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ABSTRACT A new approach to identify and diagnose the quality of extensive and multivariate data is
presented, using the gage repeatability and reproducibility (GR&R) study through the weighting of rotated
factor scores. The proposal uses axis rotation to improve the explanation and interpretations of latent
information, providing a statistically appropriate alternative when dealing with two or more correlated
data sets. To analyze data with a significant variance-covariance structure, factor analysis (FA) is applied
for calculating the eigenvalues and extracting of the rotated scores. Once obtained, these scores are then
weighted with their respective eigenvalue for each factor. This procedure results in a single response vector,
which is capable of properly interpreting all of the quality responses analyzed. To illustrate an application
of the method, a real data set from a resistance spot welding process is selected, and two different types
of rotation are compared. The proposed method provided an output that contemplated all of the significant
variability of the data in a unique and significant way. In addition, the method enabled a reduction in the data
dimensionality, thus minimizing the time for analysis and computational effort.

INDEX TERMS Multivariate measurement system, repeatability and reproducibility, orthogonal rotation,
weighted factor analysis, resistance spot welding.

I. INTRODUCTION
Multivariate statistical techniques are widely used to analyze
data that has a significant variance-covariance structure [1].
Such methods have been applied in many engineering prob-
lems to improve the interpretation of extensive and corre-
lated data. In fact, several studies already use multivariate
strategies in a handful of applications, such as flux-cored arc
welding process [2], moving average control chart [3], design
of experiments on clustering methods [4] and applications in
process monitoring [5], [6]. Such approaches are also used
in the energy [7], healthcare [8] and economy [9] sectors.
Among several methods, some of them stand out in view
of their characteristics. The principal component analysis
(PCA), for instance, is a multivariate strategy that reduces
the data dimensionality and promotes uncorrelated vectors,
considering its variance-covariance structure [10], [11]. PCA
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has been used in several applications focused on quality
improvement, such as the studies of [12]–[16].

Another widely used approach is the factor analysis (FA),
which promotes the grouping of characteristics based on their
explanation level [17]. FA has some advantages over the PCA
technique. FA provides a better interpretation and explanation
of the data with a simpler structure [1]. FA also enables the
reduction of repetitive information between variables, using
a smaller amount of latent variables [18]. Another advantage
is that FA allows the grouping of the variables observed in
relation to the factor loads. For example, in a suitable applica-
tion, one factor would have a high factor load value, while the
other factors would have small or moderate loads [1]. Such
a characteristic would favor the simplicity of the structure
and, consequently, the explanation of the data. However, this
structure is not always obtained [17], so it is often recom-
mended to use methods to rotate the axes of the factors to
improve the explanation of the variables. The purpose of this
rotation approach is to acquire a simple data structure, with
easy interpretation of the observed variables [19].
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The use of multivariate strategies in engineering prob-
lems is a modern practice, as it is in optimization methods
[20], [21]. However, searching to improve the process using
optimization and other strategies may not bring enough
results, since the variability is often attributed to the mea-
surement process [22]. If this variability is not identified and
properly diagnosed in the measurement process, this portion
of variance can contaminate the decision-making process
made based on the data, which may lead to results that do
not correspond to the reality of the process. Among the
techniques developed to analyze the measurement system,
Woodal and Borror [23] highlight the gage repeatability and
reproducibility study (GR&R) as the best option to analyze
its capability. This technique allows the analysis of variability
within each system and also between them, in addition to ana-
lyzing the consistency of the measurements of the operators
with themselves [17].

When verifying the methods used in GR&R studies,
Burdick et al. [24] state that the analysis of variance
(ANOVA) method is the most used. However, when perform-
ing a statistical process control for correlated data, using
univariate techniques, a type I error may occur. Industrial
processes havemultiple responses of interest and the ANOVA
method promotes univariate analyzes, that is, one variable
at a time. In addition to requiring a longer amount of time
(depending on the number of responses), the ANOVAmethod
neglects the variance-covariance structure of the data [17].
As an alternative, many authors have proposed the use of
different multivariate methods in the GR&R study, such as
the multivariate analysis of variance (MANOVA) [25], prin-
cipal component analysis [26] and factor analysis [17], [27].
Among the variations of these techniques, Almeida et al. [27]
presented a combination of the factor analysis strategy and
GR&R study, weighting the factor scores by the eigenvalue
to improve the precision of a textured fiber bobbins measure-
ment system, called weighted factor scores method (WF).
However, the authors considered the factor scores without
rotation, that is, without improving the explanation of the
observed variables.

In order to contribute to GR&R strategies applied with
factor analysis, this study presents a new approach based on
rotated factor scores (quartimax and varimax), weighting by
their respective eigenvalues. For this application, a data col-
lection that follows the guidelines of a measurement system
analysis is considered. Then, it should be analyzed whether
the data are suitable for the application of FA. If data are
suitable, some rotation method is then applied to improve the
explanation of latent variables, i.e., simplifying its structure
based on the principles of parsimony [28]. Finding a simpler
structure, one should extract the rotated scores and calculate
the eigenvalues for each factor. From this information, each
factor is weighted by its respective eigenvalue, creating a
unique response vector, capable of adequately representing
the critical-to-quality characteristics (CTQ). Such procedure
enables the estimation of the variation components and then
the calculation of the multivariate indicators to evaluate the

measurement system. This approach is called weighting of
rotated factor scores (WRF). Based on this, the quality of
the data will be evaluated in an appropriate way, given its
structure of variance-covariance. In addition, this approach
will promote aminimization in time and computational effort,
due to the reduced dimensionality of the data and the evalu-
ation. As a rotation strategy, the authors used the orthogonal
rotation methods most applied in the literature, such as the
quartimax and varimaxmethod. To demonstrate the behavior
of this proposal in real industrial processes, we will apply this
approach in a resistance spot welding (RSW) process, ana-
lyzing the following geometric characteristics: indentation
depth, penetration and nugget width. A study that performs
the weighting of rotated factor scores applied to the GR&R
study or any other application in industrial processes has not
been found in the literature yet.

In general, the contributions of this paper can be summa-
rized as follows:

1) A new proposal to verify the measurement system for
extensive and correlated data is presented;

2) The use of orthogonal rotation methods promotes a
better interpretation of latent variables, providing a
simpler loading structure to assess data quality;

3) The weighting through the eigenvalues of each factor
gives the corresponding degree of importance to each
response cluster. In addition, the data set is properly
represented by a single vector of responses;

4) The proposed method reduces the computational effort
(representing several responses in a few factors),
in addition to minimizing the analysis time (in which
all CTQ’s are represented in a single vector, which
explains all responses appropriately).

The following section presents the theoretical background
for the strategies used. In Section 3, a discussion of the
new approach with rotated and weighted factor scores is
presented. Section 4 describes the application and results in
the RSW process. Section 5 presents the conclusions.

II. THEORETICAL BACKGROUND
A. GAGE REPEATABILITY AND REPRODUCTIBILITY
The GR&Rmethod is an extensively used strategy to analyze
the two precision components of a measurement system:
repeatability and reproducibility. Repeatability refers to the
variation resulting from themeasurement device, while repro-
ducibility indicates the variation generated by the measure-
ment system [29]. GR&R can be treated as a particular case
of the two-way analysis of variance with random effects [10].
Suppose factor A denotes a set of several parts while factor B
indicates a certain number of operators that carry out the
measurements. Since operators and parts can be selected from
a large set of options, they can be considered random factors,
and the model for this research can be observed in Eq. (1),

yijk = µ+ τi + βj + (τβ)ij + εijk


i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(1)
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TABLE 1. Two-way ANOVA for random effects (Part I).

TABLE 2. Two-way ANOVA for random effects (Part II).

where y expresses the response variable, µ represents the
mean value and τi ∼ N (0, στ ), βj ∼ N (0, σβ ), and τβij ∼
N (0, στβ ) represent, respectively, the random variable for
each part, for the operator and for the interaction. Finally,
εijk ∼ N (0, σε) indicates the estimated error term and a, b
and n refer, in the following order, to the number of parts,
operators, and replicas. The total variance σ 2

y can be defined
as per Eq. (2). The formula considers the independent nor-
mally distributed data with null mean and the variances σ 2

τ ,
σ 2
β , σ

2
(τβ) indicating the variation components.

σ 2
y = σ

2
τ + σ

2
β + σ

2
(τβ) + σ

2
e (2)

Considering the randommodel for the analysis of variance,
it is easy to verify that it is similar to the fixed models. It is

important to highlight, however, that they differ regarding the
nature of the random effects mean square. Failing to reject the
null hypothesis indicates that there is not enough evidence
of a significant variability between the population and the
sample data, whereas the null hypothesis rejection evinces
otherwise [30]. Adopting these concepts for the GR&R anal-
ysis allows the generalization of operators and sets of parts.
Eq. (3), as shown at the bottom of the page, shows the sum of
squares and the associated mean squares expected for random
effects terms. This estimation leads to the components of
variance. In a similar way, Table 1, Table 2 and Table 3 present
the expressions required to perform the GR&R study.
Eq. (4) shows how to obtain the percentage of varia-

tion which allows to adequately evaluate and classify the
measurement system. The number of distinct categories (ndc)

y••• =
a∑
i=1

b∑
j=1

n∑
k=1

yijk = abnµ+ bn
a∑
i=1

τi + an
b∑
j=1

βj + n
a∑
i=1

b∑
j=1

(
τβij

)
ij + ε••• (3)
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TABLE 3. Percentage of contribution and study variation for GR&R.

TABLE 4. Classification criteria for the measurement system.

identified by the measurement system is calculated using
Eq. (5). Table 4 indicates the acceptance criteria of the estab-
lished measurement system [31].

%R&R =
(
σMS

σT

)
100 (4)

ndc =

√
2σ 2

P

σ 2
MS

= 1.41
σP

σMS
(5)

B. FACTOR ANALYSIS
Factor analysis (FA) is a multivariate statistical technique that
describes the covariance relationships among the response
variables (yi, i = 1, 2, . . . , p), gathering variables that are
highly correlated in a same factor (fj, j = 1, 2, . . . ,m) [1].
When m < p, these factors are unobservable variables, also
known as latent variables or common factors. The FA model
can be represented through a linear relationship, as shown in
Eq. (6),

Y− µ = LF+ ε (6)

where Y is an observable random vector with p response
variables, µ(p×1) is the vector of population means,

L represents the matrix of factor loadings with dimension
p×m (Eq. (7)), F(m×1) indicates the random vector containing
the unobservable latent variables, and ε(p×1) is a random
vector of additional sources of variation (errors), also known
as vector-specific factors. The matrix L is composed of the
factor loadings lij that comprises the correlation or the covari-
ance between the response Yi and the common factor fj [18].

L =


l11 l12 · · · l1m
l21 l22 · · · l2m
...

...
. . .

...

lp1 lp2 · · · lpm

 (7)

Applying the FA requires the original response variables
to be adequate [1]. Such adequacy can be evaluated using the
Bartlett sphericity test. This test considers the test statistic
χ2
α;ν

to verify whether the correlation matrix is an identity
matrix, with α as the level of significance and a number of
ν = p(p − 1)/2 degrees of freedom. This test also assumes
that the dataset Y = [Y1,Y2, . . . ,Yp]T follows a normal
multivariate distribution. In this sense, the null hypothesis that
the correlation matrix is equal to the identity matrix is not
rejected. In other words, the data is considered not correlated
when χ2 > χ2

α;[p(p−1)/2], and the value of χ
2 is obtained from

Eq. (8) [18].

χ2
= −

[
n− 1−

(2p+ 5)
6

]
ln|R| (8)

Another way to verify the adequacy of the data is through
the KMO index as shown in Eq. (9), where rij are the sample
correlation matrices R and qij are the anti-image correlation
matrices Q [18]. Although it ranges from 0 to 1, values
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greater than 0.5 already indicates the suitability of the original
responses set.

KMO =

∑
i6=j r

2
ij∑

i6=j r
2
ij +

∑
i6=j q

2
ij

(9)

FA’s mathematical emphasis is in expressing the popu-
lation covariance 6(p×p) through a matrix in terms of a
specific variance matrix, where the terms of the main diag-
onal contains the errors, while the values outside it are null.
The population parameters are not known, so the 6 matrix
can be estimated by the sample covariance matrix S(p×p).
Nevertheless, it is highly recommended to model the sample
correlation matrixR(p×p) instead of S. Most problems involv-
ing multivariate analyses contain response variables with
diverging scales, which makes the correlation more adequate
since it is not sensitive to these discrepancies. The matrix R
can be calculated by Eq. (10),

R = LLT +9 (10)

where L represents the matrix of factor loadings with dimen-
sion p×m andψi is a part of the total variance of Yi explained
by the specific factor εi [18].

The Principal Component (PC) is one the most used meth-
ods to estimate the above-mentioned matrix L. It determines
the factor loads and the specific variances through the spectral
decomposition of S or R matrices [1]. Thereby, the matrix L
can be calculated as presented in Eq. (11):

L = Pm31/2
m =

[√
λ1e1,

√
λ2e2, . . . ,

√
λmem

]
(11)

wherePm represents thematrix p×m of the firstm normalized
eigenvectors (ei) of R, and 3m indicates the diagonal matrix
m× m of the eigenvalues (λi) of the same matrix R. Consid-
ering Eqs. (10) and (11) it is possible to obtain the specific
variances, as shown in Eq. (12).

9 = diag
(
R− LLT

)
(12)

The FA theory states that the number of factors m is neces-
sarily less than p, which also allows the reduction of the prob-
lem dimension. The issue of determining how many factors
should be used to represent the data set can be solved using
several criteria. Nevertheless, the main requirement is that m
must present a cumulative variation rate ≥80% and, in view
of the sample correlation matrix, m must have eigenvalues
greater than the mean eigenvalues, i.e., λi ≥ 1 [18].

C. ORTHOGONAL ROTATION METHODS
The rotation of the factor loads is a widespread practice to
deal with the difficulty on factor loads interpretation, since
it facilitates the association of the common factors to the
response variables utilizing a simpler load structure [19]. The
rotated factor load matrix L◦ can reproduce either S or R,
while maintains the estimation of the communalities and spe-
cific variances, sinceL◦ = LT, andT is an orthogonal matrix
for rotating L [34]. Among the rotation methods, the most
used are: quartimax and varimax method.

An approach commonly used for rotating the axes is the
quartimax method. The quartimax approach is characterized
as a type of orthogonal rotation that aims to simplify the
columns of a factor matrix [32], minimizing the cross-product
term, according to Eq. (13) [33].

Quartimax =
p∑
i=1

q∑
j=1

l̃◦4ij +
p∑
i=1

q∑∑
j6=k

l̃◦2ij l̃
◦2
ik (13)

However, some rotation methods may perform better than
others, depending on the data structure. The varimax method
selects an orthogonal matrix T to create rotational factor
loads that promote maximization of the objective function

indicated in Eq. (14), where l̃◦ij = l◦ij

/√
h2i , in other words,

it represents the relation between the rotated factor load and
the ith commonality.

Varimax =
1
p

m∑
j=1

 p∑
i=1

l̃◦ij
4
−

( p∑
i=1

l̃◦ij
2

)2/
p

 (14)

Since FA produces latent variables, it is usual to obtain
estimated values for them (factor scores) to conduct further
analysis. According to Johnson and Wichern [1], minimizing
the sum of squared residuals of the factor model leads to the
estimation of the common factors. Eq. (15) shows how the
rotated factor scores are obtained.

F = Z
[
L◦
(
L◦TL◦

)−1]
(15)

where F(n×m) is the matrix containing the estimation of the
rotated latent variablesR,Z(n×p) is thematrix of the standard-
ized values of the response variables, and n is the number of
observations in each response variable.

III. GR&R THROUGH THE WEIGHTING OF LATENT
VARIABLES UNDER ORTHOGONAL ROTATION
In this study, the authors propose the combination of the
axis rotation strategy with the GR&R measurement system
analysis. After properly selecting the operators, collecting
parts and measuring the CTQ (correctly defining a GR&R
study), one should initially check whether the data is appro-
priate for the use of the FA strategy. Thus, the Bartlett
sphericity test and the Kaiser-Meyer-Olkin (KMO) index are
performed. If the data set is not adequate, another multi-
variate strategy, such as PCA or MANOVA, should be used.
However, if the data are suitable, the proposed method can be
continued. The number of factors to must be equal of higher
than 2 to perform the rotation of the axes.

The ordinary least squares method (OLS) is usually
adopted when factor scores are obtained using the principal
components [1] and, in this approach, the goal is to minimize
the sum of squares of the residuals of the factor model. More
specifically, if y−µ = LF+ ε is the definition of the factor
model, then the residue vector is ε = y − µ − LF. Then,
the minimization function is described in Eq. (16).

εT ε = (y− µ− LF)T (y− µ− LF) (16)
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Thus, before extracting the factor scores (Eq. (15)), axis
rotation should be performed to improve data interpretation.

The rotated factor load (L◦) maintains estimates of specific
commonalities and variances, such asL◦ = LT, whereT is an
orthogonal matrix for rotating L. In this sense, the orthogonal
rotation metrics can be tried out, envisioning the method
that best simplifies the data structure. Therefore, one can
contemplate the use of methods consolidated in the literature,
such as quartimax (Eq. (13)) and varimax (Eq. (14)).
Considering one of the rotation methods described pre-

viously, the scores of rotated factors should be extracted.
Assuming that the first-order partial derivate of Eq. (16)
related to the matrix of factor scores F are null, then F is
estimated by Eq. (15). Then, it is possible to create a new
WRF vector, which can be described as Eq. (17), as shown at
the bottom of the page.

It is possible to use the eigenvalues to establish the weights
of their respective factors. The result is a univariate variable,
as shown in Eq. (18).

WRF=
m∑
i=1

[λiFi]=λ1F1+λ2F2+. . .+λmFm (18)

At this stage, the analysis of variance (ANOVA) for random
effects can be applied to the weighted factor under rotation
(WRF). Then, the variation components of the GR&R study
are obtained once the factor scores are extracted. Eq. (19)
presents the WRF model for the measurement system.

WRFijk=µ+τi+βj+(τβ)ij+εijk


i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

(19)

In Eq. (19), µ is the expected value for WRF and τi,
βj, τβij, and εijk refer to random effects with null expected
values and variances σ 2

τ , σ
2
β , σ

2
τβ , and σ

2
ε respectively. For

scenarios in which the interaction is not significant, then

WRF is estimated using Eq. (20).

WRFijk = µ+ τi + βj + εijk (20)

The variance components for the GR&R study are pre-
sented in Table 5, where MSA, MSB and MSAB represent the
mean squares for the part factor, operator factor, interaction
term, respectively, and MSE the mean square for the error
term. Based on the previous analyses, the measurement sys-
tem must be classified by the contributions to the percentage
of variability (%R&Rm) and also the number of distinct cate-
gories (ndcm). These indicators are described respectively in
Eqs. (21) and (22). The evaluation criteria are the same as
those described in Table 4, based on the AIAG [31].

%R&Rm =

√
σ 2
MS(

σ 2
P + σ

2
MS

) × 100 (21)

ndcm =

√√√√2

[
σ 2
τ

(σ 2
β + σ

2
τβ )+ σ

2
ε

]
(22)

To visually represent the method and, consequently, facil-
itate its understanding, Fig. 1 illustrates the flowchart of the
proposed approach, contemplating the steps for applying the
method. Analogously, Table 6 describes the pseudocode for
implementing the gage study proposal through weighted of
factors scores under orthogonal rotations.

IV. NUMERICAL EXAMPLE: A RSW PROCESS
In order to demonstrate the application of this improvement,
the approach was applied in a resistance spot welding pro-
cess, evaluating the following critical-to-quality character-
istics: indentation depth (ID), penetration (P) and nugget
width (NW). The planning was carried out from the design
of experiments (DOE) strategy, specifically by a fractional
factorial design indicated in [34]. Data collection followed
appropriate planning for a GR&R study using eight parts (a),
four different operators (b) and three replicates (n) for three
distinct quality characteristics, totaling 288 measurement
data. All measurements were performed randomly, adapted

WRF =



(
CTQ11 − CTQ1

√
s11

) (
CTQ12 − CTQ2

√
s22

)
· · ·

(
CTQ1p − CTQp

√spp

)
(
CTQ21 − CQT1

√
s11

) (
CTQ22 − CTQ2

√
s22

)
· · ·

(
CTQ2p − CTQp

√spp

)
...

...
. . .

...(
CTQn1 − CTQ1

√
s11

) (
CTQn2 − CTQ2

√
s22

)
· · ·

(
CTQnp − CTQp

√spp

)



×




l◦11 l◦12 · · · l◦1m
l◦21 l◦22 · · · l◦2m
...

...
. . .

...

l◦p1 l◦p2 · · · l◦pm

×


l◦11 l◦21 · · · l◦p1
l◦12 l◦22 · · · l◦p2
...

...
. . .

...

l◦1m l◦2m · · · l◦pm

×

l◦11 l◦12 · · · l◦1m
l◦21 l◦22 · · · l◦2m
...

...
. . .

...

l◦p1 l◦p2 · · · l◦pm



−1×


λ1
λ2
...

λm

 (17)
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TABLE 5. Variation components for the GR&Rm study.

FIGURE 1. Detailed flowchart for conducting WRF approach.

from [17] and available in Table 7. The ID measurement was
performed on the upper face of the specimen, for it presents a
higher indentation depth value, according to the specification
suggested by Almeida et al. [22].

A. METHOD WITH VARIMAX ROTATION
Given the measurement data for the GR&R study, the method
described in section 3 was applied to the selected data set. All
analyzes were performed using the Minitab18r, R Studior

and Visual Basic for Applications (VBAr) software. The first
step was to verify that the data are suitable for the application
of the FA. Since the data set was not considered as a multi-
variate normal distribution, the KMO indicator was used. The
individual test values showed KMO equal to 0.8; 0.67 and

0.79 for ID, P and NW, respectively. The overall KMO is
equal to 0.75, so it is possible to infer that all data are suitable
for application of the multivariate FA strategy.

The next step was to apply the multivariate strategy.
Given the Kaiser criterion [1], it was verified that the
CTQs can be represented by two factors, RF1−v and RF2−v.
Then, the scores of the rotated factors and the eigenval-
ues were extracted by the varimax method considering two
factors. To demonstrate the influence of score rotation,
Table 8 presents the factor loadings and communalities for the
original (unrotated) and rotated method. Factor loadings with
values close to 1 or −1 indicate that this factor significantly
influences the variable. As a result, it was possible to observe
that the rotation of the scores provided a better explanation of
the data, where RF1−v adequately explained the ID and NW
characteristics, while RF2−v explained the characteristic P.
With regards to the original approach (unrotated), note that F1
holds the explanation of all CTQs, keeping F2 with low expla-
nation in its factor loadings. This behavior can be verified
by the variability explained by each factor (variance), i.e., F1
unrotated has higher value thanRF1 (rotated). However, when
evaluating F2, the original method has a low value (0.4240),
because this factor does not adequately explain any of the
CTQs. When analyzing RF2−v with the varimax rotation,
the variance of this factor is greater than 1, indicating that
RF2−v is significant according to the Kaiser criterion [1].
These results indicate that the rotation of the axes promoted a
simpler interpretation of the data, favoring their explanation.
It is important to highlight that the variance values are equal
to the eigenvalues for the unrotated approach.

Table 9 presents the rotated factor scores for RF1−v
and RF2−v, representing the CTQs. Based on these values,
the WRFv vector was obtained using Eq. (23), which rep-
resents all the quality characteristics analyzed by a single
vector. Given the values of theWRF vector (Table 9), one can
estimate the variance components for theWRFv vector. Based
on the analysis of variance, and considering a confidence
level of 95%, the interaction term is not significant for the
study (p-value equal to 0.387), as illustrated in Fig. 2. Thus,
by removing the interaction term, new results for the analysis
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TABLE 6. Pseudocode for implementation of WRF approach.

of variance were obtained as presented in Table 10.

WRFvarimax =
m∑
i=1

[λiRFi]

= 2.262RF1−V + 0.424RF2−V (23)

Based on Table 10, the parts and the operators reject the
null hypothesis that the average of the groups are equal
(p-value < 0.05). With this information, it was possible to
estimate multivariate indicators for the WRFv vector based
on varimax rotation. From the available metrics, the indi-
cators show that the repeatability and reproducibility study
can be classified as acceptable, where the value of %R&R

FIGURE 2. Interaction plot for parts and operators for WRF approach.

equals 7.29% and number of distinct categories identified
by the system greater than 5, as suggested by AIAG [31].
Table 11 describes these results.

By evaluating the data individually, the ID and NW char-
acteristics present less variability compared to the P charac-
teristic. This explains the grouping created by the rotation
of the scores, favoring the interpretation of the data with
greater similarity. In addition, it was possible to verify that the
eigenvalue for RF1−v (which explains ID and NW) presented
a higher value, prioritizing the weighting of this factor in
relation to RF2−v, which represents only the characteristic
with greater variability.

To demonstrate and verify the consistency of the measure-
ment amplitude for the WRFv vector with varimax rotation,
Fig. 3 illustrates the R-control chart. This chart presents the
operators’ ranges, which shows that all operators presented
measurements within the upper and lower control limits.
More specifically, operators C and D presented greater sta-
bility in their measurements than operators A and B.

To properly represent data variability, Fig. 4 illustrates the
confidence regions of the data through the confidence ellipses
originally proposed in the WF method. Given the confidence
ellipses for ndcm, proposed by Almeida et al. [27], notice the
data for ID × NW have narrower ellipses, indicating the
most precise intervals, as well as non-overlapping ellipses.
However, when checking the relation NW × P and P × ID,
we verified the presence of overlapping ellipses, as well as
larger confidence regions, indicating a high variability due to
the presence of the quality characteristic P.

B. COMPARISON WITH QUARTIMAX ROTATION
The factor scores were also extracted using the quarti-
max method, which is the most used rotation method.
Table 12 presents the loadings and communalities factor
for quartimax rotation. Notice the subtle difference in the
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TABLE 7. Measurements of CTQ’s for the RSW process.

TABLE 8. Factor loadings and communalities for unrotated and varimax rotation.

FIGURE 3. R-control chart for the GR&R-WRF.

structure of the factor loads, where the loads for RF1−Q
present higher values for the characteristics ID andNW,when
compared to the varimax method (see Table 8). However,

there is a disparity when comparing the loadings of the second
factor between quartimax and varimax. The behavior for
RF2−v of varimax showed a higher loading, better balancing
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TABLE 9. Rotated factor scores and WRF vector scores for varimax approach.

TABLE 10. Analysis of variance for WRFv scores.

TABLE 11. Variance components and gage evaluation for WRF.

the factors in relation to the quartimax method (such dif-
ference is visible due to the balance of the total variance
explained). Hence, although the quartimax method favors

the explanation for ID and NW, compared to the RF1−Q,
such rotation presents an unsatisfactory result when load-
ing the variable P, inferring a more confusing structure to
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FIGURE 4. 95% confidence ellipses for (a) ID × NW, (b) P × NW and (c) ID × P.

TABLE 12. Factor loadings and communalities for quartimax rotation.

interpret this variable. To better illustrate this loading behav-
ior, Fig. 5 and Fig. 6 presents the loads and groupings for both
rotation methods.

Given the eigenvalues and the scores rotated by the quarti-
max method (additional data available in the supplementary
material), the WRFQ vector was calculated using Eq. (24).
It is important to note that the eigenvalues for quartimax
rotation remain the same, since the extraction of both is based
on principal components. Based on the results, the variance
components were estimated, where the interaction term was

FIGURE 5. Loadings for varimax rotation.

not significant (p-value equal to 0.472), confirming what had
already been verified when using varimax rotation. In view of
the results, it is inferred again that the parts and the operators
reject the null hypothesis that the average of the groups
are equal (p-value equal to 0.000). However, presenting
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FIGURE 6. Loadings for quartimax rotation.

p-value for operators subtly lower than that verified in
varimax rotation.

WRFquartimax =
m∑
i=1

[λiRFi]

= 2.262RF1−Q + 0.424RF2−Q (24)

Based on the multivariate indicators, the WRFQ method
also presented an acceptable classification, with %R&Rm
equal to 5.58% and ndcm equal to 25. Although the WRFQ,
values, in this particular case, are more attractive from the
manager’s point of view (due to the low variability presented
in the study), such behavior is not ideal. This can be easily
explained by comparing the loading values for quartimax
rotation, where the quartimax method prioritized the loading
for the ID and NW responses, which showed less variability
in the study. Howeber, the variable P, grouped in the second
factor, presented less load with the quartimax rotation. The
total explained variance values (%Var from Tables 8 and 12)
confirm this statement. Thus, in this measurement study with
quartimax rotation, there is a confusing structure and poor
simplification, with an imbalance in the prioritization of
observable variables. Additionally, the variable P, which has
greater variability (see Fig. 4), was less prioritized.

However, it is important to note that such results do not
detract from the quartimaxmethod for use. The choice of the
rotation method varies according to the data analyzed [32],
whose degree of explanation and simplicity may vary. There-
unto, one must analyze the data structure before choosing
the option that will stand out and present the best results,
favoring the decision maker and the evaluation of the quality
of extensive and correlated data.

V. CONCLUSION
Given the need to use appropriate strategies to consider the
structure of variance-covariance matrix of the data, multivari-
ate techniques can enhance studies related to the measure-
ment system and data quality. This study sought to present
an approach to contribute to the metrics of multivariate mea-
surement system, using the FA technique with orthogonal

rotations. In addition, the weighting of the rotated scores by
the respective eigenvalues was added to form a single vector
of responses, which adequately represented all the responses
of interest. The behavior of the method was demonstrated for
the RSW process and, from that, the following conclusions
can be reached:

• The method proved to be a suitable alternative to
analyze the measurement system for data with a sig-
nificant variance-covariance structure, improving per-
formance and precision in multivariate measurement
system assessment;

• The proposed approach presented the possibility of a
single metric, filling the gaps of other methods of GR&R
with FA. Thus, WRF contemplates the use of orthogonal
rotations (to improve interpretation) and the weighting
of factors (attributing the degree of importance asso-
ciated with the eigenvalue). This procedure creates a
unique analysis for the variability of the measurement
system;

• The application carried out in the RSW process showed
that the method improved the interpretation and expla-
nation of latent variables, simplifying the data structure
using the varimax method. This rotation method stood
out for this data set, as it presented a greater balance in
the division of factor loadings for the geometric charac-
teristics of the process;

• When comparing the case study using the quartimax
method, it was found that it may not be the best choice
for this particular data set, since it presented moderate
loads for the variable P, which has the greatest variabil-
ity. As a consequence, the quartimax rotation promoted
a more confusing loading structure, prioritizing the vari-
ables explained in the first factor. However, it is impor-
tant to note that the quartimax method can be a useful
option for future applications in different processes and
data sets;

• The use of the FA method with extraction by principal
components provided a minimization in the data dimen-
sion and, consequently, in the computational effort for
processing. In addition, the analysis time has been sig-
nificantly reduced (approximately a 75% reduction),
since the method promotes a single response vector that
represents all the variables observed in a significant way.

Finally, as future suggestions, the method can be extended
to different applications, industrial or from other segments.
In addition, the authors suggest comparisons with other
unusual rotation methods available in the literature and other
applications focused on process quality.
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