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ABSTRACT In this article, a simple controller design with the fractional order calculations applies to
unstable cascade processes with a significant time delay. Series cascade control system consists of two
loops in which the inner loop is designed using the IMC principle based on the synthesis method. The
primary controller is designed with the FOPI-FOPD controller to ensure stable and satisfactory closed-loop
performances for the unstable processes. For the primary controller, five tuning parameters are involved,
which tuned using the centroid of the convex stability region method. Different examples are given to
illustrate the superiority of the proposed design over some existing designs. Results obtained from simulation
reveals that with the proposed control design, enhanced closed-loop control performances are obtained for
nominal and perturbed conditions.

INDEX TERMS Series cascade control, unstable time-delay process, fractional-order PI/PD, internal model
control, convex stability region.

I. INTRODUCTION
Many of the industries are dealing with unstable processes.
Unstable poles in the unstable process, inmany cases, provide
extreme overshoot and more substantial settling time [1].
In such a case, the standard PID controller is not suitable
for standard tuning methods. Hence, many authors have been
studied during the past decades about the various control
methods of the unstable process with larger delay time.
Some researchers have compensated the unstable process
adequately with Smith delay compensation. However, the
Smith predictor does not apply to the unstable process with
the substantial delay time [2]–[4]. As pointed out by many
researchers, a particular cascaded structure has often pro-
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vided an enhanced closed-loop performance than the standard
feedback control. The cascade control structure consists of
the primary and secondary loops, where the fast dynamics
are handled by the secondary loop and slow dynamics are
handled by the primary loop. Cascade controller design is
a special control structure which deals with the stable and
unstable process (plural) with delay time effectively [5]–[10].
The inner and outer loops of the cascade control structure are
employed with Proportional–Integral–Derivative (PID) con-
trollers which are low order controllers. Two different strate-
gies such as a series cascade control system (SCCS), a parallel
cascade control system (PCCS), are extensively used for
stable and unstable industrial processes to achieve enhanced
closed-loop performance respectively. Proportional-Integral
(PI) controller is often used in the primary loop and the
proportional (P) control is used as a secondary controller in
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the secondary loop of cascade controller design. Enhanced
SCCS design is used [11]–[18] for unstable and integrating
process with three controllers and one filter for obtaining the
closed-loop performances. In the design of controllers to the
unstable process, it is common to use a set point filter [].
The filter constant is optimized to obtain the desired perfor-
mances with the unstable process using various optimization
algorithms. Zafer Bingul applies differential evaluation for
optimizing the filter constant and analyzed the robustness of
the design by obtaining the compelling performances from
the unstable process [19]. In [20], the generalized predic-
tive cascade design is proposed for the stable, unstable, and
integrating system using filtered smith predictor design. The
design of the many cascade control systems is not simple.
Two controllers of cascade structure are desirable in the prac-
tical aspects even when unstable system has a longer delay
time. Recently, PI-PD control structure is proposed by many
authors for an unstable system with more substantial delay
time. Many tuning methods for the PI-PD control structure
is reported for an unstable process [21]–[25]. The improved
performance is obtained using the PI-PD structure than the
PID controller design for both the stable and unstable sys-
tems with substantial delay. This article attempts to use the
advantages of PI-PD control design as a primary controller to
SCCS for an unstable system with a large delay. The PI-PD
controllers have a broad prospect, but there are limitations
in controller tuning. The concept of PI-PD combined with
the cascade structure for the stable and unstable process with
the larger dead-time will provide the expected closed-loop
response when the proper tuning methods are used. However,
with the tuning methods of PI-PD controllers, there some
severe problems pointed out in the chemical process due
to uncertainties and larger delay time [26]–[33]. superior
performance is reported recently with fractional controller
design over the integer design.

Recently, many researchers applied the fractional calculus
for modeling and controlling of industrial process systems
when the controller parameters such as integration and the
differentiation are described via fractional-order equations.
Recently, with a revival of interest in the area of fractional
calculus, fractional order integral and differential are used and
it played a vital role in control system design. The FOPID
controllers are also used for many practical applications like
motion control, robotics, electric power systems and many
time-delay processes in recent days [34], [35]. Varieties of
design procedures are applied to FOPID controllers design
and obtained desired performances even when the system
has load disturbances and uncertainties of the plant model.
Many researchers dealt with optimization algorithms like
GA, PSO, Grey Wolf Optimizer [36] to find the optimum
parameters of PID and FOPID controllers. In [37], the authors
applied swarm intelligence for obtaining optimumparameters
of the FOPID controller which helps to obtain the desired
performances from the unstable processes. The combination
of both FO and smith predictor scheme is applied in many
industrial applications like furnace, water irrigation system,

FIGURE 1. Basic series cascade control structure.

and others [38]–[41]. The guaranteed results are obtained
using the combination of fractional-order system and smith
predictor system. The advantages of controller design with
the combination of fractional order calculation and the cas-
cade controller design are reported in the recent research. The
IMC controller was also modified with fractional calculus
and the improved response was obtained from Second-Order
plus Dead Time (SOPDT) processes in [42]–[46]. Based on
suggestion from the literature, series cascade control system
is designed for an unstable system with a substantial dead
time. In this article, the SCCS is designed with the FOPI-
FOPD control structure and the robust stability conditions of
the unstable system are given. In the proposed SCCS design,
set-point tracking and disturbance rejection are done by FO-
IMC. Simulation results illustrate the improved performances
and robustness of the design than the other related work
reported in the literature.

This article is organized as follows: In Sec 2, fractional-
order calculations to PI-PD controller and FO-IMC design
is introduced. The system description and statement of the
problem are discussed in section 3. Section 4 discusses the
comparative results with some the selected examples from the
literature and finally, the conclusion is displayed in section 5.

II. THEORETICAL DEVELOPMENTS
Many process industries have cascade structures. Most of
the secondary processes of the cascade structure are stable,
whereas the primary process may be stable or unstable and
with or without dead time. In this work, a stable secondary
process is considered with the stable/integrating/unstable pri-
mary process. The proposed design is represented pictorially
in Fig. 1

III. CONTROLLER DESIGN
The controller design for both primary and secondary loop is
essential to the system. The secondary controller is designed
before the primary controller. Fig. 2 shows the block diagram
of the modified cascade control structure to the plant model.
The FO-IMC based controller is designed to the secondary
loop. FO-PI/FO-PD controller is designed to the primary loop
so that effective and stable performance can be obtained for
the unstable process [49]–[52].

A. FRACTIONAL-ORDER CALCULUS
The generation of non-integer order for the integral and
derivative operators is given in [1]. Caputo’s definition,
Riemann–Liouville and Grünwald–Letnikov are some of the
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FIGURE 2. Proposed cascade loop for the unstable time-delay process.

definitions that are often used in the literature [39]. Caputo’s
definition is used widespread and it is given in Eq (1)

aDbr f (t) =
1

µ (v− r)

∫ b

a

f (τ )
(t − τ )r−v+1

dτ ,

for (v− 1 < r < v), a = 0 (1)

and dv
dtv f (t), r = v for (v− 1 < r < v) since v is larger than

or equal to r and µ(z) is Euler’s gamma function.
The Laplace Transform of the Riemann-Liouville defini-

tion of the fractional derivative is given in Eq (2)

L
{
oD

r

b f (t)} = sr L {f(t)} −
∑n−1

k=0
sr−k−1f (t )|t=0 (2)

for (v − 1 < r < v). For zero initial condition,
L
{
oD

r

b f (t)} = sr L {f(t)}.
An input-output derivative in the Caputo definition is

Caputo fractional derivative (Podlubny 1999b) is the main
interest to the authors to use Caputo’s definition in this article.

Generally, the integer-order derivative is similar to the
Laplace Transform of the fractional derivative, which helps
the fractional calculus to work with non-integer order in
the fractional controller design. The above calculation has
been used for solving the fractional order calculation and the
fractional-order modeling, and control toolbox from MAT-
LAB is further used in this article for obtaining the numerical
results.

B. FO-IMC CONTROLLER DESIGN FOR THE SECONDARY
PROCESS
Internal Model Control (IMC) design, which was developed
by Morari and co-workers [43] and it is used in many con-
troller applications recently. The direct synthesis model of
the IMC design provides the analytical controller parameters
to the process model Eq (3)- Eq (6) by using the assumed
process model. The IMC approach has the advantage that it
allowsmodel uncertainty and a tradeoff between performance

and robustness to be considered more systematically.

GCs(s) =
GIMC (s)

1− GIMC (s)Gm2 (s)
(3)

y2(s)
r2(s)

=
Gc2 (s)Gp2 (s)

1− Gc2 (s)Gm2 (s)+ Gc2 (s)Gp2 (s)
(4)

y2(s)
d2(s)

=
1− Gc2 (s)Gm2 (s)

1− Gc2 (s)Gm2 (s)+ Gc2 (s)Gp2 (s)
(5)

y2(s)
r2(s)

= GIMC (s)Gp2 (s) (6)

Assume Gp2 (s) is the secondary process model which is used
as an internal model and GIMC (s) is the internal model con-
troller. Then, the IMC controller is designed in the following
steps with Eq (7)- Eq (10):
Step 1:

Gm (s) = Gm−(s)Gm+(s) (7)

In Eq (7), Gm+(s) contains any time delays and right-half
plane zeros. Gm+(s) must have a steady-state gain equal to
one
Step 2:
The controller is specified as

GIMC (s) =
1

Gm−(s)
f (s) (8)

where f(s) is pass filter with the steady-state gain is equal to
one.

f (s) =
1

(1+ τc(s))a
(9)

The desirable close-loop constant τc and positive integer a are
chosen in such a way to make the controller realizable.

For FO-IMC,

f (s) =
1

(1+ τcs1+γ )a
, 0 < γ < 1 (10)

where γ is a fractional number.
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C. PRIMARY CONTROLLER DESIGN
The primary controller is designed using fractional order
calculus. The FOPI-FOPD controller structure in the primary
loop is tuned based on fraction order calculus to stabilize the
process model. For the effective primary controller design,
the overall primary process model is required, which is
obtained from the r2 to y1 of the cascade control structure. For
the overall primarymodel, the perfect secondary loop transfer
function is required that is identified by the secondary loop
controller design.

Gpp1 (s) =
y1(s)
r2(s)

= Gps1 (s)Gp1 (s) (11)

where, Gps1 (s) is a secondary process model and Gpp1 (s) a
primary process model. In this article, the primary process is
given in Eq (12), and Eq (13) has been considered as,

Gp1(s) =
K (1− zs)
τ s− 1

e−θs (12)

Gp1(s) =
K

τ s− 1
e−θs (13)

Let us assume the obtained secondary loop process model
has the structure of Unstable First Order Plus Time Delay
(FOPTD) process,

Gps1 (s) =
ks1e−θss

τs1s− 1
(14)

The primary process is designed to complete the model
Gpp1 (s), which is a second-order process and it is derived by
substituting Eq (13),(and) Eq (12) into Eq (14) to obtain as
Eq (15) and Eq (16),

Gpp1 (s) =
ks1e−(θ s+θp1)s

(τs1s− 1)(τcs1+γ + 1)
(15)

Gpp1 (s) =
ks1 (1− zs) e−(θ s+θp1)s

(τs1s− 1)(λs1+γ + 1)
(16)

Note: The primary process model in this article is consid-
ered as an unstable first order plus dead time and first-order
plus positive zero with dead time model, However, the pro-
cesses with two unstable poles can be properly identified as
a first-order system and the method proposed can be applied
since the two unstable poles of the system makes the entire
process into the third-order system.

The transfer function of the FOPI-FOPD controllers are
proposed here for the primary loop controller design. The
basic transfer function model of an FO-PI is given by

GC1 (s) = Kp(1+
KI
s
)r (17)

The model of the FO-PI in Eq (17), consists of the propor-
tional gain Kp, the integral gain KI and the fractional-order r .
The range of the order considered in this article is (0, 2).

The transfer function of an FO-PD is given in Eq (18)

GC2 (s) = Kp(1+ Kd s)ρ (18)

The fractional-order of the FO-PD control is ρ with the range
of (0,2) is used and proportional, and derivative gains of the
transfer function model are Kp and Kd .

3.4 Selection guidelines for filter tuning parameter τ c
Many simulation cases, it is observed that the phase margin

and gain margin are reduced with the increase in τc. Higher
value of τc leads to poor performance, and lower values lead
to small tolerance to delay mismatch. For the practical design
of the controller, the (value of) τc is selected between 0.5 to
2 in this article.

IV. PROBLEM STATEMENT AND SYSTEM DESCRIPTIONS
The cascade controller modified with the primary PI-PD con-
troller structure for the stable and unstable primary process is
introduced in this section.

A. CENTROID OF CONVEX STABILITY
The centroid of convex stability method is used in this article
for the computation of stabilizing the PI-PD controllers for
processes with time delay using the stability boundary locus.
The method used here stabilizes the values of PI-PD con-
trollers in the kf-ki plane and kf-kd plane for a given system
by achieving user specified gain and phase margins for time
delay systems. The equations of the planes and straight lines
can be derived using the stability boundary of the stabilizing
regions obtained in the kf-ki plane for fixed values of kd
and kf-kd plane for fixed values of kf. The method used
here provides many advantages when applied to the control
systems with time delay of any order including unstable
time delay systems. This is an effective method in terms of
computing the stability region. The basics of the stabilization
of PI controller are given in [32].

In this article, the parameters of the FOPI-FOPD controller
are generalized to the unstable system and it can be obtained
by the graphical method. Three points in the proposedmethod
are in-center point, Fermat point, and geometry method in
convex stable region used to tune the FOPI-FOPD controller
parameter. The major steps involved in the design are: Ini-
tially, the internal loop FOPD controller is designed for the
open loop unstable system. In the kd−kf plane, the stability
boundary locus is obtained using characteristic polynomial of
the internal loop closed loop. Next, the in-center coordinate
points of the convex stability region are computed. After-
wards, the desired locus of FOPI controller is obtained by
embedding PD controller parameters into the transfer func-
tion. Then, the outer loop ferment point of convex stability
region is obtained which are the FOPI controller parame-
ters. The method proposed needs only a simple geometric
calculation so that the FOPI-FOPD controller parameters
are obtained in the stable region to ensure the closed-loop
stability. The parameters can be obtained by computing the
triangle points such as vertex V and two corner points C1
and C2. The convex stability region of the PD controller
can be described as a triangle by these points. According to
the coordinates of the above points, the in-center of the PD
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controller can be calculated. The basics concepts are further
extended to fractional order design.

B. FOPI-FOPD BASED MODIFICATION OF PRIMARY LOOP
The disturbance and the secondary loop output affect the
primary process where the unstable primary process can be
stabilized using the PD controller of the modified structure.
The reference inputs to the primary (Gc1) and secondary
controller Gc2 are r1 and r2.

In the Fig (2), the inner loop is modified with FO-IMC
controller for disturbance rejection whereas, the FOPI-FOPD
controller designed in the primary loop is used for stabilizing
the system so that the desired performances can be obtained
[53]. The primary loop FOPI-FOPD controller is designed
using Fractional order calculus like the secondary FO-IMC
controller calculations.

The secondary loop of the cascade design is used for
disturbance rejection of both the stable and unstable process.
The action of the secondary loop is much faster than the
primary loop so that the disturbance rejections of the process
can be performed effectively. It helps to eliminate or reduce
the steady-state disturbances of the primary loop.

In equation (15), the process model is designed. The per-
fect primary process model can be taken from (15) and is
given in Eq (19),

Gp (s) =
kpe−θps

(τs1s− 1)(τps1+γ + 1)
(19)

where, θp = (θ s + θp1) and τc = τp . Further re-written the
eq (19) by assuming theτ2 = −τp, τs1 = τ1 and kp = −k and
obtain the following equations Eq (20)- Eq (21) as,(kp is not
changed?)

Gp (s) =
kpe−θps

(τ1s− 1)(τ2s1+γ − 1)
(20)

Gp (s) =
kp (1− zs) e−θps

(τ1s− 1)(τ2s1+γ − 1)
(21)

The general structure of the primary process and the primary
controller is given as,

Gp (s) =
N (s)e−τ s

D(s)
(22)

Cp1 (s) = Kp +
Ki
sα
=
Kpsα + ki

sα
(23)

Cp2 (s) = Kf + Kd sβ =

(
kf + 100kd

)
sβ + 100kf

sβ + 100
(24)

where α and β are the fractional order of the integral and
derivative parts respectively. kf , kp are the proportional gain
for the PD and PI controller respectively, and the derivative
and integral gains are kd and ki. The fractional calculation is
to tune the FOPI-FOPD controller of the primary controller,
which ensures the stability of the system. The proper selection
brings the closed-loop cascade system to be stable.

For the model calculation let us consider Eq (25) and Eq
(26),

Cp1 (s) =
N1(s)
D1(s)

(25)

Cp2 (s) =
N2(s)
D2(s)

(26)

The internal feedback loop characteristic equation can be
further written as Eq (27),

∇2 (s) = D (s)D2 (s)+ N (s)N2(s)e−τ s (27)

Based on the convex stability region method the inner loop
controller design is stabilized by substituting s = jω and it
becomes as,

∇2 (jω) = D (jω)D2 (jω)+ N (jω)N2 (jω)

∗ (cos (τω)− jsin(τω)) (28)

where, e−τ jω = (cos (τω)− jsin(τω). Finally splitting the Eq
(28) into the real and imaginary part and equate to 0 then we
can obtain the unknown parameters of kf and kd .

∇2 = Re2 + Im2 = 0 (29)

The Re2, Im2 are the real and Imaginary part of the decom-
posed PD controller Eq (29) which is a function of the
unknown parameters kf and kd and frequency variable. The
stability region can be found by plotting the values of kd and
kf in the kf − kd region, which is the convex stability region
by the corner and cusp points of the kd and kf values.
Step 1:Calculate control parameters of kd and kf by obtain-

ing the centroid of convex stability of kf − kd region for PD
controller parameters.

KC
d =

∑n
i=1 K

cu
di +

∑m
i=1 K

cp
di

n+ m
(30)

where, KC
d , K cu

di , K
cp
di are the derivative controller parameter

of PD controller, cusp points and corner points of the coordi-
nates in kf − kd plane respectively.

KC
f =

∑n
i=1 K

cu
fi +

∑m
i=1 K

cp
fi

n+ m
(31)

where, KC
f , K cu

fi , K cp
fi are the derivative controller param-

eter of PD controller, cusp points and corner points of the
coordinates in kf − kd plane respectively. The kd and kf
control parameters are considered to minimize the inner loop
combination of Gp(s) and Cp2 (s) as Eq (32), and the final
form of the reduced model is as,

G (s) =
N (s)
D(s)

=
Gp(s)

1+ Cp2 (s)Gp(s)
(32)

Step 2: Now again do the same procedure for PI controller
where the centroid of convex stability of kp − ki the region
is obtained to calculate the controller parameters of kpandki
for the PI controller. For obtaining it, substitute s = jω in Eq
(33) and obtain the characteristics equation by equating the
denominator of the model to 0.

∇1 (s) = D (s)D1 (s)+ N (s)N1(s)e−τ s (33)
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After substituting s = jω and obtaining the characteristics
equation, the decomposed model with the real and imaginary
parts separated is given as,

∇1 = Re1 + Im1 = 0 (34)

Re1, Im1 are the real and Imaginary part of the decomposed
PI controller in Eq (34) which is a function of the unknown
parameters kp, ki and frequency variable. The stability region
can be found by plotting the values of ki and kp in the ki − kp
region which is the convex stability region by corner and cusp
points of the kp and ki values.
Step 3: By using the Eq (30) and Eq (31), the centroid can

be found for the PI controller and the stability region can be
obtained by plotting the ki−kp region. Eq (35) and Eq (36) are
obtained using the controller parameters KC

p and KC
i with

the cusp and corner points of r and s as,

KC
p =

∑r
i=1 K

cu
pi +

∑s
i=1 K

cp
pi

n+ m
(35)

and

KC
i =

∑r
i=1 K

cu
fi +

∑s
i=1 K

cp
fi

n+ m
(36)

C. GUIDELINES FOR SELECTING CLOSED-LOOP TIME
CONSTANT
The closed-loop time constant α plays a vital role in setpoint
tracking and load disturbance rejection performance. Smaller
values of α yields better servo and regulatory performance,
but degraded robust stability. On the other hand, increasing
α improves system robustness at the cost of closed-loop
performance. Hence, the choice of time constants is a trade-
off between performance and robustness. As discussed in
section-3, using the model reduction techniques, the higher-
order transfer functions can be approximated as Pt (s) =
(Kte−θt s)

/
(1+ τts). Eventually, the PI-PD control structure

shown in Figure 2 reduces to a unity feedback structure with
a PI controller in series with a FOPTD transfer function,
as shown in Figure 3.

FIGURE 3. The reduced form of FOPI-FOPD control structure.

The loop transfer function of the system shown in Fig-
ure 3 is,

L (s) = C1 (s)Pt (s) (37)

Substituting C1 and Pt in Eq (37) which gives Eq (38) as,

L (s) = Kc

[
1+

1
Tis

]
Kt

(1+ τts)
e−θt s (38)

The maximum sensitivity of the system can be obtained from
Eq (39) is given by

MS =

∥∥∥∥ 1
1+ C1 (s)Pt (s)

∥∥∥∥
∞

(39)

To study the variation in the maximum sensitivity (MS ) con-
cerning process dynamics and α, an FOPTD process model
with transfer functionGp (s) = (Kte−θt s)

/
(1+ τts) is consid-

ered. Assuming Kt = τt = 1, the time delay ′θ ′t is varied and
the corresponding MS values can be obtained. An analytical
expression relating α andMS is obtained using a curve fitting
toolbox of MATLAB as given in Eq (40),

α = θt

(
Ms − C

A

) 1
B

0.01 ≤
(
θt

τt

)
≤ 8 (40)

The plant model Pm that is used for obtaining the controller
settings is only an approximation of the actual plant dynamics
P. Hence, it is necessary to assume the time constant α
such that the closed-loop system is robust to uncertainties in
estimated process dynamics. The condition in Eq (41) is used
for closed-loop robust stability given in [16]:

‖lm (s)Td (s)‖ < 1 ∀ω ∈ (−∞,∞) (41)

where, Td is the closed-loop complementary sensitivity func-
tion and lm is the process multiplicative uncertainty which is
given by

lm (s) =

∣∣∣∣P (s)− Pm (s)Pm (s)

∣∣∣∣ (42)

If uncertainties exist in process gain, time delay and time
constant of the primary process model Eq (42), α should
be selected such that the following condition in Eq (43) is
satisfied:

‖Td‖∞ <

∣∣∣∣∣ [(τ−1τ) s+ 1]

(τ s+ 1)
(
1+ 1K

K

)
e−1θs − ((τ −1τ) s+ 1)

∣∣∣∣∣,
∀ω > 0 (43)

where1K ,1θ, and1τ represent uncertainties in gain, time
delay, and time constant of the primary process model. In the
following chapter, different applications with an unstable sys-
tem are considered for simulative performances to examine
the proposed design.

V. SIMULATION RESULTS
To examine the proposed design, three examples are consid-
ered where the primary process is unstable with time delay.
The designed techniques in this research are considered to
obtain the benefit of the design in closed-loop performances.
Integral Absolute error (IAE) and Integral Squared Error
(ISE) are the performance indices considered for comparing
the proposed deign with the existing methods. The smooth-
ness of the control signal is evaluated by finding the total
variation of the manipulated variable.
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TABLE 1. Performance analysis for Example 1.

The steps are,
• The transfer function for the primary and secondary
process is considered as given in Eq.14 and Eq.16.

• Design the FO-IMC based secondary controller using
Eq.18

• Design the pre-filter for overshoot minimization accord-
ing to Eq.10 by selecting τc

• Design the FOPI-FOPD based primary controller using
feedback controller characteristic equation Eq.27 and
Eq.28 and obtain the overall model of the primary loop
according to Eq.38

• Check the closed-loop stability of the system using
Eq.41 by satisfying the condition Eq. 43 and evaluate
the closed loop performances.

The above steps are applied to the following examples
and the closed loop performances are compared using
simulation.
Example 1: The unstable time delay cascade process stud-

ied in [8,9,14,20] is considered here where the unstable pri-
mary process model and stable secondary process model are
given by Eq (44) and Eq (45),

Gp1(s) =
e−0.339s

5s− 1
(44)

Gp2(s) =
e−0.6s

2.07s+ 1
(45)

In this article, the perfect comparison is considered using
the methods discussed by Kaya [10] and Tan et al. [12]. For
a fair and perfect comparison, the method proposed in this
article is a simple cascade control scheme with the PI-PD
designed outer loop and the IMC structure of an inner loop.
The primary control loop is designed using fractional order
calculation and the methods considered for the comparison
also havemodified cascaded loopwith two ormore additional
controllers with the modified Smith predictor. The inner loop
controller is designed by considering the λ = 0.5, γ =
0.2, a = 1, and θm2 = 0.3 then the secondary IMC controller
is obtained from the eq (10).With this IMC controller, the pri-
mary loop can be designed by using eq (20). The maximum
sensitivities of the inner and outer loops are assumed as 2 and
1.6 respectively (The sensitivity Ms and α are obtained by
curve fitting toolbox using MATLAB and n this article it
is recommended). The chosen fractional order parameters
α = β = 0.2 (As suggested in [27] the values are taken), for
the PI-PD primary controller is further used to obtain the PD

and PI centroid controller parameters. The parameters of the
centroid PD controller and PI controller are obtained as per
the steps 1,2 and 3 of the parameter calculation. Accordingly,
the proposed methods yield the parameters areKf = 4.312,
Kd = 3.124, Kp = 2.1525, Ki = 3.478.
The methods taken for comparison have different tuning

parameters for each controller. Unit step change disturbance
is given to the proposed design and [3], [5]. In [3], the sec-
ondary controller is obtained as Gc2(s) =

(2.07s+1)
(0.3s+1) , and fur-

ther, the values are considered for the tuning is, Kc = 0.478.
τi = 0.99, τd = 0.213, γ = 6.821, β = 0.567 to design
the primary controller with the designed filter for the setpoint
is F = 1

(6.8s+1) . In the other example, [5] is considered
and the secondary controller is designed by considering the
parameters as Kc = 9.16, τi = 2.9, τd = 4.46, β = 0.234
and for the disturbance rejection case, Kc = 4.86, τi = 0.85,
τd = 2.479, γ = 0.467, β = 0.02 with the setpoint filter
of F = 1

(5.74s+1) . The above methods with the mentioned
parameters are used for the analysis of the performance of the
controller designmethods. The effective comparison, setpoint
changes are given as disturbance during 350s. The observa-
tions are made continuously as shown in Fig. (4) and Fig (5).
The detailed observations on the response plot are expressed,
the better performances of the design proposed over the other
methods which are considered. The figures show that the pro-
posed method gives better performance). The robustness of
the design is further analyzed with the existence of +/−20%
perturbation in the secondary loop gain and time delay, and
are observed in Fig (6) and Fig (7). The performance indices,
IAE and TV are calculated for the nominal and perturbed
models and are given in Table 1. The observations also listed
in table where the quantitative comparison is tabulated in
terms of Integral Absolute error (IAE) and Total Variation
(TV). The comparative closed-loop evaluation concerning Eq
(46)-Eq (47) records in table.1

IAE =
∫
∞

0
e(t)dt (46)

TV =
∑N

n=0
|un+1 − un| (47)

Example 2: In this example, the work in [7], an isothermal
continuous stirred tank reactor, is considered in Eq (48)-(49)
where the primary process is unstable, and the secondary
process is stable.

Gp1(s) =
3.433e−20s

103.1s− 1
(48)

Gp2(s) =
e−0.5s

3s+ 1
(49)

The inner loop controller is designed by considering the λ =
0.5, γ = 0.2, a = 1, then the secondary IMC controller is
obtained from the eq (10). For this unstable primary process,
the centroid of the convex region is calculated by using the
procedure and the obtained parameters for PD region is Kf =
4.312, Kd = 3.124 by considering the fractional parameters
α = β = 0.2. using the centroid PD parameters into the
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FIGURE 4. Closed-loop nominal performances for Example. 1.

FIGURE 5. Controller performances (nominal) for Example.1.

inner loop of the system from y1 to r1 which is reduced
into to single transfer function model. Reduced transfer func-
tion further used to find the stability region of the Kp-Ki
plane to find the PI parameters for the outer loop. Using the
steps for finding the stability region PI controller parameters,
we can obtain the controller parameters Kp = 4.312, Ki =
3.124. Thus, the obtained controller parameters of the PI-
PD primary controller with the inner loop IMC parameters,
the performance of the design is analyzed and compared.
For the comparison, [6] and [7] are considered. Reference
[6] yields the controller parameter Kc = 4.86, τi = 0.85,
τd = 2.479, γ = 0.467, β = 0.02 with the setpoint filter of
F = 1

(5.74s+1) . A step magnitude 5 at t = 150 is considered
and for the robustness of the design, +/− 20% uncertainty
is considered in GC1 and 10% in time delay of primary and
secondary process. The detailed observations on the response
plot are expressed, the better performances of the design

proposed over the other methods which are considered. The
improvements in the proposed design 9.2% and 15.35% are
observed at the nominal condition over the other methods
such as method 1 and method 2. The responses observed for
the comparison is shown in Fig (8)-Fig (11) for both nominal
and perturbed systems. The comparative closed-loop evalua-
tion is recorded in table.2.Furthermore, regulatory response
of the proposed design performance criterion is comparable
with that of [7] as seen in table.2.Although, it is observed
from Fig. 8 that the tuning strategies reported in [7] yields
oscillatory responses if there is perturbation in the process
parameters. One-point worth mentioning is that the tuning
strategies reported in [7] fails to give robust closed-loop
responses.
Example 3: In this example, the study has been consid-

ered in [8] is taken for the comparison where the primary
process model is unstable and secondary is a stable model is
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FIGURE 6. Closed-loop (perturbed) performances for Example.1.

FIGURE 7. Controller performances (perturbed) for Example.1.

TABLE 2. Performance analysis for Example 2.

considered as,

Gp1(s) =
e−3s

10s− 1
(50)

Gp2(s) =
2e−2s

s+ 1
(51)

The proposed method has the controller parameter for the
process model (50) and (51). The chosen is λ = 0.5, γ =
0.2, a = 1 and θm2 = 0.3.

TABLE 3. Performance analysis for Example 3.

After the internal IMC controller design, the primary con-
troller is designed with the selected fractional order param-
eters α = β = 0.2. The centroid convex regions of PD
are obtained from the PD stability region and further reduced
the complete model into a single transfer function model to
obtain the PI stability region. After the reduction, the obtained
parameters are further used for the effective cascaded con-
troller design for the primary unstable process. The obtained
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FIGURE 8. Closed-loop nominal performances for Example.2.

FIGURE 9. Controller (nominal) output for Example.2.

FIGURE 10. Closed-loop (perturbed) performances for Example.2.
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FIGURE 11. Controller (perturbed) output for Example.2.

FIGURE 12. Closed loop (nominal) performances for Example.3.

FIGURE 13. Controller (nominal) output for Example.3.
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FIGURE 14. Closed-loop (perturbed) performances for Example.3.

FIGURE 15. Controller (perturbed) output for Example.

parameters are Kf = 4.312, Kd = 3.124, Kp = 4.312
and Ki = 3.124. For Rao et al predictive method, tuning
parameters are Kcs = 2.79, Kds = 8.59, Kis = 0.09, βs =
1.65 and λs = 5. For [22], tuning parameters Kcs = 0.12,
τis = 5.5, τds = 1.728, β = 0.88 and α = 72.25 are
considered with the setpoint filter of 72.25.With all the meth-
ods and proposed methods are simulated for the performance
comparative analysis. The setpoint step change is given at
t = 1s and the disturbance at t = 350s is given and the
resulting response is plotted in Fig (12) and Fig (13) for the
nominal model and Fig (14) and Fig (15) for the perturbed
model. The plotted response is exploiting the performances
of all three methods and the observation is highlighted that
the proposed design has an improved response over the other
in terms of quick disturbance rejection and fast response. The
comparative closed-loop evaluation is recorded in table 3 and
it shows the improvements of the proposed design at nominal

condition about 26.2% and 38.4% are observed over the other
examples.

Nowadays, disturbance rejection analysis is a more essen-
tial part to deal with than the tracking performances analysis.
Hence, the design proposed in this study is apt for engineering
applications due to its better regulatory performance. How-
ever, in practical scenarios, noise may exist in the sections of
final control element, the process or from measuring instru-
ments, and this makes the proposed design struggle to provide
robust performances. The detailed analysis reported that the
proposed design methods for the unstable primary process
with dead time effectively control and stabilize. In the distur-
bance rejection case, the proposed design effectively reacts
to reject the disturbance quicker than the other methods. The
proposed design Once again shows that the fractional-order
controllers often enhance the speedy response to the stabi-
lized control system, as highlighted in the literature study.
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The proposed control method will be useful for the sta-
bilization, disturbance rejection, and delay compensation of
unstable systems with long dead time.

VI. CONCLUSION
The simple series cascaded controller for unstable process
with the dead-time is designed with fractional-order con-
trollers. The simple design includes the inner loop fractional-
order IMC controller and the primary FOPI-FOPD con-
trollers for the outer loop. The essential advantage of
FO helps to recover the response when the disturbance
occurs. Due to the advantages of fractional order controllers,
fractional-order internal model controllers and FOPI-FOPD
controllers are designed for disturbance rejection and setpoint
tracking performances. The proposed design is simple and
more suitable for any cascade unstable system possessing
time delay. The proposed controllers yield small values of
integral absolute error, integral squared error, and settling
time compared with the other researcher’s works. Another
advantage of the proposedmethod is that it is robust to param-
eter variations and the proposed predictive control scheme
provides good performance under system uncertainties com-
paredwith literaturemethods. The superiority of the proposed
controllers is illustrated by controlling simple and uncertain
processes. Simulation results demonstrate robust stabiliza-
tion, better (tracking) control performance, and disturbance
rejection of the closed-loop systems via the proposed con-
trollers. The proposed control method will be useful for the
stabilization, disturbance rejection, and delay compensation
of unstable systems with long dead time.
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