset [40] aims at developing quantitative
algorithms for medical image analysis, especially for clas-
sifying the lung nodules of being malignant or benign.
It consists of 70 CT scans from 70 participants, with a total
of 22489 images. The nodule locations and diagnoses of each
CT scan are given as annotation information. We employ this
dataset for evaluation to verify the generalization ability of
our 3D-CenterNet.

B. DATA PREPROCESSING
Data preprocessing is critical in order to get a sufficiently
accurate nodule detection model. The spacing (mm/pixel)

157396 VOLUME 8, 2020



Z. Gong et al.: Towards Accurate Pulmonary Nodule Detection by Representing Nodules

TABLE 6. Performance comparison with other methods on the LUNA16 dataset. We show the sensitivity (%) at 7FP/scan rates, including 1/8, 1/4, 1/2, 1,
2, 4, and 8. The performance measures of other methods were copied from the original publication.

among CT scans is inconsistent and the resampling oper-
ation is adopted to ensure the spacing is 1 mm. To save
computation, the black borders in images are clipped by
setting a fixed threshold. Moreover, we transform each CT
scan with an effective value of Hounsfield unit between
[−1200, 600] into the grey value of [0, 255] using a linear
transformation.

C. EXPERIMENTAL SETTINGS
1) 3D-CenterNet
a: TRAINING
During training, we randomly sample 3D volumes along
the z-axis, extracting 16 slices in succession as the input of
3D-CenterNet. Then, the sampled volumes are rescaled to
the resolution of 512 × 512 × 16. For data augmentation,
we flip the images about the x and z axis randomly, and use
random rotation (choose from {0◦, 90◦, 180◦, 270◦}), random
scaling (between 0.8 and 1.4) and random cropping on every
slice. Adam [41] is adopted to optimize the training objective.
The network is trained for a total of 230 epochs with a batch
size of 8 on a V100 GPU. We use an initial learning rate of
1e-4, and drop it at 180 and 210 epochs with a ratio of 0.1,
respectively. The parameters of our network are randomly
initialized.

b: INFERENCE
In the inference time, we take 16 overlapped slices each
time as the input volume. A 3D max pooling layer with a
kernel of size 3 × 3 × 3 is applied to the center heatmap to
suppress 26 negative points in a 3× 3× 3 region, and finally,
the top 32 centers are reserved. Flipping testing is employed
by default. Non-maximum suppression (NMS) is applied to
the detected 3D bounding boxes to obtain the final detection
results.

2) TSN-FPR
The cross-entropy loss is used for training the TSN-FPR.
Image patches centered with each nodule candidate are
cropped from the whole CT scan with a fixed scale of
15 × 32 × 32. Then, each image patch is resized to

40× 40 pixels, as the input of the TSN-FPR. Since the
imbalance between positive and negative candidates (approx-
imately 1/250), each positive candidate is rotated by 0, 90,
180, 270 degrees. For each rotated candidate, the flipping
operation is further applied on the x, y, and z axis, respec-
tively, thus generating a total of 12 augmented versions for
each of the positive candidates.

In training, the network is trained for a total of 24 epochs
with a batch size of 128. The initial learning rate is set to
0.01 and decreases by a ratio of 0.1 at 16 and 22 epochs.
The average prediction time for one candidate is about
21.0 milliseconds with one GTX 1070 GPU.

D. EVALUATION METRICS
Following [42], Free-Response Receiver Operating
Characteristic (FROC) [12] and Competition Performance
Metric (CPM) are employed to evaluate the performance of
our method. For comparison with other nodule detectors,
we perform 10-fold cross-validation and the final results
are obtained by averaging the 10 experiments. Specifically,
the FROC curve plots the nodule sensitivity and correspond-
ing false positives. As recommended by the LUNA chal-
lenge organizers, CPM score is obtained by averaging the
sensitivity at 7 FP/scan rates (i.e., 0.125, 0.25, 0.5, 1, 2, 4, 8).

E. EXPERIMENTAL RESULTS AND ANALYSIS
1) RESULTS
a: COMPARISON WITH OTHER METHODS
Table 6 shows the results of our proposed 3D-CenterNet
and other nodule detectors on the LUNA16 dataset, with
false-positive rates at 1/8, 1/4, 1/2, 1, 2, 4, and 8 per
scan, respectively. The best performance achieved by var-
ious methods for each of the false-positive rates is high-
lighted in bold. As shown in the table, our proposed method
outperforms other state-of-the-art anchor-based algorithms,
which implies that without pre-defined anchors, our simpler
center-point-based formulation can still achieve good per-
formance. We yield a sensitivity of 97.1% at 8 FPs/scan,
outperforming all other methods, which is what the CAD
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FIGURE 6. Visualization of some detected true positives with different
sizes by using our proposed 3D-CenterNet. We only show the central
slices of the nodule, and, for better visualization, we crop and zoom in on
the regions around the nodule. Detection results are shown with green
box, while the red box indicates the ground-truth nodules. The
visualization results show that our 3D-CenterNet framework is capable of
detecting nodules of different sizes, based on features with a single scale
only.

systems require clinically (higher recall rate). By applying
our proposed two-stream network for false positive reduc-
tion, 3D-CenterNet outperforms Zhu et al. [5] by 6.4%, and
obtains an improvement of 0.9% compared to Khosravan and
Bagci [8], demonstrating the effectiveness of our proposed
detector. Some visual nodule detection results are illustrated
in Fig. 6.

b: VERIFICATION OF GENERALIZATION ABILITY
Besides, we evaluate the performance of our model
on SPIE-AAPM dataset. Notably, we only train on
LUNA16 dataset and report the CPM score and the sen-
sitivity at 7 FP/scan rates. As shown in Table 7, although
the sensitivity at low false-positive levels, e.g., 1/8, 1/2,
is quite low, 3D-CenterNet still yields 60.9% CPM score and
a sensitivity of 92.8% at 8 false positives per scan. It is worth
mentioning that the equipment manufacturers used to collect
CT scans for these two datasets are different, which causes

TABLE 7. FROC performance of 3D-CenterNet on the SPIE-AAPM dataset.
Note that we only train our model on the LUNA16 dataset. The CPM score
(%) and the sensitivity (%) at 7 FP/scan rates are reported.

remarkable differences on the scans, e.g., intensity, matching
setting and image protocol, etc., and affects the performance
of the model considerably. Even if the significant differ-
ences, our model can still achieve high sensitivity (recall)
on SPIE-AAPM dataset, demonstrating the generalization
ability of our proposed model.

2) EFFECTIVENESS OF TWO-STREAM NETWORK
FOR FP REDUCTION
We conduct two experiments to demonstrate the effectiveness
of the proposed two-stream network for false positive reduc-
tion. As shown in Fig. 7a, after applying the proposed
TSN-FPR network, the sensitivities of low FP levels are
boosted considerably, e.g., with an improvement of 7.1%
at 1/8 FP level, and improvement of 3.6% at 1/4 FP level,
respectively. However, due to the incorrect classification
(filtering out the true positives), the sensitivity at high FP
level drops a little bit (96.1% vs 97.1% at 8 FP level). Besides,
the number of nodule candidates from a total of 67 CT scans is
further showed in Fig. 7b. TSN-FPR filters out three true pos-
itives due to the incorrect classification. On the other hand,
the number of false positives drops considerably by applying
TSN-FPR, which reduces 97.3% of the false positives. This
demonstrates the effectiveness of our proposed two-stream
network for false positive reduction.

3) EFFECT OF INPUT RESOLUTION IN TRAINING AND
TESTING
In the training phase, we adopt a fixed input resolution of
512 × 512 × 16. During testing, we keep the original CT
slice resolution and zero-pad each slice with up to 32 pixels.
Besides, we test our model with fixed resolutions of 256,
384, and 512, respectively. Notably, all 3D input CT scans
share the same depth of 16. Table 8 shows the results under
various testing resolutions. Maintaining the original resolu-
tion achieves better performance than fixing testing resolu-
tion at all false-positive rates. Testing in lower resolution
(256×256×16) runs 1.3 times faster but significantly drops
the CPM score (0.889 vs. 0.463). The average inference time
for one CT scan ranges from 10.7 seconds to 17.7 seconds,
under various testing resolutions.

In addition, we evaluate the performance of different nod-
ule sizes, under various testing resolutions. The diameters
in the range from 3mm to 10mm are considered as small
nodules, those with the diameter in the range from 10mm
to 20mm belong to medium level, and those with a diame-
ter greater than 20mm are large nodules. For convenience,
we use CPMs, CPMm, and CPMl to represent the CPM
score for small, medium, and large nodules, respectively.
As shown in Table 9, CPMl is always equal to 100.0%,
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FIGURE 7. Comparison between the performance (left) and the number of candidates (right), with and without false positive reduction.

TABLE 8. Effect of testing resolution. Larger resolutions obtain higher performance but run slower. However, keeping the original resolution for
evaluation is the best choice, which achieves the best balance between speed and performance. Resolution is the height and width of each CT slice and
the 3D volume depth is fixed at 16. Time is in seconds/scan.

TABLE 9. CPM scores for different nodule size, under various testing
resolutions. A higher resolution is essential for performance
improvement of small nodules.

which indicates that 3D-CenterNet is excellent in locating
large nodules. The improvement of performance is mainly
reflected in small and medium-sized nodules, with CPMs and
CPMm increased by 54.0% and 11.1%, respectively, when the
resolution changes from 256 to the original. This suggests that
a higher resolution is essential for detecting small nodules
accurately.

4) ANALYSIS OF VARIOUS REGRESSION LOSS
In order to achieve more accurate predictions for nodule
diameter, we conduct experiments on three different regres-
sion losses: L1 loss, smooth L1, and our proposed Lsize that
is less sensitive to the nodule size. The experiments are
tabulated in Table 10. L1 loss performs better than smooth
L1 at low FP levels, e.g., 1/8, 1/4, 1/2, etc. However, they yield
the same sensitivity of 97.3% at 8 false positives per scan.
Lsize achieves the best performance compared to the other two
regression losses, especially at high false-positive rates, with
an increase of 0.9% at 8 FP/scan.

5) ANALYSIS OF NODULE SIZE REGRESSION WEIGHT
We analyze the impact of λsize on our model. As is showed
in Table 11, λsize = 0.1 is a preferred choice because it works
better than the other parameter settings, with improvement
of 1.0% and 0.6% over λsize = 0.03 and λsize = 0.3, respec-
tively. For lower values (< 0.1), the performance drops a little
bit, since the value is too small to help the network properly
learning to predict the nodule size. Although we train Lsize
with the raw coordinates, themin(dn/d̂n, d̂n/dn) term normal-
izes the loss value into a range of [0, 1]. Therefore, a larger
value of λsize still works well.

6) EFFECT OF TRAINING SCHEDULE
Moreover, we analyze the effect of the training schedule on
our model by varying the total training epoch. Specifically,
we first train 3D-CenterNet for 140 epochs and, decay the
learning rate by a ratio of 0.1 at 90 epochs. Then, the training
epoch is further extended to 230. As shown in Fig. 8b, with a
longer training schedule, we further boost the performance at
the cost of more computational resources. Therefore, we train
all the models for 140 epochs in ablation experiments, while
using 230 epochs training schedule when comparing to other
methods.

7) IMPACT OF MODEL CAPACITY
By default, we employ two residual units in stage 1 to
stage 4 in the backbone network, denoted as #block = 2.
In addition, we analyse the impact of model capacity by
using only one residual unit, represented as #block = 1.
Fig. 8a shows that the larger model achieves slightly higher
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TABLE 10. Analysis of various regression loss. Our proposed nodule size regression loss works better than Smooth L1 and L1 loss.

FIGURE 8. Analysis of the model capacity and training schedule. (a) Larger model achieves better performance with stronger ability to learn the
mapping function from input CT scan to corresponding nodule center locations. (b) Training longer performs better.

TABLE 11. Analysis of nodule size regression weight. λsize ≥ 0.1 achieves
preferable results.

CPM score, implying that a larger model is capable of learn-
ing the nodule detection task better, because of the stronger
ability.

V. CONCLUSION
In this work, a novel representation for detecting nodules is
first proposed, in terms of their 3D spatial center locations.
Based on this novel representation, an anchor-free framework
for lung nodule detection, called 3D-CenterNet, is pre-
sented. The proposed nodule detector finds nodules’ cen-
ters and, regresses their corresponding diameters. To reduce
false positives generated by the detection model, we further
propose a novel two-stream network, which aggregates
information from image stream and motion-history stream,
to enhance the discrimination between tissues and nodules.
The resulting model is much simpler, while still obtaining
state-of-the-art performance. In the future, we will continue
to focus on predicting other properties, e.g., nodule density,
one of the important criteria for judging the benign and
malignant nodules. This can provide radiologists with more
information about lesions, easing their diagnosis process
considerably.
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